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1 Introduction

One of the most challenging problems in particle physics is to understand hadron dy-

namics and spectroscopy in terms of the confined quark and gluon quanta of quantum chro-

modynamics, the fundamental theory of the strong interactions. A central goal is to compute

detailed hadronic properties, such as moments, structure functions, distribution amplitudes,

transversity distributions, elastic and transition form factors, and the excitation dynamics of

hadron resonances from first principles; i.e., directly from the QCD Lagrangian. The most

successful theoretical approach thus far has been to quantize QCD on discrete lattices in

Euclidean space-time [1]. Lattice numerical results follow from the computation of frame-

dependent moments of distributions in Euclidean space; however, dynamical observables in

Minkowski space-time, such as the time-like hadronic form factors, are not obtained directly

from Euclidean-space lattice computations. Dyson-Schwinger methods have led to many im-

portant insights, such as the infrared fixed-point behavior of the strong coupling constant [2];

however, in practice, these analyses are limited to ladder approximation in Landau gauge.

In principle, one could calculate hadronic spectroscopy and wavefunctions by solving for

the eigenvalues and eigenfunctions of the QCD Hamiltonian: H|Ψ〉 = E|Ψ〉 at fixed time t.

However, this traditional method – called the “instant form” by Dirac [3], is plagued by com-

plex vacuum and relativistic effects. In contrast, quantization at fixed light-front (LF) time

τ = t+ z/c – the “front-form” of Dirac [3] – provides a powerful boost-invariant nonpertur-

bative method for solving QCD and constitutes the ideal framework to describe the structure

of hadrons in terms of their quark and gluon degrees of freedom. The simple structure of

the light-front vacuum allows an unambiguous definition of the partonic content of a hadron

in QCD and of hadronic light-front wavefunctions (LFWFs), the underlying link between

large distance hadronic states and the constituent degrees of freedom at short distances.

Thus, one can also solve QCD by diagonalizing the light-front QCD Hamiltonian HLF . The

spectrum and light-front Fock-state wavefunctions are obtained from the eigenvalues and

eigensolutions of the Heisenberg problem HLF |ψ〉 = M2|ψ〉, which becomes an infinite set

of coupled integral equations for the light-front components ψn = 〈n|ψ〉 in the Fock expan-

sion [4, 5]. This nonperturbative method has the advantage that it is frame-independent,

operates in physical Minkowski space-time, and has no fermion-doubling problem [4]. It has

been applied successfully in lower space-time dimensions. In practice, however, the resulting

large matrix diagonalization problem in 3 + 1 space-time has proven to be a daunting task,

so alternative methods and approximations are necessary.

The AdS/CFT correspondence between gravity or string theory on a higher-dimensional
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anti–de Sitter (AdS) space and conformal field theories (CFT) in physical space-time [6],

has led to a semiclassical approximation for strongly-coupled quantum field theories which

provides physical insights into its nonperturbative dynamics. The correspondence is holo-

graphic in the sense that it determines a duality between theories in different number of

space-time dimensions. In practice, the duality provides an effective gravity description in

a (d+ 1)-dimensional AdS space-time in terms of a flat d-dimensional conformally-invariant

quantum field theory defined at the AdS asymptotic boundary [7, 8]. Thus, in principle, one

can compute physical observables in a strongly coupled gauge theory in terms of a classical

gravity theory.

Anti-de Sitter AdS5 space is the maximally symmetric space-time with negative curvature

and a four-dimensional space-time boundary. The most general group of transformations that

leave the AdSd+1 differential line element

ds2 =
R2

z2
(

ηµνdx
µdxν − dz2

)

, (1)

invariant, the isometry group, has dimensions (d+ 1)(d+ 2)/2 (R is the AdS radius). Five-

dimensional anti-de Sitter space AdS5 has 15 isometries, in agreement with the number of

generators of the conformal group in four dimensions. Since the AdS metric (1) is invariant

under a dilatation of all coordinates xµ → λxµ and z → λz, it follows that the additional

dimension, the holographic variable z, acts as a scaling variable in Minkowski space: different

values of z correspond to different energy scales at which the hadron is examined. As a result,

a short space-like or time-like invariant interval near the light-cone, xµx
µ → 0 maps to the

conformal AdS boundary near z → 0. This also corresponds to the Q→∞ ultraviolet (UV)

zero separation distance. On the other hand, a large invariant four-dimensional interval of

confinement dimensions xµx
µ ∼ 1/Λ2

QCD maps to the large infrared (IR) region of AdS space

z ∼ 1/ΛQCD.

QCD is fundamentally different from conformal theories since its scale invariance is

broken by quantum effects. A gravity dual to QCD is not known, but the mechanisms

of confinement can be incorporated in the gauge/gravity correspondence by modifying the

AdS geometry in the large IR domain z ∼ 1/ΛQCD, which also sets the scale of the strong

interactions [9]. In this simplified approach, we consider the propagation of hadronic modes

in a fixed effective gravitational background asymptotic to AdS space, which encodes salient

properties of the QCD dual theory, such as the UV conformal limit at the AdS boundary,

as well as modifications of the background geometry in the large-z IR region to describe

confinement.

The physical states in AdS space are represented by normalizable modes ΦP (x, z) =
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e−iP ·xΦ(z), with plane waves along Minkowski coordinates xµ and a profile function Φ(z)

along the holographic coordinate z. The hadronic invariant mass states PµP
µ = M2 are

found by solving the eigenvalue problem for the AdS wave equation. The modified theory

generates the point-like hard behavior expected from QCD, instead of the soft behavior

characteristic of extended objects [9]. It is rather remarkable that the QCD dimensional

counting rules [10, 11] are also a key feature of nonperturbative models [9] based on the

gauge/gravity duality. Although the mechanisms are different, both the perturbative QCD

and the AdS/QCD approaches depend on the leading-twist (dimension minus spin) interpo-

lating operators of the hadrons and their structure at short distances.

The gauge/gravity duality leads to a simple analytical and phenomenologically com-

pelling nonperturbative frame-independent first approximation to the light-front Hamil-

tonian problem for QCD – “Light-Front Holography” [12]. Incorporating the AdS/CFT

correspondence [6] as a useful guide, light-front holographic methods were originally intro-

duced [13, 14] by mapping the Polchinski-Strassler formula for the electromagnetic (EM)

form factors in AdS space [15] to the corresponding Drell-Yan-West expression at fixed

light-front time in physical space-time [16, 17]. It was also shown that one obtains identical

light-front holographic mapping for the gravitational form factor [18] – the matrix elements

of the energy-momentum tensor, by perturbing the AdS metric (1) around its static solu-

tion [19]. In the usual “bottom-up” approach to the gauge/gravity duality [20, 21], fields

in the bulk geometry are introduced to match the chiral symmetries of QCD and axial and

vector currents become the primary entities as in effective chiral theory. In contrast, in

light-front holography a direct connection with the internal constituent structure of hadrons

is established using light-front quantization [12, 13, 14, 18, 22].

The identification of higher dimensional AdS space with partonic physics in physical

space-time is specific to the light front: the Polchinski-Strassler formula for computing tran-

sition matrix elements is a simple overlap of AdS amplitudes, which maps to a convolution

of frame-independent light-front wavefunctions. This AdS convolution formula cannot be

mapped to current matrix elements at ordinary fixed time t, since the instant-time wave-

functions must be boosted away from the hadron’s rest frame – an intractable dynamical

problem. In fact, the boost of a composite system at fixed time t is only known at weak

binding. Moreover, the form factors in instant time also require computing the contributions

of currents which arise from the vacuum in the initial state and which connect to the hadron

in the final state. Thus instant form wavefunctions alone are not sufficient to compute co-

variant current matrix elements in the instant form. There is no analog of such contributions

in AdS. In contrast, there are no vacuum contributions in the light-front formulae for current
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matrix elements – in agreement with the AdS formulae.

Unlike ordinary instant-time quantization, the Hamiltonian equation of motion in the

light-front is frame independent and has a structure similar to eigenmode equations in AdS

space. This makes a direct connection of QCD with AdS/CFT methods possible. In fact, one

can also study the AdS/CFT duality and its modifications starting from the LF Hamiltonian

equation of motion for a relativistic bound-state system HLF |ψ〉 =M2|ψ〉 in physical space-

time [12], where the QCD light-front HamiltonianHLF ≡ PµP
µ = P+P−−P2

⊥, P
± = P 0±P 3,

is constructed from the QCD Lagrangian using the standard methods of quantum field

theory [4]. To a first semiclassical approximation, where quantum loops and quark masses

are not included, LF holography leads to a LF Hamiltonian equation which describes the

bound-state dynamics of light hadrons in terms of an invariant impact kinematical variable

ζ which measures the separation of the partons within the hadron at equal light-front time

τ = x+ = x0 + x3. The transverse coordinate ζ is closely related to the invariant mass

squared of the constituents in the LFWF and its off-shellness in the LF kinetic energy, and

it is thus the natural variable to characterize the hadronic wavefunction. In fact ζ is the

only variable to appear in the relativistic light-front Schrödinger equations predicted from

holographic QCD in the limit of zero quark masses. The coordinate z in AdS space is thus

uniquely identified with a Lorentz-invariant coordinate ζ which measures the separation of

the constituents within a hadron at equal light-front time. The AdS/CFT correspondence

shows that the holographic coordinate z in AdS space is related inversely to the internal

relative momentum. In fact, light-front holography makes this identification precise.

Remarkably, the unmodified AdS equations correspond to the kinetic energy terms of

the partons inside a hadron, whereas the interaction terms in the QCD Lagrangian build

confinement and correspond to the truncation of AdS space in an effective dual gravity

approximation [12]. Thus, all the complexities of the strong interaction dynamics are hidden

in an effective potential U(ζ), and the central question – how to derive the effective color-

confining potential U(ζ) directly from QCD, remains open. To circumvent this obstacle,

the effective confinement potential can be introduced either with a sharp cut-off in the

infrared region of AdS space, as in the “hard-wall” model [9], or, more successfully, using

a “dilaton” background in the holographic coordinate to produce a smooth cutoff at large

distances as in the “soft-wall” model [23]. Furthermore, one can impose from the onset a

correct phenomenological confining structure to determine the effective IR warping of AdS

space, for example, by adjusting the dilaton background to reproduce the observed linear

Regge behavior of the hadronic mass spectrumM2 as a function of the excitation quantum
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numbers [23, 24] 3. By using light-front holographic mapping techniques, one also obtains

a connection between the mass parameter µR of the AdS theory with the orbital angular

momentum of the constituents in the light-front bound-state Hamiltonian equation [12].

The identification of orbital angular momentum of the constituents is a key element in our

description of the internal structure of hadrons using holographic principles, since hadrons

with the same quark content, but different orbital angular momenta, have different masses.

In our approach, the holographic mapping is carried out in the strongly coupled regime

where QCD is almost conformal, corresponding to an infrared fixed-point. A QCD infrared

fixed point arises since the propagators of the confined quarks and gluons in the loop integrals

contributing to the β-function have a maximal wavelength [14, 26]; thus, an infrared fixed

point appears as a natural consequence of confinement. The decoupling of quantum loops

in the infrared is analogous to QED dynamics where vacuum polarization corrections to the

photon propagator decouple at Q2 → 0. Since there is a window where the QCD coupling is

large and approximately constant, QCD resembles a conformal theory for massless quarks.

One then uses the isometries of AdS5 to represent scale transformations within the conformal

window. We thus begin with a conformal approximation to QCD to model an effective dual

gravity description in AdS space. The large-distance non-conformal effects are taken into

account with the introduction of an effective confinement potential as described above.

Early attempts to derive effective one-body equations in light-front QCD are described

in reference [27]. We should also mention previous work by ’t Hooft, who obtained the

spectrum of two-dimensional QCD in the large NC limit in terms of a Schrödinger equation

as a function of the parton x-variable [28]. In the scale-invariant limit, this equation is

equivalent to the equation of motion for a scalar field in AdS3 space [29]. In this case, there

is a mapping between the variable x and the radial coordinate in AdS3.

2 Light-front bound-state Hamiltonian equation of mo-

tion and light-front holography

A key step in the analysis of an atomic system, such as positronium, is the introduction of

the spherical coordinates r, θ, φ which separates the dynamics of Coulomb binding from the

kinematical effects of the quantized orbital angular momentum L. The essential dynamics

of the atom is specified by the radial Schrödinger equation whose eigensolutions ψn,L(r)

3Using a mean-field mechanism, an effective harmonic confinement interaction was obtained in Ref. [25]

in a constituent quark model.
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determine the bound-state wavefunction and eigenspectrum. In our recent work, we have

shown that there is an analogous invariant light-front coordinate ζ which allows one to

separate the essential dynamics of quark and gluon binding from the kinematical physics

of constituent spin and internal orbital angular momentum. The result is a single-variable

light-front Schrödinger equation for QCD which determines the eigenspectrum and the light-

front wavefunctions of hadrons for general spin and orbital angular momentum [12], thus

providing a description of the internal dynamics of hadronic states in terms of their massless

constituents at the same LF time τ = x+ = x0 + x3, the time marked by the front of a light

wave [3], instead of the ordinary instant time t = x0.

2.1 Light-front quantization of QCD

Our starting point is the SU(3)C invariant Lagrangian of QCD

LQCD = ψ̄ (iγµDµ −m)ψ − 1
4
Ga

µνG
aµν , (2)

where Dµ = ∂µ − igsAa
µT

a and Ga
µν = ∂µA

a
ν − ∂νAa

µ + gsc
abcAb

µA
c
ν , with

[

T a, T b
]

= icabcT c

and a, b, c are SU(3)C color indices.

One can express the hadron four-momentum generator P = (P+, P−,P⊥), P
± = P 0±P 3,

in terms of the dynamical fields, the Dirac field ψ+, where ψ± = Λ±ψ, Λ± = γ0γ±, and the

transverse field A⊥ in the A+ = 0 gauge [4] quantized on the light-front at fixed light-cone

time x+, x± = x0 ± x3

P− =
1

2

∫

dx−d2x⊥ψ̄+ γ
+ (i∇⊥)

2 +m2

i∂+
ψ+ + (interactions), (3)

P+ =

∫

dx−d2x⊥ψ̄+γ
+i∂+ψ+, (4)

P⊥ =
1

2

∫

dx−d2x⊥ψ̄+γ
+i∇⊥ψ+, (5)

where the integrals are over the null plane τ = x+ = 0, the hyper-plane tangent to the light

cone. This is the initial-value surface for the fields where the commutation relations are

fixed. The LF Hamiltonian P− generates LF time translations

[

ψ+(x), P
−] = i

∂

∂x+
ψ+(x), (6)

to evolve the initial conditions to all space-time, whereas the LF longitudinal P+ and trans-

verse momentum P⊥ are kinematical generators. For simplicity we have omitted from (3-5)

the contributions from the gluon field A⊥.
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According to Dirac’s classification of the forms of relativistic dynamics [3], the funda-

mental generators of the Poincaré group can be separated into kinematical and dynamical

generators. The kinematical generators act along the initial surface and leave the light-front

plane invariant: they are thus independent of the dynamics and therefore contain no inter-

actions. The dynamical generators change the light-front position and depend consequently

on the interactions. In addition to P+ and P⊥, the kinematical generators in the light-front

frame are the z-component of the angular momentum Jz and the boost operator K. In

addition to the Hamiltonian P−, Jz and Jy are also dynamical generators. The light-front

frame has the maximal number of kinematical generators.

