Improved Measurement of *CP* Asymmetries in $B^0 \to (c\overline{c})K^{0(*)}$ Decays

B. Aubert,¹ R. Barate,¹ D. Boutigny,¹ F. Couderc,¹ J.-M. Gaillard,¹ A. Hicheur,¹ Y. Karyotakis,¹ J. P. Lees,¹ V. Tisserand,¹ A. Zghiche,¹ A. Palano,² A. Pompili,² J. C. Chen,³ N. D. Qi,³ G. Rong,³ P. Wang,³ Y. S. Zhu,³ G. Eigen,⁴ I. Ofte,⁴ B. Stugu,⁴ G. S. Abrams,⁵ A. W. Borgland,⁵ A. B. Breon,⁵ D. N. Brown,⁵ J. Button-Shafer,⁵ R. N. Cahn,⁵ E. Charles,⁵ C. T. Day,⁵ M. S. Gill,⁵ A. V. Gritsan,⁵ Y. Groysman,⁵ R. G. Jacobsen,⁵ R. W. Kadel,⁵ J. Kadyk,⁵ L. T. Kerth,⁵ Yu. G. Kolomensky,⁵ G. Kukartsev,⁵ G. Lynch,⁵ L. M. Mir,⁵ P. J. Oddone,⁵ T. J. Orimoto,⁵ M. Pripstein,⁵ N. A. Roe,⁵ M. T. Ronan,⁵ V. G. Shelkov,⁵ W. A. Wenzel,⁵ M. Barrett,⁶ K. E. Ford,⁶ T. J. Harrison,⁶ A. J. Hart,⁶ C. M. Hawkes,⁶ S. E. Morgan,⁶ A. T. Watson,⁶ M. Fritsch,⁷ K. Goetzen,⁷ T. Held,⁷ H. Koch,⁷ B. Lewandowski,⁷ M. Pelizaeus,⁷ M. Steinke,⁷ J. T. Boyd,⁸ N. Chevalier,⁸ W. N. Cottingham,⁸ M. P. Kelly,⁸ T. E. Latham,⁸ F. F. Wilson,⁸ T. Cuhadar-Donszelmann,⁹ C. Hearty,⁹ N. S. Knecht,⁹ T. S. Mattison,⁹ J. A. McKenna,⁹ D. Thiessen,⁹ A. Khan,¹⁰ P. Kyberd,¹⁰ L. Teodorescu,¹⁰ A. E. Blinov,¹¹ V. E. Blinov,¹¹ V. P. Druzhinin,¹¹ V. B. Golubev,¹¹ V. N. Ivanchenko,¹¹ E. A. Kravchenko,¹¹ A. P. Onuchin,¹¹ S. I. Serednyakov,¹¹ Yu. I. Skovpen,¹¹ E. P. Solodov,¹¹ A. N. Yushkov,¹¹ D. Best,¹² M. Bruinsma,¹² M. Chao,¹² I. Eschrich,¹² D. Kirkby,¹² A. J. Lankford,¹² M. Mandelkern,¹² R. K. Mommsen,¹² W. Roethel,¹² D. P. Stoker,¹² C. Buchanan,¹³ B. L. Hartfiel,¹³ S. D. Foulkes,¹⁴ J. W. Gary,¹⁴ B. C. Shen,¹⁴ K. Wang,¹⁴ D. del Re,¹⁵ H. K. Hadavand,¹⁵ E. J. Hill,¹⁵ D. B. MacFarlane,¹⁵ H. P. Paar,¹⁵ Sh. Rahatlou,¹⁵ V. Sharma,¹⁵ J. W. Berryhill,¹⁶ C. Campagnari,¹⁶ B. Dahmes,¹⁶ O. Long,¹⁶ A. Lu,¹⁶ M. A. Mazur,¹⁶ J. D. Richman,¹⁶ W. Verkerke,¹⁶ T. W. Beck,¹⁷ A. M. Eisner,¹⁷ C. A. Heusch,¹⁷ J. Kroseberg,¹⁷ W. S. Lockman,¹⁷ G. Nesom,¹⁷ T. Schalk,¹⁷ B. A. Schumm,¹⁷ A. Seiden,¹⁷ P. Spradlin,¹⁷ D. C. Williams,¹⁷ M. G. Wilson,¹⁷ J. Albert,¹⁸ E. Chen,¹⁸ G. P. Dubois-Felsmann,¹⁸ A. Dvoretskii,¹⁸ D. G. Hitlin,¹⁸ I. Narsky,¹⁸ T. Piatenko,¹⁸ F. C. Porter,¹⁸ A. Ryd,¹⁸ A. Samuel,¹⁸ S. Yang,¹⁸ S. Jayatilleke,¹⁹ G. Mancinelli,¹⁹ B. T. Meadows,¹⁹ M. D. Sokoloff,¹⁹ T. Abe,²⁰ F. Blanc,²⁰ P. Bloom,²⁰ S. Chen,²⁰ W. T. Ford,²⁰ U. Nauenberg,²⁰ A. Olivas,²⁰ P. Rankin,²⁰ J. G. Smith,²⁰ J. Zhang,²⁰ L. Zhang,²⁰ A. Chen,²¹ J. L. Harton,²¹ A. Soffer,²¹ W. H. Toki,²¹ R. J. Wilson,²¹ Q. Zeng,²¹ D. Altenburg,²² T. Brandt,²² J. Brose,²² M. Dickopp,²² E. Feltresi,²² A. Hauke,²² H. M. Lacker,²² R. Müller-Pfefferkorn,²² R. Nogowski,²² S. Otto,²² A. Petzold,²² J. Schubert,²² K. R. Schubert,²² R. Schwierz,²² B. Spaan,²² J. E. Sundermann,²² D. Bernard,²³ G. R. Bonneaud,²³ F. Brochard,²³ P. Grenier,²³ S. Schrenk,²³ Ch. Thiebaux,²³ G. Vasileiadis,²³ M. Verderi,²³ D. J. Bard,²⁴ P. J. Clark,²⁴ D. Lavin,²⁴ F. Muheim,²⁴ S. Playfer,²⁴ Y. Xie,²⁴ M. Andreotti,²⁵ V. Azzolini,²⁵ D. Bettoni,²⁵ C. Bozzi,²⁵ R. Calabrese,²⁵ G. Cibinetto,²⁵ E. Luppi,²⁵ M. Negrini,²⁵ L. Piemontese,²⁵ A. Sarti,²⁵ E. Treadwell,²⁶ F. Anulli,²⁷ R. Baldini-Ferroli,²⁷ A. Calcaterra,²⁷ R. de Sangro,²⁷ G. Finocchiaro,²⁷ P. Patteri,²⁷ I. M. Peruzzi,²⁷ M. Piccolo,²⁷ A. Zallo,²⁷ A. Buzzo,²⁸ R. Capra,²⁸ R. Contri,²⁸ G. Crosetti,²⁸ M. Lo Vetere,²⁸ M. Macri,²⁸ M. R. Monge,²⁸ S. Passaggio,²⁸ C. Patrignani,²⁸ E. Robutti,²⁸ A. Santroni,²⁸ S. Tosi,²⁸ S. Bailey,²⁹ G. Brandenburg,²⁹ K. S. Chaisanguanthum,²⁹ M. Morii,²⁹ E. Won,²⁹ R. S. Dubitzky,³⁰ U. Langenegger,³⁰ W. Bhimji,³¹ D. A. Bowerman,³¹ P. D. Dauncey,³¹ U. Egede,³¹ J. R. Gaillard,³¹ G. W. Morton,³¹ J. A. Nash,³¹ M. B. Nikolich,³¹ G. P. Taylor,³¹ M. J. Charles,³² G. J. Grenier,³² U. Mallik,³² J. Cochran,³³ H. B. Crawley,³³ J. Lamsa,³³ W. T. Meyer,³³ S. Prell,³³ E. I. Rosenberg,³³ A. E. Rubin,³³ J. Yi,³³ M. Biasini,³⁴ R. Covarelli,³⁴ M. Pioppi,³⁴ M. Davier,³⁵ X. Giroux,³⁵ G. Grosdidier,³⁵ A. Höcker,³⁵ S. Laplace,³⁵ F. Le Diberder,³⁵ V. Lepeltier,³⁵ A. M. Lutz,³⁵ T. C. Petersen,³⁵ S. Plaszczynski,³⁵ M. H. Schune,³⁵ L. Tantot,³⁵ G. Wormser,³⁵ C. H. Cheng,³⁶ D. J. Lange,³⁶ M. C. Simani,³⁶ D. M. Wright,³⁶ A. J. Bevan,³⁷ C. A. Chavez,³⁷ J. P. Coleman,³⁷ I. J. Forster,³⁷ J. R. Fry,³⁷ E. Gabathuler,³⁷ R. Gamet,³⁷ D. E. Hutchcroft,³⁷ R. J. Parry,³⁷ D. J. Payne,³⁷ R. J. Sloane,³⁷ C. Touramanis,³⁷ J. J. Back,^{38,*} C. M. Cormack,³⁸ P. F. Harrison,^{38,*} F. Di Lodovico,³⁸ G. B. Mohanty,^{38,*} C. L. Brown,³⁹ G. Cowan,³⁹ R. L. Flack,³⁹ H. U. Flaecher,³⁹ M. G. Green,³⁹ P. S. Jackson,³⁹ T. R. McMahon,³⁹ S. Ricciardi,³⁹ F. Salvatore,³⁹ M. A. Winter,³⁹ D. Brown,⁴⁰ C. L. Davis,⁴⁰ J. Allison,⁴¹ N. R. Barlow,⁴¹ R. J. Barlow,⁴¹ P. A. Hart,⁴¹ M. C. Hodgkinson,⁴¹ G. D. Lafferty,⁴¹ A. J. Lyon,⁴¹ J. C. Williams,⁴¹ A. Farbin,⁴² W. D. Hulsbergen,⁴² A. Jawahery,⁴² D. Kovalskyi,⁴² C. K. Lae,⁴² V. Lillard,⁴² D. A. Roberts,⁴² G. Blaylock,⁴³ C. Dallapiccola,⁴³ K. T. Flood,⁴³ S. S. Hertzbach,⁴³ R. Kofler,⁴³ V. B. Koptchev,⁴³ T. B. Moore,⁴³ S. Saremi,⁴³ H. Staengle,⁴³ S. Willocq,⁴³ R. Cowan,⁴⁴ G. Sciolla,⁴⁴ S. J. Sekula,⁴⁴ F. Taylor,⁴⁴ R. K. Yamamoto,⁴⁴ D. J. J. Mangeol,⁴⁵ P. M. Patel,⁴⁵ S. H. Robertson,⁴⁵ A. Lazzaro,⁴⁶ V. Lombardo,⁴⁶ F. Palombo,⁴⁶