2.2 A semiclassical approximation to QCD

A physical hadron in four-dimensional Minkowski space has four-momentum Pµ and

invariant hadronic mass states PµP
µ =M2 determined by the Lorentz-invariant Hamiltonian

equation for the relativistic bound-state system

HLF |ψ(P )〉 =M2|ψ(P )〉, (7)

with HLF ≡ PµP
µ = P−P+ − P2

⊥, where the hadronic state |ψ〉 is an expansion in multi-

particle Fock eigenstates |n〉 of the free light-front Hamiltonian: |ψ〉 =∑n ψn|ψ〉. The state
|ψ(P+,P⊥, J

z)
〉

is an eigenstate of the total momentum P+ and P⊥ and the total spin Jz.

Quark and gluons appear from the light-front quantization of the excitations of the dynam-

ical fields ψ+ and A⊥, expanded in terms of creation and annihilation operators at fixed LF

time τ . The Fock components ψn(xi,k⊥i, λi) are independent of P+ and P⊥ and depend

only on relative partonic coordinates: the momentum fraction xi = k+i /P
+, the transverse

momentum k⊥i and spin component λzi . Momentum conservation requires
∑n

i=1 xi = 1 and
∑n

i=1 k⊥i = 0. The LFWFs ψn provide a frame-independent representation of a hadron

which relates its quark and gluon degrees of freedom to their asymptotic hadronic state.

Since for each constituent k+i =
√

k2
i +m2

i + kzi > 0 there are no contributions from the

vacuum. Thus, apart from possible zero modes, the light-front QCD vacuum is the trivial

vacuum. The constituent spin and orbital angular momentum properties of the hadrons are

also encoded in the LFWFs. Actually, the definition of quark and gluon angular momen-

tum is unambiguous in Dirac’s front form in light-cone gauge A+ = 0, and the gluons have

physical polarization Sz
g = ±1.

One can also derive light-front holography using a first semiclassical approximation to

transform the fixed light-front time bound-state Hamiltonian equation of motion in QCD

(7) to a corresponding wave equation in AdS space [12]. To this end we expand the initial
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and final hadronic states in terms of its Fock components. The computation is simplified in

the frame P =
(

P+,M2/P+,~0⊥
)

where P 2 = P+P−. We find

M2 =
∑

n

∫

[

dxi
][

d2k⊥i

]

∑

q

(k2
⊥q +m2

q

xq

)

|ψn(xi,k⊥i)|2 + (interactions), (8)

plus similar terms for antiquarks and gluons (mg = 0). The integrals in (8) are over the

internal coordinates of the n constituents for each Fock state
∫

[

dxi
]

≡
n
∏

i=1

∫

dxi δ
(

1−
n
∑

j=1

xj

)

,

∫

[

d2k⊥i

]

≡
n
∏

i=1

∫

d2k⊥i

2(2π)3
16π3 δ(2)

(

n
∑

j=1

k⊥j

)

, (9)

with phase space normalization

∑

n

∫

[

dxi
] [

d2k⊥i

]

|ψn(xi,k⊥i)|2 = 1. (10)

Each constituent of the light-front wavefunction ψn(xi,k⊥i, λi) of a hadron is on its

respective mass shell k2i = k+i k
−
i − k2

⊥i = m2
i , i = 1, 2 · · ·n. Thus k−i = (k2

⊥i +m2
i ) /xiP

+.

However, the light-front wavefunction represents a state which is off the light-front energy

shell: P−−∑n
i k

−
i < 0, for a stable hadron. Scaling out P+ =

∑n
i k

+
i , the invariant mass of

the constituentsMn is

M2
n =

(

n
∑

i=1

kµi

)2

=
∑

i

k2
⊥i +m2

i

xi
. (11)

The functional dependence for a given Fock state is expressed in terms of the invariant mass,

the measure of the off-energy shell of the bound state of the n-parton LFWF:M2−M2
n.

The LFWF ψn(xi,k⊥i, λi) can be expanded in terms of n− 1 independent position coor-

dinates b⊥j , j = 1, 2, . . . , n−1, conjugate to the relative coordinates k⊥i, with
∑n

i=1 b⊥i = 0.

We can also express Eq. (8) in terms of the internal impact coordinates b⊥j with the result

M2 =
∑

n

n−1
∏

j=1

∫

dxj d
2b⊥j ψ

∗
n(xj ,b⊥j)

∑

q

(

−∇2
b⊥q

+m2
q

xq

)

ψn(xj ,b⊥j) + (interactions).

(12)

The normalization is defined by

∑

n

n−1
∏

j=1

∫

dxjd
2b⊥j |ψn(xj ,b⊥j)|2 = 1. (13)

If we want to simplify further the description of the multiple parton system and reduce

its dynamics to a single variable problem, we must take the limit of quark masses to zero.
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Indeed, the underlying classical QCD Lagrangian with massless quarks is scale and conformal

invariant [30], and consequently only in this limit it is possible to map the equations of motion

and transition matrix elements to their correspondent conformal AdS expressions.

To simplify the discussion we will consider a two-parton hadronic bound state. In the

limit of zero quark mass mq → 0

M2 =

∫ 1

0

dx

x(1− x)

∫

d2b⊥ ψ
∗(x,b⊥)

(

−∇2
b⊥

)

ψ(x,b⊥) + (interactions). (14)

For n = 2, the invariant mass is M2
n=2 =

k2
⊥

x(1−x)
. Similarly, in impact space the relevant

variable for a two-parton state is ζ2 = x(1−x)b2
⊥. Thus, to first approximation LF dynamics

depend only on the boost invariant variableMn or ζ , and hadronic properties are encoded

in the hadronic mode φ(ζ) from the relation

ψ(x, ζ, ϕ) = eiLϕX(x)
φ(ζ)√
2πζ

, (15)

thus factoring out the angular dependence ϕ and the longitudinal, X(x), and transverse

mode φ(ζ). This is a natural factorization in the light front since the corresponding canonical

generators, the longitudinal and transverse generators P+ and P⊥ and the z-component of

the orbital angular momentum Jz are kinematical generators which commute with the LF

Hamiltonian generator P−. We choose the normalization 〈φ|φ〉 =
∫

dζ |〈ζ |φ〉|2 = Pqq̄, where

Pqq̄ is the probability of finding the qq̄ component in the pion light-front wavefunction. The

longitudinal mode is thus normalized as
∫ 1

0
X2(x)
x(1−x)

= 1.

We can write the Laplacian operator in (14) in circular cylindrical coordinates (ζ, ϕ)

∇2
ζ =

1

ζ

d

dζ

(

ζ
d

dζ

)

+
1

ζ2
∂2

∂ϕ2
, (16)

and factor out the angular dependence of the modes in terms of the SO(2) Casimir repre-

sentation L2 of orbital angular momentum in the transverse plane. Using (15) we find [12]

M2 =

∫

dζ φ∗(ζ)
√

ζ

(

− d2

dζ2
− 1

ζ

d

dζ
+
L2

ζ2

)

φ(ζ)√
ζ

+

∫

dζ φ∗(ζ)U(ζ)φ(ζ), (17)

where L = |Lz|. In writing the above equation we have summed the complexity of the

interaction terms in the QCD Lagrangian by the introduction of the effective potential U(ζ),

which is modeled to enforce confinement at some IR scale. The LF eigenvalue equation

PµP
µ|φ〉 =M2|φ〉 is thus a light-front wave equation for φ

(

− d2

dζ2
− 1− 4L2

4ζ2
+ U(ζ)

)

φ(ζ) =M2φ(ζ), (18)
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a relativistic single-variable LF Schrödinger equation. Its eigenmodes φ(ζ) determine the

hadronic mass spectrum and represent the probability amplitude to find n-partons at trans-

verse impact separation ζ , the invariant separation between pointlike constituents within the

hadron [13] at equal LF time. Thus the effective interaction potential is instantaneous in LF

time τ , not instantaneous in ordinary time t. The LF potential thus satisfies causality, unlike

the instantaneous Coulomb interaction. Extension of the results to arbitrary n follows from

the x-weighted definition of the transverse impact variable of the n−1 spectator system [13]

ζ =

√

x

1− x
∣

∣

∣

n−1
∑

j=1

xjb⊥j

∣

∣

∣
, (19)

where x = xn is the longitudinal momentum fraction of the active quark. One can also

generalize the equations to allow for the kinetic energy of massive quarks using Eqs. (8)

or (12) [31]. In this case, however, the longitudinal mode X(x) does not decouple from the

effective LF bound-state equations.

2.3 Higher spin hadronic modes in AdS space

We now turn to the formulation of bound-state equations for mesons of arbitrary spin J

in AdS space 4. As we shall show in the next section, there is a remarkable correspondence

between the equations of motion in AdS space and the Hamiltonian equation for the rela-

tivistic bound-state system for the corresponding angular momentum in light-front theory.

The description of higher spin modes in AdS space is a notoriously difficult problem [34,

35, 36]. A spin-J field in AdSd+1 is represented by a rank J tensor field Φ(xA)M1···MJ
, which

is totally symmetric in all its indices. Such a tensor contains also lower spins, which can be

eliminated by imposing gauge conditions. The action for a spin-J field in AdSd+1 space-time

in presence of a dilaton background field ϕ(z) (the string frame) is given by

S =
1

2

∫

ddx dz
√
g eϕ(z)

(

gNN ′

gM1M ′

1 · · · gMJM
′

JDNΦM1···MJ
DN ′ΦM ′

1···M ′

J

− µ2gM1M ′

1 · · · gMJM
′

JΦM1···MJ
ΦM ′

1···M ′

J
+ · · ·

)

, (20)

whereM,N = 1, · · · , d+1,
√
g = (R/z)d+1 andDM is the covariant derivative which includes

parallel transport. The omitted terms in (20) refer to terms with different contractions. The

4This section is based on our collaboration with Hans Guenter Dosch. A detailed discussion of higher

integer and half-integer spin wave equations in modified AdS spaces will be given in Ref. [32]. See also the

discussion in Ref. [33].
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coordinates of AdS are the Minkowski coordinates xµ and the holographic variable z labeled

xM = (xµ, z). The d + 1 dimensional mass µ is not a physical observable and is a priory an

arbitrary parameter. The dilaton background field ϕ(z) in (20) introduces an energy scale

in the five-dimensional AdS action, thus breaking its conformal invariance. It is a function

of the holographic coordinate z which vanishes in the conformal ultraviolet limit z → 0. In

the hard wall model ϕ = 0 and the conformality is broken by the IR boundary conditions at

z = z0 ∼ 1/ΛQCD.

A physical hadron has plane-wave solutions and polarization indices M along the 3 + 1

physical coordinates

ΦP (x, z)µ1···µJ
= e−iP ·xΦ(z)µ1···µJ

, (21)

with four-momentum Pµ and invariant hadronic mass PµP
µ =M2. All other components

vanish identically: Φzµ2···µJ
= Φµ1z···µJ

= · · · = Φµ1µ2···z = 0. One can then construct an

effective action in terms of high spin modes ΦJ = Φµ1µ2···µJ
, with only physical degrees of

freedom [23]. In this case the system of coupled differential equations which follow from (20)

reduce to a homogeneous equation in terms of the physical field ΦJ .

In terms of fields with tangent indices

Φ̂A1A2···AJ
= eM1

A1
eM2

A2
· · · eMJ

AJ
ΦM1M2···MJ

=
( z

R

)J

ΦA1A2···AJ
, (22)

we find the effective action [32] (Φ̂J ≡ Φ̂µ1···µJ
)

S =
1

2

∫

ddx dz
√
g eϕ(z)

(

gNN ′

∂N Φ̂J∂N ′Φ̂J − µ2Φ̂2
J

)

, (23)

containing only the physical degrees of freedom and usual derivatives. Thus, the effect of the

covariant derivatives in the effective action for spin-J fields with polarization components

along the physical coordinates is a shift in the AdS mass µ. The vielbein eAM is defined by

gMN = eAMe
B
NηAB, where A,B = 1, · · · , d + 1 are tangent AdS space indices and ηAB has

diagonal components (1,−1, · · · ,−1). In AdS the vielbein is eAM = (R/z)δAM .

In terms of the AdS field ΦJ ≡ Φµ1···µJ
we can express the effective action (23)

S =
1

2

∫

ddx dz
√
gJ e

ϕ(z)
(

gNN ′

∂NΦJ∂N ′ΦJ − µ2Φ2
J

)

, (24)

where we have defined an effective metric determinant

√
gJ = (R/z)d+1−2J , (25)
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and rescaled the AdS mass µ in (23). Variation of the higher-dimensional action (24) gives

the AdS wave equation for the spin-J mode ΦJ

[

−z
d−1−2J

eϕ(z)
∂z

(

eϕ(z)

zd−1−2J
∂z

)

+

(

µR

z

)2
]

Φ(z)J =M2Φ(z)J , (26)

where the eigenmode ΦJ is normalized according to

Rd−1−2J

∫ ∞

0

dz

zd−1−2J
eϕ(z)Φ2

J (z) = 1. (27)

The AdS mass is µ obeys the relation

(µR)2 = (τ − J)(τ − d+ J), (28)

which follows from the scaling behavior of the tangent AdS field near z → 0, Φ̂J ∼ zτ .

We can also derive (26) by shifting dimensions for a J-spin mode [12, 37]. To this end, we

start with the scalar wave equation which follows from the variation of (20) for J = 0. This

case is particularly simple as the covariant derivative of a scalar field is the usual derivative.

We obtain the eigenvalue equation
[

−z
d−1

eϕ(z)
∂z

(

eϕ(z)

zd−1
∂z

)

+

(

µR

z

)2
]

Φ =M2Φ. (29)

A physical spin-J mode Φµ1···µJ
with all indices along 3+1 is constructed by shifting dimen-

sions ΦJ (z) = (z/R)−JΦ(z). It is simple to show that the shifted field Φµ1µ2···µJ
obeys the

wave equation (26) which follows from (29) upon mass rescaling (µR)2 → (µR)2 − J(d −
J) + Jz ϕ′(z).

2.3.1 Non-conformal warped metrics

In the Einstein frame conformal invariance is broken by the introduction of an additional

warp factor in the AdS metric in order to include confinement forces

ds2 = (gE)MNdx
MdxN (30)

=
R2

z2
eλ(z)

(

ηµνdx
µdxν − dz2

)

.

The action is

S =
1

2

∫

ddx dz
√
gE

(

gNN ′

E g
M1M ′

1

E · · · gMJM
′

J
E DNΦM1···MJ

DN ′ΦM ′

1···M ′

J

− µ2g
M1M ′

1

E · · · gMJM
′

J
E ΦM1···MJ

ΦM ′

1···M ′

J
+ · · ·

)

, (31)
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where gMN
E ≡ (gE)

MN and (gE)MN = R2

z2
eλ(z)ηMN . The flat metric ηMN has diagonal com-

ponents (1,−1, · · · ,−1).
The use of warped metrics is useful to visualize the overall confinement behavior as we

follow an object in warped AdS space as it falls to the infrared region by the effects of gravity.

The gravitational potential energy for an object of mass m in general relativity is given in

terms of the time-time component of the metric tensor g00

V = mc2
√

(gE)00 = mc2R
eλ(z)/2

z
, (32)

thus we may expect a potential that has a minimum at the hadronic scale z0 and grows fast

for larger values of z to confine effectively a particle in a hadron within distances z ∼ z0. In

fact, according to Sonnenscheim [38] a background dual to a confining theory should satisfy

the conditions for the metric component g00

∂z(g00)|z=z0 = 0, g00|z=z0 6= 0, (33)

to display the Wilson loop area law for confinement of strings.

To relate the results in the Einstein frame where hadronic modes propagate in the non-

conformal warped metrics (30) to the results in the String-Jordan frame (20), we scale

away the dilaton profile by a redefinition of the fields in the action. This corresponds to

the multiplication of the metric determinant
√
gE =

(

R
z

)d+1
e(d+1)λ(z)/2 by the contravariant

tensor (gE)
MN . Thus the result [32] ϕ(z)→ d−1

2
λ(z), or ϕ→ 3

2
λ for AdS5.