> Work supported in part by the Department of Energy, contract DE-AC02-76SF00515 Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309 Contributed to the 32nd International Conference on High Energy Physics,

8/16/2004 - 8/22/2004, Beijing, China

J. M. Bauer,⁴⁷ L. Cremaldi,⁴⁷ V. Eschenburg,⁴⁷ R. Godang,⁴⁷ R. Kroeger,⁴⁷ J. Reidy,⁴⁷ D. A. Sanders,⁴⁷ D. J. Summers,⁴⁷ H. W. Zhao,⁴⁷ S. Brunet,⁴⁸ D. Côté,⁴⁸ P. Taras,⁴⁸ H. Nicholson,⁴⁹ N. Cavallo,^{50, †} F. Fabozzi,^{50, †} C. Gatto,⁵⁰ L. Lista,⁵⁰ D. Monorchio,⁵⁰ P. Paolucci,⁵⁰ D. Piccolo,⁵⁰ C. Sciacca,⁵⁰ M. Baak,⁵¹ H. Bulten,⁵¹ G. Raven,⁵¹ H. L. Snoek,⁵¹ L. Wilden,⁵¹ C. P. Jessop,⁵² J. M. LoSecco,⁵² T. Allmendinger,⁵³ K. K. Gan,⁵³ K. Honscheid,⁵³ D. Hufnagel,⁵³ H. Kagan,⁵³ R. Kass,⁵³ T. Pulliam,⁵³ A. M. Rahimi,⁵³ R. Ter-Antonyan,⁵³ Q. K. Wong,⁵³ J. Brau,⁵⁴ R. Frey,⁵⁴ O. Igonkina,⁵⁴ C. T. Potter,⁵⁴ N. B. Sinev,⁵⁴ D. Strom,⁵⁴ E. Torrence,⁵⁴ F. Colecchia,⁵⁵ A. Dorigo,⁵⁵ F. Galeazzi,⁵⁵ M. Margoni,⁵⁵ M. Morandin,⁵⁵ M. Posocco,⁵⁵ M. Rotondo,⁵⁵ F. Simonetto,⁵⁵ R. Stroili,⁵⁵ G. Tiozzo,⁵⁵ C. Voci,⁵⁵ M. Benayoun,⁵⁶ H. Briand,⁵⁶ J. Chauveau,⁵⁶ P. David,⁵⁶ Ch. de la Vaissière,⁵⁶ L. Del Buono,⁵⁶ O. Hamon,⁵⁶ M. J. J. John,⁵⁶ Ph. Leruste,⁵⁶ J. Malcles,⁵⁶ J. Ocariz,⁵⁶ M. Pivk,⁵⁶ L. Roos,⁵⁶ S. T'Jampens,⁵⁶ G. Therin,⁵⁶ P. F. Manfredi,⁵⁷ V. Re,⁵⁷ P. K. Behera,⁵⁸ L. Gladney,⁵⁸ Q. H. Guo,⁵⁸ J. Panetta,⁵⁸ C. Angelini,⁵⁹ G. Batignani,⁵⁹ S. Bettarini,⁵⁹ M. Bondioli,⁵⁹ F. Bucci,⁵⁹ G. Calderini,⁵⁹ M. Carpinelli,⁵⁹ F. Forti,⁵⁹ M. A. Giorgi,⁵⁹ A. Lusiani,⁵⁹ G. Marchiori,⁵⁹ F. Martinez-Vidal,^{59,‡} M. Morganti,⁵⁹ N. Neri,⁵⁹ E. Paoloni,⁵⁹ M. Rama,⁵⁹ G. Rizzo,⁵⁹ F. Sandrelli,⁵⁹ J. Walsh,⁵⁹ M. Haire,⁶⁰ D. Judd,⁶⁰ K. Paick,⁶⁰ D. E. Wagoner,⁶⁰ N. Danielson,⁶¹ P. Elmer,⁶¹ Y. P. Lau,⁶¹ C. Lu,⁶¹ V. Miftakov,⁶¹ J. Olsen,⁶¹ A. J. S. Smith,⁶¹ A. V. Telnov,⁶¹ F. Bellini,⁶² G. Cavoto,^{61,62} R. Faccini,⁶² F. Ferrarotto,⁶² F. Ferroni,⁶² M. Gaspero,⁶² L. Li Gioi,⁶² M. A. Mazzoni,⁶² S. Morganti,⁶² M. Pierini,⁶² G. Piredda,⁶² F. Safai Tehrani,⁶² C. Voena,⁶² S. Christ,⁶³ G. Wagner,⁶³ R. Waldi,⁶³ T. Adye,⁶⁴ N. De Groot,⁶⁴ B. Franek,⁶⁴ N. I. Geddes,⁶⁴ G. P. Gopal,⁶⁴ E. O. Olaiya,⁶⁴ R. Aleksan,⁶⁵ S. Emery,⁶⁵ A. Gaidot,⁶⁵ S. F. Ganzhur,⁶⁵ P.-F. Giraud,⁶⁵ G. Hamel de Monchenault,⁶⁵ W. Kozanecki,⁶⁵ M. Legendre,⁶⁵ G. W. London,⁶⁵ B. Mayer,⁶⁵ G. Schott,⁶⁵ G. Vasseur,⁶⁵ Ch. Yèche,⁶⁵ M. Zito,⁶⁵ M. V. Purohit,⁶⁶ A. W. Weidemann,⁶⁶ J. R. Wilson,⁶⁶ F. X. Yumiceva,⁶⁶ D. Aston,⁶⁷ R. Bartoldus,⁶⁷ N. Berger,⁶⁷ A. M. Boyarski,⁶⁷ O. L. Buchmueller,⁶⁷ R. Claus,⁶⁷ M. R. Convery,⁶⁷ M. Cristinziani,⁶⁷ G. De Nardo,⁶⁷ D. Dong,⁶⁷ J. Dorfan,⁶⁷ D. Dujmic,⁶⁷ W. Dunwoodie,⁶⁷ E. E. Elsen,⁶⁷ S. Fan,⁶⁷ R. C. Field,⁶⁷ T. Glanzman,⁶⁷ S. J. Gowdy,⁶⁷ T. Hadig,⁶⁷ V. Halyo,⁶⁷ C. Hast,⁶⁷ T. Hryn'ova,⁶⁷ W. R. Innes,⁶⁷ M. H. Kelsey,⁶⁷ P. Kim,⁶⁷ M. L. Kocian,⁶⁷ D. W. G. S. Leith,⁶⁷ J. Libby,⁶⁷ S. Luitz,⁶⁷ V. Luth,⁶⁷ H. L. Lynch,⁶⁷ H. Marsiske,⁶⁷ R. Messner,⁶⁷ D. R. Muller,⁶⁷ C. P. O'Grady,⁶⁷ V. E. Ozcan,⁶⁷ A. Perazzo,⁶⁷ M. Perl,⁶⁷ S. Petrak,⁶⁷ B. N. Ratcliff,⁶⁷ A. Roodman,⁶⁷ A. A. Salnikov,⁶⁷ R. H. Schindler,⁶⁷ J. Schwiening,⁶⁷ G. Simi,⁶⁷ A. Snyder,⁶⁷ A. Soha,⁶⁷ J. Stelzer,⁶⁷ D. Su,⁶⁷ M. K. Sullivan,⁶⁷ J. Va'vra,⁶⁷ S. R. Wagner,⁶⁷ M. Weaver,⁶⁷ A. J. R. Weinstein,⁶⁷ W. J. Wisniewski,⁶⁷ M. Wittgen,⁶⁷ D. H. Wright,⁶⁷ A. K. Yarritu,⁶⁷ C. C. Young,⁶⁷ P. R. Burchat,⁶⁸ A. J. Edwards,⁶⁸ T. I. Meyer,⁶⁸ B. A. Petersen,⁶⁸ C. Roat,⁶⁸ S. Ahmed,⁶⁹ M. S. Alam,⁶⁹ J. A. Ernst,⁶⁹ M. A. Saeed,⁶⁹ M. Saleem,⁶⁹ F. R. Wappler,⁶⁹ W. Bugg,⁷⁰ M. Krishnamurthy,⁷⁰ S. M. Spanier,⁷⁰ R. Eckmann,⁷¹ H. Kim,⁷¹ J. L. Ritchie,⁷¹ A. Satpathy,⁷¹ R. F. Schwitters,⁷¹ J. M. Izen,⁷² I. Kitayama,⁷² X. C. Lou,⁷² S. Ye,⁷² F. Bianchi,⁷³ M. Bona,⁷³ F. Gallo,⁷³ D. Gamba,⁷³ L. Bosisio,⁷⁴ C. Cartaro,⁷⁴ F. Cossutti,⁷⁴ G. Della Ricca,⁷⁴ S. Dittongo,⁷⁴ S. Grancagnolo,⁷⁴ L. Lanceri,⁷⁴ P. Poropat,^{74, §} L. Vitale,⁷⁴ G. Vuagnin,⁷⁴ R. S. Panvini,⁷⁵ Sw. Banerjee,⁷⁶ C. M. Brown,⁷⁶ D. Fortin,⁷⁶ P. D. Jackson,⁷⁶ R. Kowalewski,⁷⁶ J. M. Roney,⁷⁶ R. J. Sobie,⁷⁶ H. R. Band,⁷⁷ B. Cheng,⁷⁷ S. Dasu,⁷⁷ M. Datta,⁷⁷ A. M. Eichenbaum,⁷⁷ M. Graham,⁷⁷ J. J. Hollar,⁷⁷ J. R. Johnson,⁷⁷ P. E. Kutter,⁷⁷ H. Li,⁷⁷ R. Liu,⁷⁷ A. Mihalyi,⁷⁷ A. K. Mohapatra,⁷⁷ Y. Pan,⁷⁷ R. Prepost,⁷⁷ P. Tan,⁷⁷ J. H. von Wimmersperg-Toeller,⁷⁷ J. Wu,⁷⁷ S. L. Wu,⁷⁷ Z. Yu,⁷⁷ M. G. Greene,⁷⁸ and H. Neal⁷⁸