2.3.2 Effective confining potentials in AdS

For some applications it is convenient to scale away the dilaton factor in the action by

a field redefinition [39]. For example, for a scalar field we can shift Φ → e−ϕ/2Φ, and the

bilinear component in the action is transformed into the equivalent problem of a free kinetic

part plus an effective confining potential V (z) which breaks the conformal invariance. 5 For

the spin-J effective action (24) we find upon the field redefinition ΦJ → e−ϕ/2ΦJ

S =
1

2

∫

ddx dz
√
gJ

(

gNN ′

∂NΦJ∂N ′ΦJ − µ2Φ2
J − V (z)Φ2

J

)

− 1

4
lim
ǫ→0

∫

ddx

(

R

z

)d−1−2J

ϕ′(z)Φ2
J

∣

∣

∣

∞

ǫ
, (34)

5In fact, for fermions the conformality cannot be broken by the introduction of a dilaton background or

by explicitly deforming the AdS metric as discussed above, since the additional warp factor is scaled away by

a field redefinition. In this case the breaking of the conformal invariance and the generation of the fermion

spectrum can only be accomplished by the introduction of an effective potential. This is further discussed

in Sec. 5.2.
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with effective metric determinant (25)
√
gJ = (R/z)d+1−2J and effective potential V (z) =

z2

R2U(z), where

U(z) =
1

2
ϕ′′(z) +

1

4
ϕ′(z)2 +

2J − d+ 1

2z
ϕ′(z). (35)

The action (24) is thus equivalent, modulo a surface term, to the action (34) written

in terms of the rotated fields ΦJ → e−ϕ/2ΦJ . The result (35) is identical to the result

obtained in Ref. [33]. As we will show in the following section, the effective potential (35),

for d = 4, is precisely the effective light-front potential which appears in Eq. (18), where

the LF transverse impact variable ζ is identified with the holographic variable z. A different

approach is discussed in Ref. [40] where the infrared physics is introduced by a back-reaction

model to the AdS metric. See also Refs. [41, 42, 43, 44].

2.4 Light-front holographic mapping

The structure of the QCD light-front Hamiltonian equation (7) for the state |ψ(P )〉 is
similar to the structure of the wave equation (26) for the J-mode Φµ1···µJ

in AdS space;

they are both frame-independent and have identical eigenvaluesM2, the mass spectrum of

the color-singlet states of QCD. This provides the basis for a profound connection between

physical QCD formulated in the light-front and the physics of hadronic modes in AdS space.

However, important differences are also apparent: Eq. (7) is a linear quantum-mechanical

equation of states in Hilbert space, whereas Eq. (26) is a classical gravity equation; its

solutions describe spin-J modes propagating in a higher dimensional warped space. Phys-

ical hadrons are composite, and thus inexorably endowed of orbital angular momentum.

Thus, the identification of orbital angular momentum is of primary interest in establish-

ing a connection between both approaches. In fact, to a first semiclassical approximation,

light-front QCD is formally equivalent to the equations of motion on a fixed gravitational

background [12] asymptotic to AdS5, where the prominent properties of confinement are

encoded in a dilaton profile ϕ(z).

As shown in Sect. 2.2, one can indeed systematically reduce the LF Hamiltonian eigen-

value Eq. (7) to an effective relativistic wave equation (18), analogous to the AdS equations,

by observing that each n-particle Fock state has an essential dependence on the invariant

mass of the system and thus, to a first approximation, LF dynamics depend only on M2
n.

In impact space the relevant variable is the boost invariant variable ζ , which measures the

separation of quarks and gluons, and which also allows one to separate the bound state

dynamics of the constituents from the kinematics of their internal angular momentum.
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Upon the substitution z→ζ and

φJ(ζ) = (ζ/R)−3/2+J eϕ(z)/2 ΦJ(ζ), (36)

in (26), we find for d = 4 the QCD light-front wave equation (18) with effective potential [37]

U(ζ) =
1

2
ϕ′′(ζ) +

1

4
ϕ′(ζ)2 +

2J − 3

2z
ϕ′(ζ), (37)

provided that the fifth dimensional mass µ is related to the internal orbital angular momen-

tum L = max|Lz| and the total angular momentum Jz = Lz +Sz of the hadron. Light-front

holographic mapping thus implies that the fifth dimensional AdS mass µ is not a free pa-

rameter but scales as

(µR)2 = −(2 − J)2 + L2. (38)

The angular momentum projections in the light-front ẑ direction Lz, Sz and Jz are kine-

matical generators in the front form, so they are the natural quantum numbers to label the

eigenstates of light-front physics. In general, a hadronic eigenstate with spin Jz in the front

form corresponds to an eigenstate of J2 = j(j + 1) in the rest frame in the conventional

instant form. It thus has 2j + 1 degenerate states with Jz = −j,−j + 1, · · · j − 1,+j [4],

thus J represents the maximum value of |Jz|, J = max|Jz|.
If L2 < 0, the LF Hamiltonian defined in Eq. (7) is unbounded from below 〈φ|HLF |φ〉 < 0

and the spectrum contains an infinite number of unphysical negative values of M2 which

can be arbitrarily large. As M2 increases in absolute value, the particle becomes localized

within a very small region near ζ = 0, since the effective potential is conformal at small ζ .

ForM2 → −∞ the particle is localized at ζ = 0, the particle “falls towards the center” [45].

The critical value L = 0 corresponds to the lowest possible stable solution, the ground state

of the light-front Hamiltonian. For J = 0 the five dimensional mass µ is related to the

orbital momentum of the hadronic bound state by (µR)2 = −4 + L2 and thus (µR)2 ≥ −4.
The quantum mechanical stability condition L2 ≥ 0 is thus equivalent to the Breitenlohner-

Freedman stability bound in AdS [46]. The scaling dimensions are 2 + L independent of J ,

in agreement with the twist-scaling dimension of a two-parton bound state in QCD. It is

important to notice that in the light-front the SO(2) Casimir for orbital angular momentum

L2 is a kinematical quantity, in contrast to the usual SO(3) Casimir L(L + 1) from non-

relativistic physics which is rotational, but not boost invariant. The SO(2) Casimir form

L2 corresponds to the group of rotations in the transverse LF plane. Indeed, the Casimir

operator for SO(N) ∼ SN−1 is L(L+N − 2).
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3 Mesons in light-front holography

Considerable progress has recently been achieved in the study of the meson excitation

spectrum in QCD from discrete lattices which is a first-principles method [47]. In practice,

lattice gauge theory computations of eigenvalues beyond the ground-state are very challeng-

ing. Furthermore, states at rest are not classified according to total angular momentum

J and Jz, but according to the irreducible representation of the lattice, and thus a large

basis of interpolating operators is required for the extraction of meaningful data [47]. In

contrast, the semiclassical light-front holographic wave equation (18) obtained in the pre-

vious section describes relativistic bound states at equal light-front time with a simplicity

comparable to the Schrödinger equation of atomic physics at equal instant time. It thus

provides a framework for a first-order analytical exploration of the spectrum of mesons. In

the limit of zero-quark masses, the light-front wave equation has a geometrical equivalent to

the equation of motion in a warped AdS space-time.

3.1 A hard-wall model for mesons

As the simplest example we consider a truncated model where quarks propagate freely

in the hadronic interior up to the confinement scale 1/ΛQCD. The interaction terms in the

QCD Lagrangian effectively build confinement, here depicted by a hard wall potential

U(ζ) =

{

0 if ζ ≤ 1
ΛQCD

,

∞ if ζ > 1
ΛQCD

.
(39)

This provides an analog of the MIT bag model [48] where quarks are permanently confined

inside a finite region of space. In contrast to bag models, boundary conditions are imposed

on the boost-invariant variable ζ , not on the bag radius at fixed time. The wave functions

have support for longitudinal momentum fraction 0 < x < 1. The resulting model is a

manifestly Lorentz invariant model with confinement at large distances, while incorporating

conformal behavior at small physical separation.

The eigenvalues of the LF wave equation (18) for the potential (39) are determined by

the boundary conditions φ(z = 1/ΛQCD) = 0, and are given in terms of the roots of the

Bessel functions: ML,k = βL,kΛQCD. Light-front eigenmodes φ(ζ) are normalized according

to
∫ Λ−1

QCD

0

dζ φ2(ζ) = 1, (40)
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and are given by

φL,k(ζ) =

√
2ΛQCD

J1+L(βL,k)

√

ζJL(ζβL,kΛQCD) . (41)

Individual hadron states can be identified by their interpolating operators, which are

defined at the z → 0 asymptotic boundary of AdS space, and couple to the AdS field Φ̂(x, z)

(22) at the boundary limit (See Appendix A). The short-distance behavior of a hadronic

state is characterized by its twist (canonical dimension minus spin) τ = ∆ − σ, where σ is

the sum over the constituent’s spin σ =
∑n

i=1 σi. The twist of a hadron is also equal to the

number of its constituent partons n. 6

Pion interpolating operators are constructed by examining the behavior of bilinear co-

variants ψ̄Γψ under charge conjugation and parity transformation. Thus, for example, a

pion interpolating operator q̄γ+γ5q creates a state with quantum numbers JPC = 0−+, and a

vector meson interpolating operator q̄γµq a state 1−−. Likewise the operator q̄γµγ5q creates

a state with 1++ quantum numbers, for example the a1(1260) positive parity meson. If we

include orbital excitations, the pion interpolating operator is O2+L = q̄γ+γ5D{ℓ1 · · ·Dℓm}q.

This is an operator with total internal orbital momentum L =
∑m

i=1 ℓi, twist τ = 2+ L and

canonical dimension ∆ = 3 + L. Similarly the vector-meson interpolating operator is given

by Oµ
2+L = q̄γµD{ℓ1 · · ·Dℓm}q. The scaling of the AdS field Φ̂ (22) near z → 0, Φ̂(z) ∼ zτ , is

precisely the scaling required to match the scaling dimension of the local meson interpolating

operators.

We list in Table 1 the confirmed (4-star and 3-star) isospin I = 1 mesons states from the

updated Particle Data Group (PDG) [49], with their assigned internal spin, orbital angular

momentum and radial quantum numbers. The I = 1 mesons have quark content |ud̄〉,
1√
2
|uū− dd̄〉 and |dū〉. The I = 1 mesons are the π, b, ρ and a mesons. We have not listed

in Table 1 the I = 0 mesons which are a mix of uū, dd̄ and ss̄, thus more complex entities.

The light I = 0 mesons are η, η′, h, h′ ω, φ, f and f ′. This list comprises the puzzling I = 0

scalar f -mesons, which may be interpreted as a superposition of tetra-quark states with a

qq̄, L = 1, S = 1, configuration which couple to a J = 0 state [50]. 7

The light I = 1 orbital meson spectrum is compared in Fig. 1 with the truncated-

space model for n = 0. The data is from PDG [49]. The predictions for the lower mass

mesons are in better agreement with data as compared with Ref. [51], where naive conformal

dimensions were used instead. However the model fails to account for the pion as a chiral

Mπ = 0 state. The hard-wall model for mesons is degenerate with respect to the orbital

6To include orbital L-dependence we make the substitution τ → n+ L.
7The interpretation of the π1(1400) is not very clear [50] and is not included in Table 1. Likewise we do

not include the π1(1600) in the present analysis.
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Table 1: Confirmed I = 1 mesons listed by PDG [49]. The labels L, S and n refer to assigned

internal orbital angular momentum, internal spin and radial quantum number respectively. For a

qq̄ state P = (−1)L+1, C = (−1)L+S .

L S n JPC Meson State

0 0 0 0−+ π(140)

0 0 1 0−+ π(1300)

0 0 2 0−+ π(1800)

0 1 0 1−− ρ(770)

0 1 1 1−− ρ(1450)

0 1 2 1−− ρ(1700)

1 0 0 1+− b1(1235)

1 1 0 0++ a0(980)

1 1 1 0++ a0(1450)

1 1 0 1++ a1(1260)

1 1 0 2++ a2(1320)

2 0 0 2−+ π2(1670)

2 0 1 2−+ π2(1880)

2 1 0 3−− ρ3(1690)

3 1 0 4++ a4(2040)
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Figure 1: I = 1 light-meson orbital states in the hard wall model for ΛQCD = 0.32 GeV: pseu-

doscalar mesons (left) and vector mesons (right).

quantum number L, and thus fails to account for the important L = |Lz| = 1 triplet splitting

shown in Fig. 1 (right); the a0(980), a1(1260) and a2(1320) states, which corresponds to

J = |Jz| = 0, 1, 2 respectively. Using the asymptotic expansion of the Bessel function for

large arguments we find that M ∼ 2n + L, in contrast to the usual Regge dependence

M2 ∼ n + L found experimentally [50]. As a consequence, the radial modes are not well

described in the truncated-space model. For example the first radial AdS eigenvalue has a

mass 1.77 GeV, which is too high compared to the mass of the observed first radial excitation

of the meson, the π(1300). The shortcomings of the hard-wall model described in this section

are evaded in the soft wall model discussed below, where the sharp cutoff is modified.

3.2 A soft-wall model for mesons

As we discussed in Sec. 2.4, the conformal metric of AdS space can be modified within

the gauge/gravity framework to include confinement by the introduction of an additional

warp factor or, equivalently, with a dilaton background ϕ(z), which breaks the conformal

invariance of the theory. A particularly interesting case is a dilaton profile exp (±κ2z2) of

either sign, since it leads to linear Regge trajectories [23] and avoids the ambiguities in the

choice of boundary conditions at the infrared wall. The corresponding modified metric can

be interpreted in the higher dimensional warped AdS space as a gravitational potential in

the fifth dimension

V (z) = mc2
√
g00 = mc2R

e±3κ2z2/4

z
. (42)
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Figure 2: Light-front wavefunctions φn,L(ζ) in physical space-time corresponding to a dilaton

profile exp(κ2z2): (left) orbital modes (n = 0) and (right) radial modes (L = 0).

In the case of the negative solution, the potential decreases monotonically, and thus an

object located in the boundary of AdS space will fall to infinitely large values of z. This is

illustrated in detail by Klebanov and Maldacena in Ref. [52]. For the positive solution, the

potential is nonmonotonic and has an absolute minimum at z0 ∼ 1/κ. Furthermore, for large

values of z the gravitational potential increases exponentially, thus confining any object to

distances 〈z〉 ∼ 1/κ [53, 54].

From (37) we obtain for the positive sign confining solution ϕ = exp (κ2z2) the effective

potential [54]

U(ζ) = κ4ζ2 + 2κ2(J − 1), (43)

which corresponds to a transverse oscillator in the light-front. For the effective potential

(43) equation (18) has eigenfunctions

φn,L(ζ) = κ1+L

√

2n!

(n+L)!
ζ1/2+Le−κ2ζ2/2LL

n(κ
2ζ2), (44)

and eigenvalues 8

M2
n,J,L = 4κ2

(

n +
J + L

2

)

. (45)

The meson spectrum (45) has a string-theory Regge form M2 ∼ n + L: the square of

the eigenmasses are linear in both the angular momentum L and radial quantum number

n, where n counts the number of nodes of the wavefunction in the radial variable ζ . The

8Similar results are found in Ref. [33].

22



LFWFs (44) for different orbital and radial excitations are depicted in Fig. 2. Constituent

quark and antiquark separate from each other as the orbital and radial quantum numbers

increase. The number of nodes in the light-front wave function depicted in Fig. 2 (right)

correspond to the radial excitation quantum number n.
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Figure 3: I=1 parent and daughter Regge trajectories for the π-meson family (left) with κ = 0.59

GeV; and the ρ-meson family (right) with κ = 0.54 GeV.

For the J = L+ S meson families Eq. (45) becomes

M2
n,L,S = 4κ2

(

n+ L+
S

2

)

. (46)

The lowest possible solution for n = J = 0 has eigenvalueM2 = 0. This is a chiral symmetric

bound state of two massless quarks with scaling dimension 2 and size 〈ζ2〉 ∼ 1/κ2, which

we identify with the lowest state, the pion. Thus one can compute the corresponding Regge

families by simply adding 4κ2 for a unit change in the radial quantum number, 4κ2 for a

change in one unit in the orbital quantum number and 2κ2 for a change of one unit of spin to

the ground state value ofM2. The spectral predictions for the J = L+S light pseudoscalar

and vector meson states, listed in Table. 1, are compared with experimental data in Fig. 3

for the positive sign dilaton model discussed here. The data is from PDG [49].

It is important to notice that in contrast to the hard-wall model, the soft-wall model

with positive dilaton accounts for the mass pattern observed in radial excitations, as well as

for the triplet splitting for the L = 1, J = 0, 1, 2, vector meson a-states. Using the spectral

formula (45) we find

Ma2(1320) >Ma1(1260) >Ma0(980). (47)
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The predicted values are 0.76, 1.08 and 1.32 GeV for the masses of the a0(980), a1(1260)

and a2(1320) vector mesons, compared with the experimental values 0.98, 1.23 and 1.32 GeV

respectively. The prediction for the mass of the L = 1, n = 1 state a0(1450) is 1.53 GeV,

compared with the observed value 1.47 GeV. For other calculations of the hadronic spectrum

in the framework of AdS/QCD, see Refs. [55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,

68, 69, 70, 71, 72]. 9

4 Meson form factors

A form factor in QCD is defined by the transition matrix element of a local quark

current between hadronic states. The great advantage of the front form – as emphasized by

Dirac – is that boost operators are kinematic. Unlike the instant form, the boost operators

in the front form have no interaction terms. The calculation of a current matrix element

〈P + q|Jµ|P 〉 requires boosting the hadronic eigenstate from |P 〉 to |P + q〉, a task which

becomes hopelessly complicated in the instant form. In addition, the virtual photon couples

to connected currents which arise from the instant form vacuum.

In AdS space form factors are computed from the overlap integral of normalizable modes

with boundary currents which propagate in AdS space. The AdS/CFT duality incorporates

the connection between the twist scaling dimension of the QCD boundary interpolating op-

erators to the falloff of the normalizable modes in AdS near its conformal boundary. If

both quantities represent the same physical observable for any value of the transferred mo-

mentum squared q2, a precise correspondence can be established between the string modes

Φ in AdS space and the light front wavefunctions of hadrons ψn in physical four dimen-

sional space-time [13]. In fact, Light-Front Holography was originally derived by observing

the correspondence between matrix elements obtained in AdS/CFT with the corresponding

formula using the light-front representation [13]. The same results follow from comparing

the relativistic light-front Hamiltonian equation describing bound states in QCD with the

wave equations describing the propagation of modes in a warped AdS space, as shown in the

previous section [12].

4.1 Meson electromagnetic form factor

In the higher dimensional gravity theory, the hadronic transition matrix element corre-

sponds to the coupling of an external electromagnetic field AM(x, z), for a photon propagat-

9For recent reviews see, for example, Refs. [73, 74].
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ing in AdS space, with the extended field ΦP (x, z) describing a meson in AdS is [15]
∫

d4x dz
√
g AM(x, z)Φ∗

P ′(x, z)
←→
∂ MΦP (x, z) ∼ (2π)4δ4 (P ′− P − q) ǫµ(P + P ′)µFM (q2).

(48)

To simplify the discussion we will first describe a model with a wall at z ∼ 1/ΛQCD – the

hard wall model – which limits the propagation of the string modes in AdS space beyond

the IR separation z ∼ 1/ΛQCD and also sets the gap scale [9]. We recall from Sec. 2.3 that

the coordinates of AdS5 are the Minkowski coordinates xµ and z labeled xM = (xµ, z), with

M,N = 1, · · ·5, and g is the determinant of the metric tensor. The pion has initial and final

four momentum P and P ′ respectively and q is the four-momentum transferred to the pion

by the photon with polarization ǫµ. The expression on the right-hand side of (48) represents

the space-like QCD electromagnetic transition amplitude in physical space-time

〈P ′|Jµ(0)|P 〉 = (P + P ′)
µ
FM(q2). (49)

It is the EM matrix element of the quark current Jµ = eq q̄γ
µq, and represents a local coupling

to pointlike constituents. Although the expressions for the transition amplitudes look very

different, one can show that a precise mapping of the matrix elements can be carried out at

fixed light-front time [13, 14].

The form factor is computed in the light front from the matrix elements of the plus-

component of the current J+ in order to avoid coupling to Fock states with different numbers

of constituents. Expanding the initial and final meson states |ψM(P+,P⊥)〉 in terms of Fock

components, |ψM〉 =
∑

n ψn/M |n〉, we obtain the DYW expression [16, 17] upon the phase

space integration over the intermediate variables in the q+ = 0 frame:

FM(q2) =
∑

n

∫

[

dxi
] [

d2k⊥i

]

∑

j

ejψ
∗
n/M(xi,k

′
⊥i, λi)ψn/M (xi,k⊥i, λi), (50)

where the phase space factor [dxi
]

[d2k⊥i] is given by (9) and the variables of the light cone

Fock components in the final-state are given by k′
⊥i = k⊥i+(1−xi)q⊥ for a struck constituent

quark and k′
⊥i = k⊥i − xi q⊥ for each spectator. The formula is exact if the sum is over all

Fock states n. The form factor can also be conveniently written in impact space as a sum of

overlap of LFWFs of the j = 1, 2, · · · , n− 1 spectator constituents [75]

FM(q2) =
∑

n

n−1
∏

j=1

∫

dxjd
2b⊥j exp

(

iq⊥ ·
n−1
∑

j=1

xjb⊥j

)

∣

∣ψn/M(xj ,b⊥j)
∣

∣

2
, (51)

corresponding to a change of transverse momentum xjq⊥ for each of the n − 1 spectators

with
∑n

i=1 b⊥i = 0.
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For definiteness we shall consider the π+ valence Fock state |ud̄〉 with charges eu = 2
3
and

ed̄ =
1
3
. For n = 2, there are two terms which contribute to Eq. (51). Exchanging x↔ 1−x

in the second integral we find

Fπ+(q2) = 2π

∫ 1

0

dx

x(1 − x)

∫

ζdζ J0

(

ζq

√

1− x
x

)

∣

∣ψud̄/π(x, ζ)
∣

∣

2
, (52)

where ζ2 = x(1 − x)b2
⊥ and Fπ+(q=0) = 1.

We now compare this result with the electromagnetic form factor in AdS space-time. The

incoming electromagnetic field propagates in AdS according to Aµ(x
µ, z) = ǫµ(q)e

−iq·xV (q2, z)

in the gauge Az = 0 (no physical polarizations along the AdS variable z). The bulk-to-

boundary propagator V (q2, z) is the solution of the AdS wave equation for Aµ(x
µ, z) given

by (Q2 = −q2 > 0)

V (Q2, z) = zQK1(zQ), (53)

with boundary conditions [15]

V (Q2 = 0, z) = V (Q2, z = 0) = 1. (54)

The propagation of the pion in AdS space is described by a normalizable mode ΦP (x
µ, z) =

e−iP ·xΦ(z) with invariant mass PµP
µ =M2 and plane waves along Minkowski coordinates

xµ. Extracting the overall factor (2π)4δ4 (P ′− P − q) from momentum conservation at the

vertex which arises from integration over Minkowski variables in (48), we find [15]

F (Q2) = R3

∫

dz

z3
V (Q2, z) Φ2(z), (55)

where F (Q2= 0) = 1. Using the integral representation of V (Q2, z)

V (Q2, z) =

∫ 1

0

dx J0

(

zQ

√

1− x
x

)

, (56)

we write the AdS electromagnetic form-factor as

F (Q2) = R3

∫ 1

0

dx

∫

dz

z3
J0

(

zQ

√

1− x
x

)

Φ2(z). (57)

To compare with the light-front QCD form factor expression (52) we use the expression

of the LFWF (15) in the transverse LF plane, where we factor out the longitudinal and trans-

verse modes φ(ζ) andX(x) respectively. If both expressions for the form factor are to be iden-

tical for arbitrary values of Q, we obtain φ(ζ) = (ζ/R)3/2Φ(ζ) and X(x) =
√

x(1− x) [13],
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where we identify the transverse impact LF variable ζ with the holographic variable z,

z → ζ =
√

x(1 − x)|b⊥|. 10 Thus, in addition of recovering the expression found in Sec. 2.4

which relates the transverse mode φ(ζ) in physical space-time to the field Φ in AdS space,

we find a definite expression for the longitudinal LF mode X(x). Identical results follow

from mapping the matrix elements of the energy-momentum tensor [18].

4.2 Elastic form factor with a dressed current

The results for the elastic form factor described above correspond to a free current

propagating on AdS space. It is dual to the electromagnetic point-like current in the Drell-

Yan-West light-front formula [16, 17] for the pion form factor. The DYW formula is an

exact expression for the form factor. It is written as an infinite sum of an overlap of LF Fock

components with an arbitrary number of constituents. This allows one to map state-by-state

to the effective gravity theory in AdS space. However, this mapping has the shortcoming that

the multiple pole structure of the time-like form factor does not appear in the time-like region

unless an infinite number of Fock states is included. Furthermore, the moments of the form

factor at Q2 = 0 diverge term-by-term; for example one obtains an infinite charge radius [76].

This could have been expected, as we are dealing with a massless quark approximation. In

fact, infinite slopes also occur in chiral theories when coupling to a massless pion.

Alternatively, one can use a truncated basis of states in the LF Fock expansion with a

limited number of constituents and the nonperturbative pole structure can be generated with

a dressed EM current as in the Heisenberg picture, i.e., the EM current becomes modified

as it propagates in an IR deformed AdS space to simulate confinement. The dressed current

is dual to a hadronic EM current which includes any number of virtual qq̄ components. The

confined EM current also leads to finite moments at Q2 = 0, as illustrated in Fig. 4 for the

EM pion form factor.

We describe briefly below how to compute a form factor for a confined current in AdS

space using a soft wall example. However, the actual computation of a form factor in AdS

has several caveats which we will discuss in Sec. 4.4.

The effective potential corresponding to a dilaton profile exp(±κ2z2) has the form of a

harmonic oscillator confining potential κ4z2. The normalizable solution for a meson of twist

τ (the number of constituents for a given Fock component) corresponding to the lowest radial

10Extension of the results to arbitrary n follows from the x-weighted definition of the transverse impact

variable of the n − 1 spectator system given by Eq. (19). In general the mapping relates the AdS density

Φ2(z) to an effective LF single particle transverse density [13].
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Figure 4: space-like electromagnetic pion form factor Fπ(q
2). Continuous line: confined current,

dashed line free current. Triangles are the data compilation from Baldini [77], boxes are JLAB

data [78].

n = 0 and orbital L = 0 state is given by

Φτ (z) =

√

2Pτ

Γ(τ−1) κ
τ−1zτe−κ2z2/2, (58)

with normalization

〈Φτ |Φτ 〉 =
∫

dz

z3
e−κ2z2Φτ (z)2 = Pτ , (59)

where Pτ is the probability for the twist τ mode (58). This agrees with the fact that the field

Φτ couples to a local hadronic interpolating operator of twist τ defined at the asymptotic

boundary of AdS space (See Appendix A), and thus the scaling dimension of Φτ is τ .

In the case of a soft-wall potential the EM bulk-to-boundary propagator is [14, 79]

V (Q2, z) = Γ

(

1 +
Q2

4κ2

)

U

(

Q2

4κ2
, 0, κ2z2

)

, (60)

where U(a, b, c) is the Tricomi confluent hypergeometric function

Γ(a)U(a, b, z) =

∫ ∞

0

e−ztta−1(1 + t)b−a−1dt. (61)

The modified current V (Q2, z), Eq. (60), has the same boundary conditions (54) as the free

current (53), and reduces to (53) in the limit Q2 → ∞ [14]. Eq. (60) can be conveniently

written in terms of the integral representation [79]

V (Q2, z) = κ2z2
∫ 1

0

dx

(1− x)2 x
Q2

4κ2 e−κ2z2x/(1−x). (62)
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Substituting in (55) the expression for the hadronic state (58) with twist τ and the bulk-

to-boundary propagator (62), we find that the corresponding elastic form factor for a twist

τ Fock component Fτ (Q
2) (Q2 = −q2 > 0) [14]

Fτ (Q
2) =

Pτ
(

1 + Q2

M2
ρ

)(

1 + Q2

M2
ρ′

)

· · ·
(

1 + Q2

M2

ρτ−2

) , (63)

which is expressed as a τ−1 product of poles along the vector meson Regge radial trajectory.

For a pion, for example, the lowest Fock state – the valence state – is a twist-2 state, and

thus the form factor is the well known monopole form [14]. Thus the mean-square charge

radius of the pion 〈r2π〉 = 6/M2
ρ in the valence approximation. ForMρ ≃ 770 MeV we find

〈rπ〉 ≃ 0.63 fm, compared with the experimental value 〈rπ〉 = 0.672 ± 0.008 fm [49]. In

contrast, the computation with a free current gives the logarithmically divergent result 11.

〈r2π〉 =
3

2
ln

(

4κ2

Q2

)

∣

∣

∣

Q2→0
. (64)

The remarkable analytical form of (63), expressed in terms of the ρ vector meson mass and

its radial excitations, incorporates the correct scaling behavior from the constituent’s hard

scattering with the photon and the mass gap from confinement.

4.3 Effective wave function from holographic mapping of a con-

fined current

It is also possible to find a precise mapping of a confined EM current propagating in a

warped AdS space to the light-front QCD Drell-Yan-West expression for the form factor. In

this case we we find an effective LFWF, which corresponds to a superposition of an infinite

number of Fock states generated by the “dressed” confined current. For the soft-wall model

this mapping can be done analytically.

The form factor in light-front QCD can be expressed in terms of an effective single-

particle density [75]

F (Q2) =

∫ 1

0

dx ρ(x,Q), (65)

where

ρ(x,Q) = 2π

∫ ∞

0

b db J0(bQ(1 − x))|ψ(x, b)|2, (66)

11The logarithmically divergent result does not appear in the hard-wall model if one uses Neumann bound-

ary conditions. In this case the EM current is confined and 〈r2π〉 ∼ 1/Λ2
QCD. A discussion of the pion form

factor including chiral symmetry breaking effects in the hard-wall model is given in Refs. [80] and [81].
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for a two-parton state (b = |b⊥|).
We can also compute an effective density on the gravity side corresponding to a twist τ

hadronic mode Φτ in a modified AdS space. For the soft-wall model the expression is [14]

ρ(x,Q) = (τ−1) (1− x)τ−2 x
Q2

4κ2 . (67)

To compare (67) with the QCD expression (66) for twist-two we use the integral

∫ ∞

0

u du J0(αu) e
−βu2

=
1

2β
e−α2/4β , (68)

and the relation xγ = eγ ln(x). We find the effective two-parton LFWF

ψ(x,b⊥) = κ
(1− x)
√

π ln( 1
x
)
e−

1
2
κ2

b
2
⊥
(1−x)2/ ln( 1

x
), (69)

in impact space. The momentum space expression follows from the Fourier transform of (69)

and it is given by

ψ(x,k⊥) = 4π

√

ln
(

1
x

)

κ(1− x) x
k2
⊥
/2κ2(1−x)2 (70)

= 4π

√

ln
(

1
x

)

κ(1− x) e
−k2

⊥
/2κ2(1−x)2 ln( 1

x). (71)

The effective LFWF encodes nonperturbative dynamical aspects that cannot be learned

from a term-by-term holographic mapping, unless one includes an infinite number of terms.