(The BABAR Collaboration)

¹Laboratoire de Physique des Particules, F-74941 Annecy-le-Vieux, France

²Università di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy

³Institute of High Energy Physics, Beijing 100039, China

⁴University of Bergen, Inst. of Physics, N-5007 Bergen, Norway

⁵Lawrence Berkeley National Laboratory and University of California, Berkeley, CA 94720, USA

⁶University of Birmingham, Birmingham, B15 2TT, United Kingdom

⁷Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany

⁸University of Bristol, Bristol BS8 1TL, United Kingdom

⁹University of British Columbia, Vancouver, BC, Canada V6T 1Z1

¹⁰Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom

¹¹Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia

¹²University of California at Irvine, Irvine, CA 92697, USA

¹³University of California at Los Angeles, Los Angeles, CA 90024, USA

¹⁴University of California at Riverside, Riverside, CA 92521, USA

¹⁵University of California at San Diego, La Jolla, CA 92093, USA

¹⁶University of California at Santa Barbara, Santa Barbara, CA 93106, USA

¹⁷University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, CA 95064, USA

¹⁸California Institute of Technology, Pasadena, CA 91125, USA

University of Cincinnati, Cincinnati, OH 45221, USA

²⁰University of Colorado, Boulder, CO 80309, USA

²¹Colorado State University, Fort Collins, CO 80523, USA

²² Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany

²³ Ecole Polytechnique, LLR, F-91128 Palaiseau, France

²⁴ University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom

²⁵Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy

²⁶Florida A&M University, Tallahassee, FL 32307, USA

²⁷Laboratori Nazionali di Frascati dell'INFN, I-00044 Frascati, Italy

²⁸Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy

²⁹Harvard University, Cambridge, MA 02138, USA

³⁰ Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany

³¹Imperial College London, London, SW7 2AZ, United Kingdom

³²University of Iowa, Iowa City, IA 52242, USA

³³Iowa State University, Ames, IA 50011-3160, USA

³⁴Università di Perugia, Dipartimento di Fisica and INFN, I-06100 Perugia, Italy

³⁵Laboratoire de l'Accélérateur Linéaire, F-91898 Orsay, France

³⁶Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

³⁷University of Liverpool, Liverpool L69 72E, United Kingdom

³⁸Queen Mary, University of London, E1 4NS, United Kingdom

³⁹University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom

⁴⁰University of Louisville, Louisville, KY 40292, USA

⁴¹University of Manchester, Manchester M13 9PL, United Kingdom

⁴²University of Maryland, College Park, MD 20742, USA

⁴³University of Massachusetts, Amherst, MA 01003, USA

⁴⁴ Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, MA 02139, USA

⁴⁵McGill University, Montréal, QC, Canada H3A 2T8

⁴⁶ Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy

⁴⁷University of Mississippi, University, MS 38677, USA

⁴⁸Université de Montréal, Laboratoire René J. A. Lévesque, Montréal, QC, Canada H3C 3J7

⁴⁹Mount Holyoke College, South Hadley, MA 01075, USA

⁵⁰Università di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli, Italy

⁵¹NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands ⁵²University of Notre Dame, Notre Dame, IN 46556, USA

⁵³Ohio State University, Columbus, OH 43210, USA

⁵⁴University of Oregon, Eugene, OR 97403, USA

⁵⁵Università di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy

⁵⁶ Universités Paris VI et VII, Laboratoire de Physique Nucléaire et de Hautes Energies, F-75252 Paris, France

⁵⁷Università di Pavia, Dipartimento di Elettronica and INFN, I-27100 Pavia, Italy

⁵⁸University of Pennsylvania, Philadelphia, PA 19104, USA

⁵⁹Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy

⁶⁰Prairie View A&M University, Prairie View, TX 77446, USA

⁶¹Princeton University, Princeton, NJ 08544, USA

⁶²Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy

⁶³Universität Rostock, D-18051 Rostock, Germany

⁶⁴Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom

⁶⁵DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France

⁶⁶University of South Carolina, Columbia, SC 29208, USA

⁶⁷Stanford Linear Accelerator Center, Stanford, CA 94309, USA

68 Stanford University, Stanford, CA 94305-4060, USA

⁶⁹State University of New York. Albany, NY 12222, USA

⁷⁰University of Tennessee, Knoxville, TN 37996, USA

⁷¹University of Texas at Austin, Austin, TX 78712, USA

⁷²University of Texas at Dallas, Richardson, TX 75083, USA

⁷³Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy

⁷⁴ Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy

⁷⁵ Vanderbilt University, Nashville, TN 37235, USA

⁷⁶University of Victoria, Victoria, BC, Canada V8W 3P6

⁷⁷University of Wisconsin, Madison, WI 53706, USA

⁷⁸ Yale University, New Haven, CT 06511, USA

(Dated: August 25, 2004)

We present results on time-dependent CP asymmetries in neutral B decays to several CP eigenstates. The measurements use a data sample of about $227 \times 10^6 \Upsilon(4S) \rightarrow B\overline{B}$ decays collected by the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. The amplitude of the CP asymmetry, $\sin 2\beta$ in the Standard Model, is derived from decay-time distributions from events in which one neutral B meson is fully reconstructed in a final state containing a charmonium meson and the other B meson is determined to be either a B^0 or \overline{B}^0 from its decay products. We measure $\sin 2\beta = 0.722 \pm 0.040(\text{stat}) \pm 0.023(\text{syst})$ in agreement with the Standard Model expectation.

PACS numbers: 13.25.Hw, 12.15.Hh, 11.30.Er

Charge-parity (*CP*) violation in the *B* meson system has been established by the *BABAR* [1] and Belle [2] collaborations. The Standard Model of electroweak interactions describes *CP* violation as a consequence of an irreducible phase in the three-generation Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix [3]. In this framework, measurements of *CP* asymmetries in the proper-time distribution of neutral *B* decays to *CP* eigenstates containing a charmonium and K^0 meson provide a direct measurement of $\sin 2\beta$ [4]. The angle β is $\arg [-V_{cd}V_{cb}^*/V_{td}V_{tb}^*]$, where V_{ij} are CKM matrix elements.

In this Letter we report on an updated measurement of $\sin 2\beta$ in $(227 \pm 2) \times 10^6 B\overline{B}$ decays using B^0 decays to the final states $J/\psi K_S^0$, $J/\psi K_L^0$, $\psi(2S)K_S^0$, $\chi_{c1}K_S^0$, $\eta_c K_S^0$, and $J/\psi K^{*0}(K^{*0} \to K_S^0 \pi^0)$ [5]. The BABAR detector and the measurement technique are described in detail in Refs. [6] and [7], respectively. Changes in the analysis with respect to the previously published result include 140×10^6 more $B\overline{B}$ events, an improved event reconstruction applied to all of the data, a new flavor-tagging algorithm, and fewer assumptions about the *CP* properties of background events.

The proper-time distribution of B meson decays to a CP eigenstate f can be expressed in terms of a complex parameter λ [8], which depends on both the $B^0-\overline{B}^0$ oscillation amplitude and the decay amplitudes for $\overline{B}^0 \to f$ and $B^0 \to f$. The decay rate $f_+(f_-)$ when the other B meson B_{tag} decays as a B^0 (\overline{B}^0) is given by

$$f_{\pm}(\Delta t) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} \left[1 \pm \frac{2 \mathcal{I}m \lambda}{1+|\lambda|^2} \sin\left(\Delta m_d \Delta t\right) \\ \mp \frac{1-|\lambda|^2}{1+|\lambda|^2} \cos\left(\Delta m_d \Delta t\right) \right], (1)$$

for a B from a $\Upsilon(4S) \to B^0 \overline{B}{}^0$ decay, where Δt is the difference between the proper decay times of the reconstructed B meson $B_{\rm rec}$ and $B_{\rm tag}$, τ_{B^0} is the B^0 lifetime, and Δm_d is the $B^0 - \overline{B}{}^0$ oscillation frequency. The decay width difference $\Delta \Gamma$ between the B^0 mass eigenstates is assumed to be zero. The sine term is due to the interference between direct decay and decay after a net $B^0 - \overline{B}{}^0$ oscillation. A non-zero cosine term arises from the interference between decay amplitudes with different weak and strong phases (direct CP violation) or from CP violation in $B^0 - \overline{B}{}^0$ mixing. In the Standard Model, CP violation in mixing is negligible, as is direct CP violation for $b \to c\overline{cs}$ decays that contain a charmonium meson [8]. With these assumptions $\lambda = \eta_f e^{-2i\beta}$, where η_f is the CP eigenvalue of final state f. Thus, the time-dependent CP asymmetry is