Furthermore, it has the right analytical properties to reproduce the bound state vector meson

pole in the time-like EM form factor. Unlike the “true” valence LFWF, the effective LFWF,

which represents a sum of an infinite number of Fock components, is not symmetric in the

longitudinal variables x and 1− x for the active and spectator quarks, respectively.

4.4 Some caveats computing matrix elements in AdS/QCD

The positive dilaton background exp(+κ2z2) used in Sec. 3.2 leads to a successful de-

scription of the meson spectrum in terms of the internal quantum numbers n, L and S, and

has been preferred for computations in the framework of light-front holography, where the in-

ternal structure of hadrons is encoded in the wave function. The positive dilaton background

has been discussed in the literature [33, 53, 54, 82, 83] since it has the expected behavior of a

model dual to a confining theory [38, 52]. This solution was studied in Ref. [23] but discarded
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in the same paper, as it leads to a spurious massless scalar mode in the two-point correla-

tion function for vector mesons [84], and a dilaton field with opposite sign, exp(−κ2z2), was
adopted instead [23]. However, using the results of Sec. 2.3.2, one can readily show that the

difference in the effective potential U(z) corresponding to positive and negative dilaton fac-

tors exp(±κ2z2) simply amounts to a z-independent shift in the light-front effective potential

U , which in fact vanishes in the vector meson J = 1 channel. From (35)

∆U(z) = Uϕ(z)− U−ϕ(z) = ϕ′′(z) +
2J − d+ 1

z
ϕ′(z), (72)

in agreement with the results found in Ref. [33].

For the dilaton profile ϕ = k2z2 we find for d = 4

∆U = 4(J − 1)κ2. (73)

Therefore, from the point of view of light-front physics, plus and minus dilaton soft-wall

solutions are equivalent upon a redefinition of the eigenvalues for J 6= 1. For J = 1 the

effective potential is U = κ4z2, identical for the plus and minus solutions [39]. Thus, the

five-dimensional effective AdS action for a conserved EM current VM in presence of a confining

potential U = κ4z2 [39]

S =

∫

d4x dz
√
g

(

1

4
FMNF

MN − κ4z4

2R2
VMV

M

)

, (74)

where FMN = ∂MVN − ∂NVM , only differs by a surface term from the action corresponding

to plus or minus dilaton profiles. Equivalently, one can start from the five-dimensional

action (74). Upon the field redefinition VM → e±κ2z2/2VM one obtains the five-dimensional

actions corresponding to plus or minus dilaton solutions, which differ from (74) only by a

surface term. Consequently, essential physics cannot dependent on the particular choice of

the dilaton sign.

Another difficulty found in the holographic approach to QCD is that the vector meson

masses obtained from the spin-1 equation of motion do not match the poles of the dressed

current when computing a form factor. The discrepancy, in the case of the pion, is an

overall factor of
√
2 between the value of the gap scale which follows from the spectrum or

from the computation of the pion form factor in the valence state approximation.12 This

12This discrepancy is also present in the gap scale if one computes the spectrum and form factors without

recourse to holographic methods, for example using the semi-classical approximation of Ref. [12]. In this

case a discrepancy of a factor factor
√
2 is also found between the spectrum and the computation of space-like

form factors.
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is quite puzzling, since the same discrepancy is also found, for example, when computing a

space-like form factor using the Drell-Yan-West expression, which is an exact expression if

all Fock states are included. In AdS conserved currents are not renormalized and correspond

to five dimensional massless fields propagating in AdS according to the relation (µR)2 =

(∆−p)(∆+p−4) for a p form. In the usual AdS/QCD framework [20, 21] this corresponds for

p = 1 to ∆ = 3 or 1, the canonical dimensions of an EM current and the massless gauge field

respectively. Normally, one uses a hadronic interpolating operator with minimum twist τ to

identify a hadron and to predict the power-law fall-off behavior of its form factors and other

hard scattering amplitudes [9]; e.g., for a two-parton bound state τ = 2. However, in the case

of a current, one needs to use an effective field operator with dimension ∆ = 3. The apparent

inconsistency between twist (28) and canonical dimension is removed by noticing that in the

light-front one chooses to calculate the matrix element of the twist-3 plus component of the

“good” current J+ [13, 14], in order to avoid coupling to Fock states with different numbers

of constituents [16, 17].

As described in Sec. 2.4, light front holography provides a precise relation of the fifth-

dimensional mass µ with the total and orbital angular momentum of a hadron in the trans-

verse LF plane (µR)2 = −(2− J)2 + L2 (38). Thus the poles computed from the AdS wave

equations for a conserved current µR = 0, correspond to a J = L = 1 twist-3 state. Fol-

lowing this, we can compute the mass of the radial excitations of the twist-3 vector family

J = L = 1 using Eq. (45). The result is

M2
n,J=1,L=1 = 4κ2(n+ 1), (75)

which is identical with the results obtained in Ref. [23], since, as explained above, the meson

spectrum computed with positive or negative dilaton solutions is indistinguishable for J = 1.

The twist-3 computation of the space-like form factor, involves the current J+, and the

poles given by (75) do not correspond to the physical poles of the twist-2 transverse current

J⊥ present in the annihilation channel, namely the J = 1, L = 0 state. In this case Eq. (45)

gives for the twist-2, J = 1, L = 0 vector family the result

M2
n,J=1,L=0 = 4κ2

(

n+
1

2

)

. (76)

Thus, to compare with physical data one must shift in (63) the twist-2 poles given by (75)

to their physical positions (76). When the vector meson masses are shifted to their physical

values the agreement of the predictions with observed data is very good [85]. We presume

that the problem arises because of the specific truncation used.
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4.5 Meson transition form factors

The photon-to-meson transition form factors 13 (TFFs) FMγ(Q
2) measured in γγ∗ →M

reactions have been of intense experimental and theoretical interest. The pion transition

form factor between a photon and pion measured in the e−e− → e−e−π0 process, with one

tagged electron, is the simplest bound-state process in QCD. It can be predicted from first

principles in the asymptotic Q2 → ∞ limit [88]. More generally, the pion TFF at large

Q2 can be calculated at leading twist as a convolution of a perturbative hard scattering

amplitude TH(γγ
∗ → qq̄) and a gauge-invariant meson distribution amplitude (DA), which

incorporates the nonperturbative dynamics of the QCD bound-state [88].

The BaBar Collaboration has reported measurements of the transition form factors from

γ∗γ → M process for the π0 [89], η, and η′ [90, 91] pseudoscalar mesons for a momentum

transfer range much larger than previous measurements [92, 93]. Surprisingly, the BaBar

data for the π0-γ TFF exhibit a rapid growth for Q2 > 15 GeV2, which is unexpected from

QCD predictions. In contrast, the data for the η-γ and η′-γ TFFs are in agreement with

previous experiments and closer in agreement with theoretical predictions. Many theoretical

studies have been devoted to explaining BaBar’s experimental results [94, 95, 96, 97, 98, 99,

100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110].

The pion transition form factor Fπγ(Q
2) can be computed from first principles in QCD.

To leading leading order in αs(Q
2) and leading twist the result is [88] (Q2 = −q2 > 0)

Q2Fπγ(Q
2) =

4√
3

∫ 1

0

dx
φ(x, x̄Q)

x̄

[

1 +O

(

αs,
m2

Q2

)]

, (77)

where x is the longitudinal momentum fraction of the quark struck by the virtual photon

in the hard scattering process and x̄ = 1 − x is the longitudinal momentum fraction of the

spectator quark. The pion distribution amplitude φ(x,Q) in the light-front formalism [88]

is the integral of the valence qq̄ LFWF in light-cone gauge A+ = 0

φ(x,Q) =

∫ Q2

0

d2k⊥
16π3

ψqq̄/π(x,k⊥), (78)

and has the asymptotic form [88] φ(x,Q→∞) =
√
3fπx(1−x); thus the leading order QCD

result for the TFF at the asymptotic limit is obtained [88],

Q2Fπγ(Q
2 →∞) = 2fπ. (79)

13This section is based on our collaboration with Fu-Guang Cao. Further details are given in [86, 87].
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To describe the two-photon processes γγ∗ → M , using light-front holographic methods

similar to those described in Sec. 4, we need to explore the mathematical structure of higher-

dimensional forms in the five dimensional action, since the amplitude (48) can only account

for the elastic form factor FM(Q2) [87]. For example, in the five-dimensional AdS action there

is an additional Chern-Simons (CS) term in addition to the usual Yang-Mills term F 2 [8]. In

the case of a U(1) gauge theory the CS action is of the form ǫLMNPQAL∂MAN∂PAQ. The CS

action is not gauge invariant: under a gauge transformation it changes by a total derivative

which gives a surface term. The CS form is the product of three fields at the same point in

five-dimensional space corresponding to a local interaction. Indeed the five-dimensional CS

action is responsible for the anomalous coupling of mesons to photons and has been used

to describe, for example, the ω → πγ [111] decay as well as the γγ∗ → π0 [112, 113] and

γ∗ρ0 → π0 [114] processes. 14

The hadronic matrix element for the anomalous electromagnetic coupling to mesons in

the higher gravity theory is given by the five-dimensional CS amplitude

∫

d4x

∫

dz ǫLMNPQAL∂MAN∂PAQ

∼ (2π)4δ(4) (P + q − k)Fπγ(q
2)ǫµνρσǫµ(q)Pνǫρ(k)qσ, (80)

which includes the pion field as well as the external photon fields by identifying the fifth

component of A with the meson mode in AdS space [116]. In the right-hand side of (80) q

and k are the momenta of the virtual and on-shell incoming photons respectively with corre-

sponding polarization vectors ǫµ(q) and ǫµ(k) for the amplitude γγ∗ → π0. The momentum

of the outgoing pion is P .

We now compare the QCD expression on the right-hand side of (80) with the AdS

transition amplitude on the left-hand side. As for the elastic form factor discussed in Sec.

4.1, the incoming off-shell photon is represented by the propagation of the non-normalizable

electromagnetic solution in AdS space, Aµ(x
µ, z) = ǫµ(q)e

−iq·xV (q2, z), where V (q2, z) is the

bulk-to-boundary propagator with boundary conditions (54) V (q2 = 0, z) = V (q2, z = 0) =

1. Since the incoming photon with momentum k is on its mass shell, k2 = 0, its wave function

is Aµ(x
µ, z) = ǫµ(k)e

ik·x. Likewise, the propagation of the pion in AdS space is described by

a normalizable mode ΦP (x
µ, z) = e−iP ·xΦπ(z) with invariant mass PµP

µ =M2
π = 0 in the

chiral limit for massless quarks. The normalizable mode Φπ(z) scales as Φπ(z) → z2 in the

limit z → 0, since the leading interpolating operator for the pion has twist two. A simple

dimensional analysis implies that Az ∼ Φπ(z)/z, matching the twist scaling dimensions:

14The anomalous EM couplings to mesons in the Sakai and Sugimoto model is described in Ref. [115].
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two for the pion and one for the EM field. Substituting in (80) the expression given above

for the the pion and the EM fields propagating in AdS, and extracting the overall factor

(2π)4δ4 (P ′− q − k) upon integration over Minkowski variables, we find (Q2= −q2> 0)

Fπγ(Q
2) =

1

2π

∫ ∞

0

dz

z
Φπ(z)V

(

Q2, z
)

, (81)

where the normalization is fixed by the asymptotic QCD prediction (79). We have defined

our units such that the AdS radius R = 1.

Since the LF mapping of (81) to the asymptotic QCD prediction (79) only depends

on the asymptotic behavior near the boundary of AdS space, the result is independent of

the particular model used to modify the large z IR region of AdS space. At large enough

Q, the important contribution to (79) only comes from the region near z ∼ 1/Q where

Φ(z) = 2πfπz
2 +O(z4). Using the integral

∫∞
0
dx xαK1(x) = 2α−2α

[

Γ
(

α
2

)]2
, Re(α) > 1, we

recover the asymptotic result (79)

Q2Fπγ(Q
2 →∞) = 2fπ +O

(

1

Q2

)

, (82)

with the pion decay constant fπ [87]

fπ =
1

4π

∂zΦ
π(z)

z

∣

∣

∣

z=0
. (83)

A simple analytical expression for the pion TFF can be obtained from the “soft-wall”

holographic model described in Sec. 4.2. Using (58) to describe the twist-two pion valence

wave function in AdS space we find

Q2Fπγ(Q
2) =

4√
3

∫ 1

0

dx
φ(x)

1− x

[

1− exp

(

−(1 − x)Pqq̄Q
2

4π2f 2
πx

)]

, (84)

where φ(x) =
√
3fπx(1 − x) is the asymptotic QCD distribution with fπ the pion decay

constant and Pqq̄ is the probability for the valence state. Remarkably, the holographic

result for the pion TFF factor given by (84) for Pqq̄ = 1 is identical to the results for the

pion TFF obtained with the exponential light-front wave function model of Musatov and

Radyushkin [117] consistent with the leading order QCD result [88]. Since the pion field is

identified as the fifth component of AM , the CS form ǫLMNPQAL∂MAN∂PAQ is similar in

form to an axial current; this correspondence can explain why the resulting pion distribution

amplitude has the asymptotic form. 15

15In Ref. [112] the pion TFF was studied in the framework of a CS extended hard-wall AdS/QCD model

with Az ∼ ∂zΦ(z). The expression for the TFF which follows from (80) then vanishes at Q2 = 0, and has

to be corrected by the introduction of a surface term at the IR wall [112]. However, this procedure is only

possible for a model with a sharp cutoff.
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Figure 5: The γγ∗ → π0 transition form factor Fπγ(Q
2) (left) and Q2Fπγ(Q

2) (right). The dotted

curve is the asymptotic result. The dashed and solid curves include the effects of using a confined

EM current for twist-two and twist-two plus twist-four respectively. The data are from [89, 92, 93].

Taking Pqq̄ = 0.5 in (84) one obtains a result in agreement with the Adler, Bell and

Jackiw anomaly result which agrees within a few percent with the observed value obtained

from the the decay π0 → γγ. This suggests that the contribution from higher Fock states

vanishes at Q = 0 in this simple holographic confining model. Thus (84) represents a

description of the pion TFF which encompasses the low-energy nonperturbative and the

high-energy hard domains, but includes only the asymptotic distribution amplitude of the

qq̄ component of the pion wave function at all scales. The results from (84) for Pqq̄ = 0.5

are shown in Fig. 5. Also shown in Fig. 5 are the results for the free current approximation

(which corresponds to the asymptotic result) with Pqq̄ = 0.5 and a twist-two plus twist-four

model [87] with Pqq̄ = 0.915, and Pqq̄qq̄ = 0.085. The calculations [87] agree reasonably well

with the experimental data at low- and medium-Q2 regions (Q2 < 10 GeV2), but disagree

with BaBar’s large Q2 data.

The η and η′ mesons result from the mixing of the neutral states η8 and η1 of the SU(3)F

quark model. The TFFs for the η and η′ mesons have the same expression as the pion

transition form factor, except for an overall multiplying factor cP = 1, 1√
3
, and 2

√
2√
3
for the

π0, η8 and η1, respectively [87]. The results for the η and η′ transitions form factors are

shown in Fig. 6. The calculations agree very well with available experimental data over a

large range of Q2. The rapid growth of the large Q2 data for the pion-photon transition

form factor reported by the BaBar Collaboration is difficult to explain within the current
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Figure 6: The γγ∗ → η transition form factor Q2Fηγ(Q
2) (left). The dotted curve is the asymptotic

result. The dashed and solid curves include the effects of using a confined EM current for twist-two

plus twist-two plus twist-four respectively. Same for the γγ∗ → η′ transition form factor Q2Fη′γ(Q
2)

(right). The data are from [89, 92, 93].

framework of QCD. The analysis presented here thus indicates the importance of additional

measurements of the pion-photon transition form factor at large Q2.