$$A_{CP}(\Delta t) \equiv \frac{\mathbf{f}_{+} - \mathbf{f}_{-}}{\mathbf{f}_{+} + \mathbf{f}_{-}} = -\eta_f \, \sin 2\beta \, \sin \left(\Delta m_d \, \Delta t\right), \quad (2)$$

with $\eta_f = -1$ for $J/\psi K_s^0$, $\psi(2S)K_s^0$, $\chi_{c1}K_s^0$, and $\eta_c K_s^0$, and +1 for $J/\psi K_L^0$. Due to the presence of even (L=0, 2) and odd (L=1) orbital angular momenta in the $B \rightarrow J/\psi K^{*0}$ final state, there can be *CP*-even and *CP*-odd contributions to the decay rate. When the angular information in the decay is ignored, the measured *CP* asymmetry in $J/\psi K^{*0}$ is reduced by a factor $|1-2R_{\perp}|$, where R_{\perp} is the fraction of the L=1 contribution. We have measured $R_{\perp} = 0.230 \pm 0.015 \pm 0.004$ [9], which gives an effective $\eta_f = 0.51 \pm 0.04$, after acceptance corrections.

In addition to the *CP* modes described above, we utilize a large sample $(B_{\rm flav})$ of B^0 decays to the flavor eigenstates $D^{(*)-}h^+(h^+ = \pi^+, \rho^+, \text{ and } a_1^+)$ and $J/\psi K^{*0}(K^{*0} \to K^+\pi^-)$ for calibrating our flavor tagging and Δt resolution. Validation studies are performed with a control sample of B^+ mesons decaying to the final states $J/\psi K^{(*)+}$, $\psi(2S)K^+$, $\chi_{c1}K^+$, and $\eta_c K^+$. The event selection and candidate reconstruction are unchanged from those described in Refs. [1, 7, 10], except that only the $\eta_c \to K_s^0 K^+\pi^-$ channel is used in the $B^0 \to \eta_c K_s^0$ and $B^{\pm} \to \eta_c K^{\pm}$ modes (2.91 < $m_{K_s^0 K^+\pi^-} < 3.05 \,{\rm GeV}/c^2$).

The time interval Δt between the two *B* decays is calculated from the measured separation Δz between the decay vertices of $B_{\rm rec}$ and $B_{\rm tag}$ along the collision (z) axis [7]. We find the *z* position of the $B_{\rm rec}$ vertex from its charged tracks. The $B_{\rm tag}$ decay vertex is determined by fitting tracks not belonging to the $B_{\rm rec}$ candidate to a common vertex, employing constraints from the beam spot location and the $B_{\rm rec}$ momentum [7]. We accept events with a calculated Δt uncertainty of less than 2.5 ps and $|\Delta t| < 20$ ps. The fraction of events satisfying these requirements is 95%. The r.m.s. Δt resolution is 1.1 ps for the 99.7% of these events that exclude outliers.

We use multivariate algorithms to identify signatures of B decays that determine ("tag") the flavor at decay of the B_{tag} to be either a B^0 or \overline{B}^0 . Primary leptons from semileptonic B decays are selected from identified elec-

TABLE I: Efficiencies ϵ_i , average mistag fractions w_i , mistag fraction differences $\Delta w_i \equiv w_i(B^0) - w_i(\overline{B}^0)$, and Q extracted for each tagging category *i* from the B_{flav} sample.

Category	ε (%)	w~(%)	Δw (%)	Q (%)
Lepton	8.6 ± 0.1	3.2 ± 0.4	-0.2 ± 0.8	7.5 ± 0.2
Kaon I	10.9 ± 0.1	4.6 ± 0.5	-0.7 ± 0.9	9.0 ± 0.2
Kaon II	17.1 ± 0.1	15.6 ± 0.5	-0.7 ± 0.8	8.1 ± 0.2
Kaon-Pion	13.7 ± 0.1	23.7 ± 0.6	-0.4 ± 1.0	3.8 ± 0.2
Pion	14.5 ± 0.1	33.0 ± 0.6	5.1 ± 1.0	1.7 ± 0.1
Other	10.0 ± 0.1	41.1 ± 0.8	2.4 ± 1.2	0.3 ± 0.1
All	74.9 ± 0.2			30.5 ± 0.4

trons and muons as well as isolated energetic tracks. The charges of identified kaon candidates define a kaon tag. Soft pions from D^{*+} decays are selected on the basis of their momentum and direction with respect to the thrust axis of B_{tag} . These algorithms are combined to account for correlations among different sources of flavor information and to provide an estimate of the mistag probability for each event. These algorithms have been improved relative to Ref. [1] with the addition of information from low-momentum electrons, $\Lambda \to p\pi$ decays, and additional correlations among identified kaon candidates.

Each event is assigned to one of six tagging categories if the estimated mistag probability is less than 45%. The Lepton category contains events with an identified lepton; the remaining events are divided into the Kaon I, Kaon II, Kaon-Pion, Pion, or Other categories based on the estimated mistag probability. This new definition of tagging categories improves the overall performance of the tagging algorithm, while largely preserving the separation of events with differing sources of tagging information. For each category (i), the tagging efficiency ε_i and fraction w_i of events having the wrong tag assignment are measured from data (Table I). The effective tagging efficiency $Q \equiv \sum_i \varepsilon_i (1 - 2w_i)^2$ improves by about 5% (relative) over the algorithm used in Ref. [1]. In addition, the correlations among the mistag parameters and those of the Δt resolution function are reduced.

The beam-energy substituted mass $m_{\rm ES} = \sqrt{(E_{\rm beam}^{\rm cm})^2 - (p_B^{\rm cm})^2}$ (all modes except for $J/\psi K_L^0$) or the difference ΔE between the candidate center-ofmass energy and $E_{\rm beam}^{\rm cm}$ ($J/\psi K_L^0$ channel) are used to determine the composition of our final sample (Fig. 1). Here, $E_{\rm beam}^{\rm cm}$ and $p_B^{\rm cm}$ are the beam energy and Bmomentum in the center-of-mass frame. Events with $m_{\rm ES} > 5.2 \,{\rm GeV}/c^2$ ($\Delta E < 80 \,{\rm MeV}$) are used so that the properties of the background contributions can be measured. The more restricted signal region (Table II) contains 7730 *CP* candidate events that satisfy the tagging and vertexing requirements.

For all modes except $\eta_c K_s^0$ and $J/\psi K_L^0$ we use simulated events to estimate the fractions of events that peak in the $m_{\rm ES}$ signal region due to cross-feed from other decay modes (peaking background). For the $\eta_c K_s^0$ mode

the cross-feed fraction is determined from a fit to the $M_{KK\pi}$ and $m_{\rm ES}$ distributions in data. For the $J/\psi K_L^0$ decay mode, the composition, effective η_f , and ΔE distribution of the individual background sources are determined either from simulation (for $B \to J/\psi X$) or from the $m_{\ell^+\ell^-}$ sidebands in data (for fake $J/\psi \to \ell^+\ell^-$).

We determine $\sin 2\beta$ with a simultaneous maximum likelihood fit to the Δt distributions of the tagged B_{CP} and B_{flav} samples. The Δt distributions of the B_{CP} sample are modeled by Eq. 1 with $|\lambda| = 1$. Those of the B_{flav} sample evolve according to the known frequency for flavor oscillation in B^0 mesons. The observed amplitudes for the CP asymmetry in the B_{CP} sample and for flavor oscillation in the B_{flav} sample are assumed to be reduced by the same factor 1 - 2w due to flavor mistags. The Δt distributions for the signal are convolved with a common resolution function, modeled by the sum of three Gaussians [7]. Backgrounds are incorporated with an empirical description of their Δt spectra, containing prompt and non-prompt components convolved with a resolution function [7] distinct from that of the signal.

There are 65 free parameters in the fit: $\sin 2\beta$ (1), the average mistag fractions w and the differences Δw between B^0 and \overline{B}^0 mistag fractions for each tagging category (12), parameters for the signal Δt resolution (7), parameters for *CP* background time dependence (8), and the difference between B^0 and \overline{B}^0 reconstruction and tag-

FIG. 1: Distributions for B_{CP} and B_{flav} candidates satisfying the tagging and vertexing requirements: a) m_{ES} for the final states $J/\psi K_S^0$, $\psi(2S)K_S^0$, $\chi_{c1}K_S^0$, and $\eta_c K_S^0$, b) ΔE for the final state $J/\psi K_L^0$, c) m_{ES} for $J/\psi K^{*0}(K^{*0} \to K_S^0 \pi^0)$, and d) m_{ES} for the B_{flav} sample. In each plot, the shaded region is the estimated background contribution.

TABLE II: Number of events N_{tag} in the signal region after tagging and vertexing requirements, signal purity P including the contribution from peaking background, and results of fitting for CP asymmetries in the B_{CP} sample and various subsamples. In addition, results on the B_{flav} and charged B control samples test that no artificial CP asymetry is found where we expect no *CP* violation $(\sin 2\beta = 0)$. Errors are statistical only. The signal region is $5.27 < m_{\rm ES} < 5.29 \,{\rm GeV}/c^2$ $(|\Delta E| < 10 \text{ MeV for } J/\psi K_L^0).$

Sample	$N_{\rm tag}$	P(%)	$\sin 2\beta$
Full <i>CP</i> sample	7730	76	0.722 ± 0.040
$J/\psi K_{S}^{0}, \psi(2S)K_{S}^{0}, \chi_{c1}K_{S}^{0}, \eta_{c}K_{S}^{0}$	4370	90	0.75 ± 0.04
$J/\psi K_L^0$	2788	56	0.57 ± 0.09
$J\!/\psi K^{*0}(K^{*0} \to K^0_S \pi^0)$	572	68	0.96 ± 0.32
1999-2002 data	3032	77	0.74 ± 0.06
2003-2004 data	4698	77	0.71 ± 0.05
$J/\psi K_S^0, \psi(2S)K_S^0, \chi_{c1}K_S^0, \eta_c K_s^0$	ζ_{S}^{0} only	$_{V}(\eta_{f} =$	= -1)
$J/\psi K^0_S \ (K^0_S \to \pi^+\pi^-)$	2751	96	0.79 ± 0.05
$J/\psi K^0_S \ (K^0_S \to \pi^0 \pi^0)$	653	88	0.65 ± 0.12
$\psi(2S)K_S^0 \ (K_S^0 \to \pi^+\pi^-)$	485	82	0.88 ± 0.14
$\chi_{c1}K_S^0$	194	81	0.69 ± 0.23
$\eta_c K_S^0$	287	64	0.17 ± 0.25
Lepton category	490	96	0.75 ± 0.08
Kaon I category	648	93	0.75 ± 0.08
Kaon II category	1021	89	0.77 ± 0.09
Kaon-Pion category	769	90	0.77 ± 0.15
Pion category	835	87	0.96 ± 0.22
Other category	607	88	0.23 ± 0.51
B _{flav} sample	72878	85	0.021 ± 0.013
B^+ sample	18294	88	0.003 ± 0.020

ging efficiencies (7); for B_{flav} background, time dependence (3), Δt resolution (3), and mistag fractions (24). For the CP modes (except for $J/\psi K_L^0$), the apparent CP asymmetry of the non-peaking background in each tagging category is allowed to float. This asymmetry is parameterized so that it does not depend on the value of $\sin 2\beta$.

We fix $\tau_{B^0} = 1.536 \,\mathrm{ps}, \,\Delta m_d = 0.502 \,\mathrm{ps}^{-1} \,[11], \,|\lambda| = 1,$ and $\Delta \Gamma = 0$. The determination of the mistag fractions and Δt resolution function parameters for the signal is dominated by the high-statistics B_{flav} sample. Background parameters are determined mainly from events with $m_{\rm ES} < 5.27 \, {\rm GeV}/c^2$.