5 Baryons in light-front holography

The study of the excitation spectrum of baryons is one of the most challenging aspects

of particle physics. In fact, dedicated experimental programs are in place to determine the

spectrum of nucleon excitations and its internal structure. Important computational efforts

in lattice QCD aim to the reliable extraction of the excited nucleon eigenstates. Lattice

calculations of the ground state light hadron masses agree with experimental values within

5% [47]. However, the excitation spectrum of the nucleon represents a formidable challenge

to lattice QCD due to the enormous computational complexity required beyond the leading

ground state configuration [118]. Moreover, a large basis of interpolating operators is required

since excited nucleon states are classified according to irreducible representations of the

lattice, not the total angular momentum.

As we shall discuss below, the analytical exploration of the baryon spectrum and nu-

cleon form factors, using light-front gauge/gravity duality ideas, leads, in contrast, to simple

formulas and rules which describe quite well the systematics of the established light-baryon
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resonances and elastic and transition nucleon form factors, which can be tested against new

experimental findings. The gauge/gravity duality can give us important insights into the

strongly coupled dynamics of nucleons using simple analytical methods.

We can extended the holographic ideas to spin-1
2
hadrons by considering the propagation

of spin-1
2
Dirac modes in AdS space [15]. The action for a Dirac field in AdSd+1 is

SF =

∫

ddx dz
√
g

(

i

2
Ψ̄eMA ΓADMΨ− i

2
(DMΨ̄)eMA ΓAΨ− µΨ̄Ψ

)

, (85)

where
√
g =

(

R
z

)d+1
and eMA is the inverse vielbein, eMA =

(

z
R

)

δMA . The covariant derivative

of the spinor field is DM = ∂M − i
2
ωAB
M ΣAB where ΣAB are the generators of the Lorentz

group in the spinor representation, ΣAB = i
4
[ΓA,ΓB], and the tangent space Dirac matrices

obey the usual anti-commutation relation
{

ΓA,ΓB
}

= ηAB. For d even we can choose the

set of gamma matrices ΓA = (Γµ,Γz) with Γz = −Γz = Γ0Γ1 · · ·Γd−1. For d = 4 we

have ΓA = (γµ,−iγ5), where γµ and γ5 are the usual 4-dimensional Dirac matrices with

γ5 = iγ0γ1γ2γ3 and γ25 = +1. The spin connection in AdS is wAB
M =

(

ηAzδBM − ηBzδAM
)

/z,

thus the equation of motion
(

ieMA ΓADM − µ
)

Ψ = 0 leads to the Dirac equation in AdS space
[

i

(

zηMNΓM∂N +
d

2
Γz

)

− µR
]

Ψ = 0, (86)

where the d+ 1 dimensional mass µ is a priory an arbitrary parameter. 16

One can also take as starting point the construction of light-front wave equations in

physical space-time for baryons by studying the LF transformation properties of spin 1/2

states [121]. The light-front wave equation describing baryons is a matrix eigenvalue equation

DLF |ψ〉 =M|ψ〉 with HLF = D2
LF . In a 2× 2 spinor component representation

d

dζ
ψ+ +

ν + 1
2

ζ
ψ+ = Mψ−,

− d

dζ
ψ− +

ν + 1
2

ζ
ψ− = Mψ+. (87)

As shown below, we can identify ν with the orbital angular momentum L: ν = L+ 1.

Upon the substitution z → ζ and

Ψ(x, z) = e−iP ·xz2ψ(z)u(P ), (88)

16The spinor action (85) is often complemented by an additional surface term in the UV boundary [119]

limǫ→0

∫

ddx
√
gǫΨ̄Ψ where gǫ is the metric induced in the boundary surface by the metric g of AdSd+1. The

additional term is required to preserve the O(d+1, 1) isometry group of AdSd+1 and to compute a two-point

correlation function in the conformal boundary theory [120]. The equation of motion (86) is not modified

by the surface term.
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in (86) we recover for d = 4 its LF expression (87), provided that |µR| = ν + 1
2
. The baryon

invariant mass is PµP
µ =M2 and the spinor u(P ) is a four-dimensional spinor which obeys

the Dirac equation (/P −M)u(P ) = 0. Thus the eigenvalue equation HLFψ± =M2ψ± for

the upper and lower components leads to the wave equation

(

− d2

dζ2
− 1− 4ν2

4ζ2

)

ψ+(ζ) =M2ψ+(ζ), (89)

and
(

− d2

dζ2
− 1− 4(ν + 1)2

4ζ2

)

ψ−(ζ) =M2ψ−(ζ), (90)

with solutions

ψ+ ∼
√

ζJν(ζM), ψ− ∼
√

ζJν+1(ζM). (91)

The solution of the spin-3
2
Rarita-Schwinger equation for the field ΨM in AdS space

is more involved, but considerable simplification occurs in the Ψz = 0 gauge for physical

polarization along Minkowski coordinates Ψµ, where it becomes similar to the spin-1
2
solu-

tion [122, 123].

5.1 A hard-wall model for baryons

The hermiticity of the LF Dirac operatorDLF in the eigenvalue equationDLF |ψ〉 =M|ψ〉
implies that the surface term ψ∗

+(ζ)ψ−(ζ)−ψ∗
−(ζ)ψ+(ζ) should vanish at the boundary. Thus

in a truncated space holographic model, the light front modes ψ+ or ψ− should vanish at the

boundary ζ = 0 and ζ = ζ0. This condition fixes the boundary conditions and determine

the baryon spectrum in the truncated hard-wall model. A similar surface term arises when

one computes the equation of motion from the action (85). In fact, integrating by parts (85)

and using the equation of motion we find

SF = − lim
ǫ→0

∫

ddx

2zd

(

Ψ̄+Ψ− − Ψ̄−Ψ+

)
∣

∣

∣

z0

ǫ
, (92)

where Ψ± = 1
2
(1± γ5) Ψ, and R has units R = 1. The baryon mass spectrum thus fol-

lows from the LF “bag” boundary conditions ψ± (ζ0) = 0 or the AdS boundary conditions

Ψ± (z0) = 0 at the IR value, z0 = 1/ΛQCD, where the LF invariant impact variable ζ (19) is

identified with the AdS holographic coordinate z, z → ζ . We find

M+ = βν,k ΛQCD, M− = βν+1,k ΛQCD, (93)

with a scale-independent mass ratio determined by the zeros of Bessel functions βν,k.
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In the usual AdS/CFT correspondence the baryon is an SU(NC) singlet bound state

of NC quarks in the large NC limit. Since there are no quarks in this theory, quarks are

introduced as external sources at the AdS asymptotic boundary [124, 125]. The baryon is

constructed as an NC baryon vertex located in the interior of AdS. In this top-down string

approach baryons are usually described as solitons or Skyrmion-like objects [126, 127]. In

contrast, the bottom-up light-front holographic approach described here is based on the

precise mapping of AdS expressions to light-front QCD. Consequently, we construct baryons

corresponding to NC = 3 not NC → ∞. The corresponding interpolating operator for an

NC = 3 physical baryon O3+L = ψD{ℓ1 . . .DℓqψDℓq+1
. . . Dℓm}ψ, L =

∑m
i=1 ℓi, is a twist-3,

dimension 9/2+L with scaling behavior given by its twist-dimension 3+L. We thus require

ν = L+1 to match the short distance scaling behavior. One can interpret L as the maximal

value of |Lz| in a given LF Fock state.

In the case of massless quarks, the nucleon eigenstate (u± = 1
2
(1± γ5) u)

ψ(ζ) = ψ+(ζ)u+ + ψ−(ζ)u−

= C
√

ζ (Jν(ζM)u+ + Jν+1(ζM)u−) , (94)

has components ψ+ and ψ− with different orbital angular momentum, Lz = 0 and Lz = +1,

combined with spin components Sz = +1/2 and Sz = −1/2 respectively, but with equal

probability 17
∫

dζ |ψ+(ζ)|2 =
∫

dζ |ψ−(ζ)|2, (95)

a manifestation of the chiral invariance of the theory for massless quarks. Thus in light-

front holography, the spin of the proton is carried by the quark orbital angular momentum:

Jz = 〈Lz〉 = ±1/2 since 〈∑Sz
q 〉 = 0 [128], and not by its gluons.

An important feature of bound-state relativistic theories is that hadron eigenstates have

in general Fock components with different L components. In the holographic example dis-

cussed above, the proton has S and P components with equal probability. In the case of

QED, the ground state 1S state of the Dirac-Coulomb equation has both L = 0 and L = 1

components. By convention, in both light-front QCD and QED, one labels the eigenstate

with its minimum value of L. For example, the symbol L in the light-front AdS/QCD spec-

tral prediction for mesons (46) refers to the minimum L (which also corresponds to the

leading twist) and S is the total internal spin of the hadron.

17For the truncated-space model, (95) follows from the identity
∫ 1

0
xdx

[

J2
α(xβ) − J2

α+1(xβ)
]

=

Jα(β)Jα+1(β)/β, independently of the component wavefunction chosen to fix the boundary conditions at

ζ = ζ0.
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Table 2: Classification of confirmed baryons listed by the PDG [49]. The labels L, S and n refer

to the internal orbital angular momentum, internal spin and radial quantum number respectively.

The even-parity baryons correspond to the 56 multiplet of SU(6) and the odd-parity to the 70.

L S n Baryon State

0 1
2

0 N 1
2

+
(940)

0 1
2

1 N 1
2

+
(1440)

0 1
2

2 N 1
2

+
(1710)

0 3
2

0 ∆3
2

+
(1232)

0 3
2

1 ∆3
2

+
(1600)

1 1
2

0 N 1
2

−
(1535) N 3

2

−
(1520)

1 3
2

0 N 1
2

−
(1650) N 3

2

−
(1700) N 5

2

−
(1675)

1 1
2

0 ∆1
2

−
(1620) ∆3

2

−
(1700)

2 1
2

0 N 3
2

+
(1720) N 5

2

+
(1680)

2 1
2

1 N 5
2

+
(1900)

2 3
2

0 ∆1
2

+
(1910) ∆3

2

+
(1920) ∆5

2

+
(1905) ∆7

2

+
(1950)

3 1
2

0 N 5
2

−
N 7

2

−

3 3
2

0 N 3
2

−
N 5

2

−
N 7

2

−
(2190) N 9

2

−
(2250)

3 1
2

0 ∆5
2

−
∆7

2

−

4 1
2

0 N 7
2

+
N 9

2

+
(2220)

4 3
2

0 ∆5
2

+
∆7

2

+
∆9

2

+
∆11

2

+
(2420)

5 1
2

0 N 9
2

−
N 11

2

−

5 3
2

0 N 7
2

−
N 9

2

−
N 11

2

−
(2600) N 13

2

−
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We list in Table 2 the confirmed (3-star and 4-star) baryon states from the updated

Particle Data Group [49]. 18 To determine the internal spin, internal orbital angular mo-

mentum and radial quantum number assignment of the N and ∆ excitation spectrum from

the total angular momentum-parity PDG assignment, it is convenient to use the conven-

tional SU(6) ⊃ SU(3)flavor×SU(2)spin multiplet structure, but other model choices are also

possible [130]. 19
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Figure 7: Light baryon orbital spectrum (n = 0) for ΛQCD = 0.25 GeV. Predictions for the nucleons

(left) and for the ∆ trajectories (right).

We show in Fig. 7 the model predictions for the orbital excitation spectrum of baryons

which follows from the boundary conditions ψ± (ζ = 1/ΛQCD) = 0 in a truncated-space model

in the infrared region [51]. 20 The figure shows the predicted orbital spectrum of the nucleon

and ∆ orbital resonances for n = 0. The only parameter is the value of ΛQCD which we take as

0.25 GeV. Orbital excitations are approximately aligned along two trajectories corresponding

to even and odd parity states, with exception of the ∆1
2

−
(1620) and ∆3

2

−
(1700) states which

are in the same trajectory. The spectrum shows a clustering of states with the same orbital

L, consistent with a strongly suppressed spin-orbit force. This remarkable prediction for

18A recent exploration of the properties of baryon resonances derived from a multichannel partial wave

analysis [129] report additional resonances not included in the Review of Particle Properties [49].
19In particular the ∆5

2

−

(1930) state (not shown in Table 2) has been given the non-SU(6) assignment

S = 3/2, L = 1, n = 1 in Ref. [130]. This assignment will be further discussed in the section below.
20The results shown here in Fig. 7 give better results for the lower mass baryons as compared with Ref.

[51] where naive conformal dimensions were used instead.
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the baryons is not a peculiarity of the hard-wall model, but is an important property of

light-front holographic models.

In the quark-diquark model of Jaffe and Wilczek [131], nucleon states with S = 1/2 in

Fig. 7 (a) correspond to “good” diquarks, S = 3/2 nucleons and all the ∆ states in Fig.

7 (b) to “bad” diquarks, with exception of the ∆(1930) which does not follow the simple

3q quark-diquark pattern. As for the case for mesons discussed in Sec. 3.1, the hard-wall

model predicts M ∼ 2n + L, in contrast to the usual Regge behavior M2 ∼ n + L found

in experiment [50]. The radial modes are also not well described in the truncated-space

model. For example, the first AdS radial state has a mass 1.85 GeV, which is thus difficult

to identify with the Roper N(1440) resonance. This problem is not present in the soft wall

model for baryons discussed below.

5.2 A soft-wall model for baryons

For fermion fields in AdS one cannot break conformality with the introduction of a dilaton

in the action since it can be rotated away leaving the action conformally invariant. 21 As a

result, one must introduce an effective confining potential V (z) in the action of a Dirac field

propagating in AdSd+1 space to break the conformal invariance of the theory and generate

a baryon spectrum

SF =

∫

ddx dz
√
g

(

i

2
Ψ̄eMA ΓADMΨ− i

2
(DMΨ̄)eMA ΓAΨ− µΨ̄Ψ− V (z)Ψ̄Ψ

)

. (96)

The variation of the action (96) leads to the Dirac equation in AdS
[

i

(

zηMNΓM∂N +
d

2
Γz

)

− µR−RV (z)

]

Ψ = 0. (97)

As in the case for the hard wall model described in the previous section, the corresponding

light-front wave equation in physical space-time follows from identifying the transverse LF

coordinate ζ with the AdS holographic variable z, z → ζ , and the substitution (88) in (97).

For d = 4 we find the matrix eigenvalue equation in the 2×2 spinor component representation

d

dζ
ψ+ +

ν + 1
2

ζ
ψ+ + U(ζ)ψ+ = Mψ−,

− d

dζ
ψ− +

ν + 1
2

ζ
ψ− + U(ζ)ψ− = Mψ+, (98)

where U(ζ) = R
ζ
V (ζ) is the effective confining potential in the light-front Dirac equation.

21This remarkable property was first pointed out in Ref. [132], and later derived independently in Ref. [133].
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Instead of choosing a dilaton profile to reproduce linear Regge behavior, as described in

Sec. 3.2 for the case of mesons, we choose the confining interaction V in (96) to reproduce

linear Regge trajectories for the baryon mass spectrum M2. This “soft-wall” model for

baryons in a higher dimensional AdS space, has also a LF analogue; it corresponds to a

Dirac equation in physical space-time in presence of an effective linear confining potential

U defined at equal LF time. For the potential U = κ2ζ equation (98) is equivalent to the

system of second order equations

(

− d2

dζ2
− 1− 4ν2

4ζ2
+ κ4ζ2 + 2(ν + 1)κ2

)

ψ+(ζ) =M2ψ+(ζ), (99)

and
(

− d2

dζ2
− 1− 4(ν + 1)2

4ζ2
+ κ4ζ2 + 2νκ2

)

ψ−(ζ) =M2ψ−(ζ). (100)

As a consequence, when one squares the Dirac Equation with U(ζ), one generates a Klein-

Gordon equation with the potential κ4z2. This is consistent with the same confining potential

which appears in the meson equations. The LF equation HLFψ± =M2ψ± has thus the two-

component solution

ψ+(ζ) ∼ ζ
1
2
+νe−κ2ζ2/2Lν

n(κ
2ζ2), ψ−(ζ) ∼ ζ

3
2
+νe−κ2ζ2/2Lν+1

n (κ2ζ2), (101)

with equal probability for the properly normalized components. The eigenvalues are

M2 = 4κ2(n+ ν + 1), (102)

identical for both plus and minus eigenfunctions. Note that, as expected, the potential κ4ζ2

in the second order equation matches the soft-wall potential for mesons discussed in Sec.

3.2. However, in contrast to the case for mesons, the dilaton modification of the action gives

little guidance for finding an effective potential for baryons, since the dilaton can be scaled

away by a field redefinition. Consequently the overall energy scale is left unspecified for

the baryons [121]. The remarkable regularities observed in the nucleon spectrum and the

analytical properties of the AdS/LF equations allows us, nonetheless, to built precise rules

to describe the observed baryon spectrum and make predictions for, as yet undiscovered,

new baryon excited states.

Before computing the baryon spectrum we must fix the overall mass scale and the param-

eter ν. Since our starting point for finding the bound state equation of motion for baryons is

the light-front method, we shall require the mass scale to be identical for mesons and baryons
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Figure 8: Orbital and radial baryon excitations for the positive-parity Regge trajectories for the

N (left) and ∆ (right) families for κ = 0.49 − 0.51 GeV.

while maintaining chiral symmetry for the pion [121] in the LF Hamiltonian equations. In

practice, these constraints require a subtraction of −4κ2 from (102). 22

As is the case for the truncated-space model, the value of ν is determined by the short

distance scaling behavior, ν = L+1. Higher-spin fermionic modes Ψµ1···µJ−1/2
, J > 1/2, with

all of its polarization indices along the 3 + 1 coordinates follow by shifting dimensions for

the fields as shown for the case of mesons in Ref. [54] 23. Therefore, as in the meson sector,

the increase in the mass M2 for baryonic states for increased radial and orbital quantum

numbers is ∆n = 4κ2, ∆L = 4κ2 and ∆S = 2κ2, relative to the lowest ground state, the

proton; i.e., the slope of the spectroscopic trajectories in n and L are identical. Thus for the

positive-parity nucleon sector

M2 (+)
n,L,S = 4κ2

(

n+ L+
S

2
+

3

4

)

, (103)

where the internal spin S = 1
2
or 3

2
.

The resulting predictions for the spectroscopy of positive-parity light baryons are shown

in Fig. 8. Only confirmed PDG [49] states are shown. The Roper state N(1440) and

22This subtraction to the mass scale may be understood as the displacement required to describe nucleons

with NC = 3 as a composite system with leading twist 3+L; i.e., a quark-diquark bound state with a twist-2

composite diquark rather than an elementary twist-1 diquark.
23The detailed study of higher fermionic spin wave equations in modified AdS spaces is based on our

collaboration with Hans Guenter Dosch [32]. See also the discussion in Ref. [33].
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the N(1710) are well accounted for in this model as the first and second radial states of

the proton. Likewise, the ∆(1660) corresponds to the first radial state of the ∆(1232) as

shown in in Fig. 8. The model is successful in explaining the parity degeneracy observed in

the light baryon spectrum, such as the L= 2, N(1680)−N(1720) degenerate pair and the

L = 2, ∆(1905), ∆(1910), ∆(1920), ∆(1950) states which are degenerate within error bars.

The parity degeneracy of baryons shown in Fig. 8 is also a property of the hard-wall model

described in the previous section, but in that case the radial states are not well described [51].

In order to have a comprehensive description of the baryon spectrum, we need to extend

(103) to the negative-parity baryon sector. In the case of the hard-wall model, this was

realized by choosing the boundary conditions for the plus or minus components of the AdS

wave function Ψ±. In practice, this amounts to allowing the negative-parity spin baryons to

have a larger spatial extent, a point also raised in [134]. In the soft-wall model there are no

boundary conditions to set in the infrared since the wave function vanishes exponentially for

large values of z. We note, however, that setting boundary conditions on the wave functions,

as done in Sec. 5.1, is equivalent to choosing the branch ν = µR − 1
2
for the negative-

parity spin-1
2
baryons and ν = µR + 1

2
for the positive parity spin-3

2
baryons. This gives

a factor 4κ2 between the lower-lying and the higher-lying nucleon trajectories as illustrated

in Fig. 9, where we compare the lower nucleon trajectory corresponding to the J = L + S

spin-1
2
positive-parity nucleon family with the upper nucleon trajectory corresponding to the

J = L+ S − 1 spin-3
2
negative-parity nucleons. As is clearly shown in the figure, the gap is

precisely the factor 4κ2.

If we apply the same spin-change rule previously discussed for the positive-parity nucle-

ons, we would expect that the trajectory for the family of spin-1
2
negative-parity nucleons

is lower by the factor 2κ2 compared to the spin-3
2
minus-parity nucleons according to the

spin-change rule previously discussed. Thus the formula for the negative-parity baryons

M2 (−)
n,L,S = 4κ2

(

n+ L+
S

2
+

5

4

)

, (104)

where S = 1
2
or 3

2
. It is important to recall that our formulas for the baryon spectrum are

the result of an analytic inference, rather than formally derived.

The full baryon orbital excitation spectrum listed in Table 2 for n = 0 is shown in Fig.

10. We note thatM2 (+)

n,L,S= 3
2

=M2 (−)

n,L,S= 1
2

and consequently the positive and negative-parity ∆

states lie in the same trajectory, consistent with the experimental results. Only the confirmed

PDG [49] states listed in Table 2 are shown. Our results for the ∆ states agree with those

of Ref. [59]. “Chiral partners” as the N(1535) and the N(940) with different orbital angular
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Figure 9: Spectrum gap between the negative-parity spin-32 nucleons and the spin-12 positive-parity

nucleon families for κ = 0.49 GeV.

momentum are non-degenerate from the onset. Using (103) and (104) we find the relation

MN(1535)

MN(940)
=

√

5

2
, (105)

which is consistent with experiment to a good accuracy. One can in fact also build the

entire negative-parity excitation spectrum starting from the proton partner, the J = 1/2

negative-parity nucleon state N(1535), using the same rules e.g., an increase in mass M2

of 4κ2 for a unit change in the radial quantum number, 4κ2 for a change in one unit in

the orbital quantum number and 2κ2 for a change of one unit of spin relative to the lowest

negative-parity state, the N(1535).

With the exception of the ∆(1930) state (which is not included in Table 2), all the

confirmed baryon excitations are well described by formulas (103) and and (104). If we follow

the non-SU(6) quantum number assignment for the ∆(1930) given in Ref. [130], namely

S = 3/2, L = 1, n = 1 we find from (104) the valueM∆(1930) = 4κ ≃ 2 GeV, consistent with

the experimental result 1.96 GeV [49]. Expected results from new experiments are important

to find out if new baryonic excitations follow the simple pattern described by Eqs. (103) and

(104).

An important feature of light-front holography is that it predicts a similar multiplicity

of states for mesons and baryons, consistent with what is observed experimentally [50]. This

remarkable property could have a simple explanation in the cluster decomposition of the
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Figure 10: Baryon orbital trajectories for the N (left) and ∆ families (right) for n = 0 and

κ = 0.49 − 0.51 GeV. The lower and upper nucleon trajectories (left) correspond respectively to

the the spin-12 , positive-parity, and to the spin-32 , negative-parity, families. The middle dotted

trajectory (left) corresponds to spin-12 negative-parity nucleons. Plus and minus-parity states for

the ∆ states (right) are in the same Regge trajectory.

holographic variable, which labels a system of partons as an active quark plus a system of

n− 1 spectators. From this perspective, a baryon with n = 3 looks in light-front holography

as a quark–scalar-diquark system. It is also interesting to notice that in the hard wall model

the proton mass is entirely due to the kinetic energy of the light quarks, whereas in the

soft-wall model described here, half of the invariant mass squared M2 of the proton is due

to the kinetic energy of the partons and half is due to the confinement potential.

6 Nucleon form factors

Proton and neutron electromagnetic form factors are among the most basic observables of

the nucleon, and thus central for our understanding the nucleon’s structure and dynamics.

In general two form factors are required to describe the elastic scattering of electrons by

spin-1
2
nucleons, the Dirac and Pauli form factors, F1 and F2

〈P ′|Jµ(0)|P 〉 = u(P ′)

[

γµF1(q
2) +

iσµνqν

2M F2(q
2)

]

u(P ), (106)

where q = P ′ − P . In the light-front formalism one can identify the Dirac and Pauli form

factors from the LF spin-conserving and spin-flip current matrix elements of the J+ cur-
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rent [135].

On the higher dimensional gravity side the spin-non-flip amplitude for the EM transition

corresponds to the non-local coupling of an external EM field AM(x, z) propagating in AdS

with a fermionic mode ΨP (x, z), given by the left-hand side of the equation below
∫

d4x dz
√
g Ψ̄P ′(x, z) eAM ΓAA

M (x, z)ΨP (x, z)

∼ (2π)4δ4 (P ′− P − q) ǫµu(P ′)γµF1(q
2)u(P ), (107)

where eAM =
(

R
z

)

δAM is the vielbein with curved space indices M,N = 1, · · ·5 and tangent

indices A,B = 1, · · · , 5. The expression on the right-hand side represents the Dirac EM

form factor in physical space-time. It is the EM matrix element (106) of the local quark

current Jµ = eq q̄γ
µq with local coupling to the constituents. In this case one can also show

that a precise mapping of the J+ elements can be carried out at fixed LF time, providing

an exact correspondence between the holographic variable z and the LF impact variable ζ

in ordinary space-time with the result [31]

G±(Q
2) = g±R

4

∫

dz

z4
V (Q2, z) Ψ2

±(z), (108)

for the components Ψ+ and Ψ− with angular momentum Lz = 0 and Lz = +1 respectively.

The effective charges g+ and g− are determined from the spin-flavor structure of the theory.

A precise mapping for the Pauli form factor using light-front holographic methods has not

been carried out. To study the spin-flip nucleon form factor F2 using holographic methods,

Abidin and Carlson [136] propose to introduce a non-minimal electromagnetic coupling with

the ‘anomalous’ gauge invariant term
∫

d4x dz
√
g Ψ̄ eAM eBN [ΓA,ΓB]F

MNΨ, (109)

in the five-dimensional action, since the structure of (107) can only account for F1. Although

this is a practical avenue, the overall strength of the new term has to be fixed by the static

quantities and thus some predictivity is lost.

Light-front holographic QCD methods have also been used to obtain generalized parton

distributions (GPDs) of the nucleon in the zero skewness limit in Refs. [137] and [138] for

the soft and hard-wall models respectively. GPDs are nonperturbative, and thus holographic

methods are well suited to explore their analytical structure. 24 In the sections below we

discuss elastic and transition nucleon form factors using light-front holographic ideas. 25 26

24See also the discussion in Ref. [139].
25A study of the EM nucleon to ∆ transition form factors has been carried out in the framework of the

Sakai and Sugimoto model in Ref. [140].
26LF holographic methods can also be used to study the flavor separation of the elastic nucleon form
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6.1 Computing nucleon elastic form factors in light-front holo-

graphic QCD

In order to compute the individual features of the proton and neutron form factors one

needs to incorporate the spin-flavor structure of the nucleons, properties which are absent

in models of the gauge/gravity correspondence. The spin-isospin symmetry can be readily

included in AdS/QCD by weighting the different Fock-state components by the charges and

spin-projections of the quark constituents; e.g., as given by the SU(6) spin-flavor symmetry.

We label by Nq↑ and Nq↓ the probability to find the constituent q in a nucleon with spin up

or down respectively. For the SU(6) wave function we have

Nu↑ =
5

3
, Nu↓ =

1

3
, Nd↑ =

1

3
, Nd↓ =

2

3
, (110)

for the proton and

Nu↑ =
1

3
, Nu↓ =

2

3
, Nd↑ =

5

3
, Nd↓ =

1

3
, (111)

for the neutron. The effective charges g+ and g− in (108) are computed by the sum of the

charges of the struck quark composed by the corresponding probability for the Lz = 0 and

Lz = +1 components Ψ+ and Ψ− respectively. We find g+p = 1, g−p = 0, gn+ = −1
3
and

gn− = 1
3
. The nucleon Dirac form factors in the SU(6) limit are thus given by

F p
1 (Q

2) = R4

∫

dz

z4
V (Q2, z) Ψ2

+(z), (112)

F n
1 (Q

2) = −1
3
R4

∫

dz

z4
V (Q2, z)

[

Ψ2
+(z)−Ψ2

−(z)
]

, (113)

where F p
1 (0) = 1 and F n

1 (0) = 0.

In the soft-wall model the plus and minus components of the twist-3 nucleon wave func-

tion are

Ψ+(z) =

√
2κ2

R2
z7/2e−κ2z2/2, Ψ−(z) =

κ3

R2
z9/2e−κ2z2/2, (114)

and V (Q2, z) is given by (60). The results for F p,n
1 follow from the analytic form (63) for

any twist τ . We find

F p
1 (Q

2) = F+(Q
2), (115)

and

F n
1 (Q

2) = −1
3

(

F+(Q
2)− F−(Q

2)
)

, (116)

factors which have been determined recently up to Q2 = 3.4 GeV2 [141]. This will be described elsewhere.

See also Ref. [142].
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Figure 11: Predictions for Q4F p
1 (Q

2) (left) and Q4Fn
1 (Q

2) (right) in the soft wall model. Data

compilation from Diehl [143].

where we have, for convenience, defined the twist-2 and twist-3 form factors

F+(Q
2) =

1
(

1 + Q2

M2
ρ

)(

1 + Q2

M2
ρ′

) , (117)

and

F−(Q
2) =

1
(

1 + Q2

M2
ρ

)(

1 + Q2

M2
ρ′

)(

1 + Q2

M2

ρ
′′

) . (118)

As discussed in Sec. 4.2, the multiple pole structure in (117) and (118) is derived from the

dressed EM current propagating in AdS space.

The results for Q4F p
1 (Q

2) and Q4F n
1 (Q

2) are shown in Fig. 11. To compare with physical

data we have shifted the poles in expression (63) to their physical values located at M2 =

4κ2(n + 1/2) following the discussion in Sec. 4.4. The value κ = 0.545 GeV is determined

from the ρ mass.

The expression for the elastic nucleon form factor F p,n
2 follows from (106) and (109).

F p,n
2 (Q2) ∼

∫

dz

z3
Ψ+(z)V (Q2, z)Ψ−(z). (119)

Using the twist-3 and twist-4 AdS soft-wall wavefunctions Ψ+ and Ψ− (114) we find

F p,n
2 (Q2) = χp,nF−(Q

2), (120)
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Figure 12: Predictions for F p
2 (Q

2) (left) and Fn
2 (Q

2) (right) in the soft wall model. Data compi-

lation from Diehl [143].

where the amplitude (119) has been normalized to the static quantities χp and χn and F−(Q
2)

is given by (118). The experimental values χp = 1.793 and χn = −1.913 are consistent with

the SU(6) prediction [144] µP/µN = −3/2. In fact (µP/µN)exp = −1.46 where µP = 1 + χp

and µN = χn. The results for F p
2 (Q

2) and F n
2 (Q

2) for κ = 0.545 GeV are shown in Fig. 12.