The fit to the B_{CP} and B_{flav} samples yields

$$\sin 2\beta = 0.722 \pm 0.040 (\text{stat}) \pm 0.023 (\text{syst}).$$

Figure 2 shows the Δt distributions and asymmetries in yields between B^0 tags and \overline{B}^0 tags for the $\eta_f = -1$ and $\eta_f = +1$ samples as a function of Δt , overlaid with the projection of the likelihood fit result.

In a separate fit with only the high purity $\eta_f = -1$ sample, we obtain $|\lambda| = 0.950 \pm 0.031 (\text{stat}) \pm 0.013 (\text{syst})$. The correlation between the coefficients multiplying the $\sin(\Delta m_d \Delta t)$ and $\cos(\Delta m_d \Delta t)$ terms in Eq. 1 is -2%.

The sources of systematic error are summarized in Ta-

 $\mathbf{6}$

a) Number of $\eta_f = -1$ candidates $(J/\psi K_s^0)$ FIG. 2: $\psi(2S)K_S^0, \ \chi_{c1}K_S^0$, and $\eta_c K_S^0$) in the signal region with a B^0 tag N_{B^0} and with a \overline{B}^0 tag $N_{\overline{B}^0}$, and b) the raw asymmetry $(N_{B^0} - N_{\overline{B}^0})/(N_{B^0} + N_{\overline{B}^0})$, as functions of Δt . Figs. c) and d) are the corresponding plots for the $\eta_f = +1 \mod J/\psi K_L^0$. All plots exclude Other- tagged events. The solid (dashed) curves represent the fit projections in Δt for B^0 (\overline{B}^0) tags. The shaded regions represent the estimated background contributions.

ble III. These include the uncertainties in the level and CP asymmetry of the peaking background, the assumed parameterization of the Δt resolution function, possible differences between the B_{flav} and B_{CP} mistag fractions, knowledge of the event-by-event beam spot position, and the possible interference between the suppressed $\bar{b} \rightarrow \bar{u}c\bar{d}$ amplitude with the favored $b \rightarrow c\bar{u}d$ amplitude for some tag-side B decays [12]. In addition, we include the variation due to the assumed values of $|\lambda|$ and $\Delta\Gamma$. We assign the change in the measured $\sin 2\beta$ when we float $|\lambda|$ and when we set $\Delta\Gamma/\Gamma = \pm 0.02$, the latter being considerably larger than recent Standard Model estimates [13]. The total systematic error on $\sin 2\beta$ ($|\lambda|$) is 0.023 (0.013).

The large B_{CP} sample allows a number of consistency checks, including separation of the data by decay mode and tagging category, as shown in Table II. Considering statistical errors only, the probability of finding a worse agreement in measured $\sin 2\beta$ values across decay modes is 7% and between tagging categories is 86%. The results of fits to the control samples of non-CP decay modes

TABLE III: Sources of systematic error on $\sin 2\beta$ and $|\lambda|$.

Source	$\sigma(\sin 2\beta)$	$\sigma(\lambda)$
CP backgrounds	0.012	0.002
Δt resolution function	0.011	0.003
$J/\psi K_L^0$ backgrounds	0.011	N/A
Mistag fraction differences	0.007	0.001
Beam spot	0.007	0.001
$\Delta m_d, \tau_B, \Delta \Gamma / \Gamma, \lambda $	0.005	0.001
Tag-side interference	0.003	0.012
MC statistics	0.003	0.003
Total systematic error	0.023	0.013

indicate no statistically significant asymmetry.

This measurement of $\sin 2\beta$ supersedes our previous result [1] and is consistent with the range implied by other measurements and theoretical estimates of the magnitudes of CKM matrix elements in the context of the Standard Model [14]. The theoretical uncertainty on the interpretation of the measurement of $\sin 2\beta$ in these modes is approximately 0.01 [8]. As the current measurement is statistics limited, future measurements will add further model-independent constraints on the position of the apex of the unitarity triangle [14]. We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from CONACyT (Mexico), A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.

- * Now at Department of Physics, University of Warwick, Coventry, United Kingdom
- [†] Also with Università della Basilicata, Potenza, Italy
- [‡] Also with IFIC, Instituto de Física Corpuscular, CSIC-Universidad de Valencia, Valencia, Spain
- § Deceased
- BABAR Collaboration, B. Aubert *et al.*, Phys. Rev. Lett. 89, 201802 (2002).
- [2] BELLE Collaboration, K. Abe *et al.*, Phys. Rev. D66, 071102 (2002).
- [3] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963); M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
- [4] A.B. Carter and A.I. Sanda, Phys. Rev. D23, 1567 (1981);
 I.I. Bigi and A.I. Sanda, Nucl. Phys. B193, 85 (1981).
- [5] Charge-conjugate reactions are included implicitly unless otherwise specified.
- [6] BABAR Collaboration, B. Aubert *et al.*, Nucl. Instr. and Methods A479, 1 (2002).
- [7] BABAR Collaboration, B. Aubert *et al.*, Phys. Rev. D66, 032003 (2002).
- [8] See, for example, D. Kirkby and Y. Nir in S. Eidelman et al., Phys. Lett. B592, 1 (2004).
- [9] BABAR Collaboration, B. Aubert $et\ al..$ In preparation, to be submitted to Phys. Rev. D .
- [10] BABAR Collaboration, B. Aubert *et al.*, Submitted to Phys. Rev. **D**, SLAC-PUB-10368, hep-ex/0403007.
- [11] Particle Data Group, S. Eidelman *et al.*, Phys. Lett. B592, 1 (2004).
- [12] O. Long, M. Baak, R. N. Cahn, D. Kirkby, Phys. Rev. D68, 034010 (2003).
- [13] A. S. Dighe *et al.*, Nucl. Phys. B624, 377 (2002). M. Ciuchini *et al.* JHEP 0308, 031 (2003).
- [14] See, for example, F.J. Gilman, K. Kleinknecht and B. Renk in S. Eidelman *et al.*, Phys. Lett. **B592**, 1 (2004).