We compute the charge and magnetic root-mean-square (rms) radius from the usual

electric and magnetic nucleon form factors

GE(q
2) = F1(q

2) +
q2

4M2
F2(q

2) (121)

and

GM(q2) = F1(q
2) + F2(q

2). (122)

Using the definition

〈r2〉 = − 6

F (0)

dF (Q2)

dQ2

∣

∣

∣

Q2=0
, (123)

we find the values
√

〈rE〉p = 0.802 fm,
√

〈r2M〉p = 0.758 fm, 〈r2E〉n = −0.10 fm2 and
√

〈r2M〉n = 0.768 fm, compared with the experimental values
√

〈rE〉p = (0.877± 0.007) fm,
√

〈r2M〉p = (0.777 ± 0.016) fm, 〈r2E〉n = (−0.1161 ± 0.0022) fm2 and
√

〈r2M〉n = (0.862 ±
0.009) fm from electron-proton scattering experiments [49]. 27 The muonic hydrogen mea-

surement gives
√

〈rE〉p = 0.84184(67) fm from Lamb-shift measurements [145]. 28

27The neutron charge radius is defined by 〈r2E〉n = −6 dGE(Q2)
dQ2

∣

∣

∣

Q2=0
.

28Other soft and hard-wall model predictions of the nucleon rms radius are given in Refs. [136, 137, 138].
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Chiral effective theory predicts that the slopes are singular for zero pion mass. For

example, the slope of the Pauli form factor of the proton at q2 = 0 computed by Beg

and Zepeda diverges as 1/mπ [146]. This comes from the simple triangle diagram γ∗ →
π+π− → pp̄. One can also argue from dispersion theory that the singular behavior of the

form factors as a function of the pion mass comes from the two-pion cut. Lattice theory

computations of nucleon form factors require in fact the strong dependence at small pion mass

to extrapolate the predictions to the physical pion mass [147]. The two-pion calculation [146]

is a Born computation which probably does not exhibit vector dominance. To make a reliable

computation in the hadronic basis of intermediate states one evidently has to include an

infinite number of states. On the other hand, chiral divergences do not appear in AdS/QCD

when we use the dressed current since, as shown is Sec. 4.2, the holographic analysis with

a dressed EM current in AdS generates instead a nonperturbative multi-vector meson pole

structure.29

6.2 Computing nucleon transition form factors in light-front holo-

graphic QCD

As an illustrative example we consider in this section the form factor for the γ∗p →
N(1440)P11 transition measured recently at JLab. We shall weight the different Fock-state

components by the charges and spin-projections of the quark constituents using the SU(6)

spin-flavor symmetry as in the previous section. The expression for the spin non-flip proton

form factors for the transition n, L→ n′L is [31]

F p
1 n,L→n′,L(Q

2) = R4

∫

dz

z4
Ψn′, L

+ (z)V (Q2, z)Ψn,L
+ (z), (124)

where we have factored out the plane wave dependence of the AdS fields

Ψ+(z) =
κ2+L

R2

√

2n!

(n + L+ 1)!
z7/2+LLL+1

n

(

κ2z2
)

e−κ2z2/2. (125)

The orthonormality of the Laguerre polynomials in (125) implies that the nucleon form

factor at Q2 = 0 is one if n = n′ and zero otherwise. Using the integral representation of

the bulk-to-boundary propagator V (Q2, z) given by (62) we find the twist-3 spin non-flip

29In the limit of a free propagating current in AdS, we obtain logarithmic divergent results: 〈r2p〉F1
=

3 ln
(

4κ2

Q2

) ∣

∣

∣

Q2
→0

and 〈r2p〉F2
= 9

2 ln
(

4κ2

Q2

) ∣

∣

∣

Q2
→0

.
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Figure 13: Proton transition form factor F p
1 N→N∗(Q2) to the first radial excited state. Data from

JLAB [148].

transition form factor

F p
1 N→N∗(Q

2) =

√
2

3

Q2

M2
ρ

(

1 + Q2

M2
ρ

)(

1 + Q2

M2
ρ′

)(

1 + Q2

M2

ρ
′′

) . (126)

The result (126), compared with available data in Fig. 13, correspond to the valence

approximation. The transition form factor (126) is expressed in terms of the mass of the

ρ vector meson and its first two radial excited states, with no additional parameters. The

results in Fig. 13 are in good agreement with experimental data. The transition to the

N(1440)P11 state corresponds to the first radial excitation of the three-quark ground state

of the nucleon. In fact, the Roper resonance N(1440)P11 and the N(1710)P11 are well

accounted in the light-front holographic framework as the first and second radial states of

the nucleon family as shown in Sec. 5.2 (See Fig. 8). It is certainly worth to extend the simple

computations described here and perform a systematic study of the different transition form

factors measured at JLab. This study will help to discriminate among models and compare

with the new results expected from the JLab 12 GeV Upgrade Project, in particular at

photon virtualities Q2 > 5 GeV2, which correspond to the experimental coverage of the

CLAS12 detector at JLab [149].
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7 Higher Fock components in light-front holographic

QCD

The light-front Hamiltonian eigenvalue equation (7) is a matrix in Fock space which rep-

resents an infinite number of coupled integral equations for the Fock components ψn = 〈n|ψ〉.
The resulting potential in quantum field theory can be considered as an instantaneous four-

point effective interaction in LF time, similar to the instantaneous gluon exchange in the

light-cone gauge A+ = 0, which leads to qq → qq, qq̄ → qq̄, q → qqq̄ and q̄ → q̄qq̄ as

in QCD(1+1). Higher Fock states can have any number of extra qq̄ pairs, but surpris-

ingly no dynamical gluons. Thus in holographic QCD, gluons are absent in the confinement

potential.30 This unusual property of AdS/QCD may explain the dominance of quark inter-

change [152] over quark annihilation or gluon exchange contributions in large angle elastic

scattering [153]. 31

In order to illustrate the relevance of higher Fock states and the absence of dynamical

gluons at the hadronic scale, we will discuss a simple semi-phenomenological model of the

elastic form factor of the pion where we include the first two components in a Fock expansion

of the pion wave function |π〉 = ψqq̄/π|qq̄〉τ=2 + ψqq̄qq̄|qq̄qq̄〉τ=4 + · · · , where the JPC = 0−+

twist-two and twist-4 states |qq̄〉 and |qq̄qq̄〉 are created by the interpolating operators q̄γ+γ5q

and q̄γ+γ5qq̄q respectively.

Since the charge form factor is a diagonal operator, the final expression for the form factor

corresponding to the truncation up to twist four is the sum of two terms, a monopole and

a three-pole term. In the strongly coupled semiclassical gauge/gravity limit hadrons have

zero widths and are stable. One can nonetheless modify the formula (63) by introducing

a finite width: q2 → q2 +
√
2iMΓ. We choose the values Γρ = 140 MeV, Γρ′ = 360 MeV

and Γρ′′ = 120 MeV. The results for the pion form factor with twist two and four Fock

states are shown in Fig. 14. The results correspond to Pqq̄qq̄ = 13 %, the admixture of the

|qq̄qq̄〉 state. The value of Pqq̄qq̄ (and the widths) are input in the model. The value of κ

is determined from the ρ mass and the masses of the radial excitations follow from setting

the poles at their physical locations, M2 → 4κ2(n + 1/2), as discussed in Sec. 4.4. The

time-like structure of the pion form factor displays a rich pole structure with constructive

30This result is consistent with the flux-tube interpretation of QCD [150] where soft gluons interact so

strongly that they are sublimated into a color confinement potential for quarks. The absence of constituent

glue in hadronic physics has been invoked also in Ref. [151], where the role of the confining potential is

attributed to an instanton induced interaction.
31In Ref. [154] we discuss a number of experimental results in hadron physics which support this picture.
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Figure 14: Structure of the space-like (left) and time-like (right) pion form factor in light-front

holography for a truncation of the pion wave function up to twist four. Triangles are the data

compilation from Baldini et al. [77], squares are JLAB data [78].

and destructive interfering phases; this is incompatible with the admixture of the twist-three

state |qq̄g〉 containing a dynamical gluon since the interference in this case is opposite in

sign.

8 Conclusions

As we have shown, the exact light-front Hamiltonian HLF |ψ〉 =M2|ψ〉 for QCD can be

systematically reduced to a relativistic frame-independent semiclassical wave equation [12]

(

− d2

dζ2
− 1− 4L2

4ζ2
+ U(ζ)

)

φ(ζ) =M2φ(ζ), (127)

for the valence Fock state of mesons. The unmodified AdS equations correspond to the kinetic

energy terms of the massless constituent quarks with relative orbital angular momentum L =

Lz. The effective potential U(ζ) corresponds to the color-confining potential and follows from

the truncation of AdS space, in a modified effective AdS action, and light-front holography.

The variable ζ is the invariant separation of the constituents. This frame-independent light-

front wave equation is comparable in simplicity to Schrödinger theory in atomic physics

which is formulated at equal instant time. We have also derived an analogous light-front
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Dirac equation for holographic QCD which describes light-quark baryons with finite color

NC = 3.

Remarkably, these light-front equations are equivalent to the equations of motion in

a higher dimensional warped space asymptotic to AdS space. The mapping of the gravity

theory to the boundary quantum field theory, quantized at fixed light-front time, thus gives a

precise relation between holographic wave functions and the light-front wave functions which

describe the internal structure of the hadrons and their electromagnetic couplings. This

mapping provides the basis for a profound connection between physical QCD quantized

in the light-front and the physics of hadronic modes in a higher dimensional AdS space.

However, the derivation of the effective color-confining potential U(ζ) directly from QCD,

remains an open question.

Despite some limitations of AdS/QCD [155], the light-front holographic approach to

the gauge/gravity duality, Light-Front Holography, has already provided significant physical

insight into the strongly-coupled nature and internal structure of hadrons; in fact, it is one of

the few tools available. As we have seen, the resulting model provides a simple and successful

framework for describing nonperturbative hadron dynamics: the systematics of the excitation

spectrum of hadrons: the mass eigenspectrum, observed multiplicities and degeneracies. It

also provides powerful new analytical tools for computing hadronic transition amplitudes,

incorporating the scaling behavior and the transition from the hard-scattering perturbative

domain, where quark and gluons are the relevant degrees of freedom, to the long range

confining hadronic region.

The dressed current in AdS includes the nonperturbative pole structure. Consequenly,

the approach incorporates both the long-range confining hadronic domain and the constituent

conformal short-distance quark particle limit in a single framework. The results display a

simple analytical structure which allows us to explore dynamical properties in Minkowski

space-time; in many cases these studies are not amenable to Euclidean lattice gauge theory

computations. In particular, the excitation dynamics of nucleon resonances encoded in the

nucleon transition form factors can provide fundamental insight into the strong-coupling

dynamics of QCD. New theoretical tools are thus of primary interest for the interpretation

of the results expected at the new mass scale and kinematic regions accessible to the JLab

12 GeV Upgrade Project.

The semiclassical approximation to light-front QCD described in this article is expected

to break down at short distances where gluons become dynamical degrees of freedom and

hard gluon exchange and quantum corrections become important. One can systematically

improve the semiclassical approximation, for example, by introducing nonzero quark masses
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and short-range Coulomb-like gluonic corrections, thus extending the predictions of the

model to the dynamics and spectra of heavy and heavy-light quark systems. The model

can also be improved by applying Lippmann-Schwinger methods to systematically improve

the light-front Hamiltonian of the semiclassical holographic approximation. One can also

use the holographic LFWFs as basis functions for diagonalizing the full light-front QCD

Hamiltonian[156] as well as the input boundary functions to study the evolution of structure

functions and distribution amplitudes at a low energy scale.
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Appendices

A AdS boundary conditions and interpolating opera-

tors

The formal statement of the duality between a gravity theory on (d + 1)-dimensional

Anti-de Sitter AdSd+1 space and the strong coupling limit of a conformal field theory (CFT)

on the d-dimensional asymptotic boundary of AdSd+1 at z = 0 is expressed in terms of the

d+ 1 partition function for a field Φ(x, z) propagating in the bulk

Zgrav[Φ] = eiSeff [Φ] =

∫

D[Φ]eiS[Φ], (128)

where Seff is the effective action of the AdSd+1 theory, and the d-dimensional generating

functional of correlation functions of the conformal field theory in presence of an external

source Φ0(x
µ)

ZCFT [Φ0] = eiWCFT [Φ0] =

〈

exp

(

i

∫

ddxΦ0(x)O(x)
)〉

. (129)

The functionalWCFT is the generator of connected Green’s functions of the boundary theory

and O is a QCD local interpolating operator.

According to the AdS/CFT correspondence, to every operator in the conformal field

theory there corresponds an AdS field. We use the isometries of AdS space to map the

scaling dimensions of the local interpolating operators defined at the AdS boundary into

the modes propagating inside AdS space. The precise relation of the gravity theory on AdS

space to the conformal field theory at its boundary is [7]

Zgrav

[

Φ(x, z)
∣

∣

z=0
= Φ0(x)

]

= ZCFT [Φ0] , (130)

where the partition function (128) on AdSd+1 is integrated over all possible configurations

Φ in the bulk which approach its boundary value Φ0. If we neglect the contributions from

quantum fluctuations to the gravity partition function, then the generatorWCFT of connected

Green’s functions of the four-dimensional gauge theory (129) is precisely equal to the classical

(on-shell) gravity action (128)

WCFT [φ0] = Seff

[

Φ(x, z)
∣

∣

z=0
= Φ0(x)

]

on−shell
, (131)
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evaluated in terms of the classical solution to the bulk equation of motion. This defines the

semiclassical approximation to the conformal field theory. In the bottom-up phenomeno-

logical approach, the effective action in the bulk is usually modified for large values of z to

incorporate confinement and is truncated at the quadratic level.

In the limit z → 0, the independent solutions behave as

Φ(x, z)→ zτ Φ+(x) + zd−τ Φ−(x), (132)

where τ is the scaling dimension. The non-normalizable solution Φ− has the leading boundary

behavior and is the boundary value of the bulk field Φ which couples to a QCD gauge

invariant operator O in the z → 0 asymptotic boundary, thus Φ− = Φ0. The normalizable

solution Φ+ is the response function and corresponds to the physical states [157]. The

interpolating operatorsO of the boundary conformal theory are constructed from local gauge-

invariant products of quark and gluon fields and their covariant derivatives, taken at the same

point in four-dimensional space-time in the x2 → 0 limit. According to (129) the scaling

dimensions of O are matched to the conformal scaling behavior of the AdS fields in the limit

z → 0 and are thus encoded into the propagation of the modes inside AdS space.

Integrating by parts, and using the equation of motion for the field in AdS, the bulk

contribution to the action vanishes, and one is left with a non-vanishing surface term in the

ultraviolet boundary

S = Rd−1 lim
z→0

∫

ddx
1

zd−1
Φ∂zΦ, (133)

which can be identified with the boundary QFT functional WCFT . Substituting the leading

dependence (132) of Φ near z = 0 in the ultraviolet surface action (133) and using the

functional relation
δWCFT

δΦ0
=
δSeff

δΦ0
, (134)

one finds that Φ+(x) is related to the expectation values of O in the presence of the source

Φ0 [157]

〈0|O(x)|0〉Φ0
∼ Φ+(x). (135)

The exact relation depends on the normalization of the fields chosen [158]. The field Φ+

thus acts as a classical field, and it is the boundary limit of the normalizable string solution

which propagates in the bulk.
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