
mesh2gdml: from CAD to Geant4
Norman A. Graf

Abstract—As particle detectors and physics analyses become
more complex, the need for more detailed simulations of the
detector response becomes increasingly important. Traditionally,
two-dimensional engineering drawings have been interpreted by
physicists who then implement approximations to the individual
parts in software simulation packages. This process requires a
high level of experience in both the abstraction of the physical
volumes as well as the implementation in code, and is prone to
error. mesh2gdml is a program which allows three-dimensional
tesselated geometrical volumes to be converted into a format
which the Geant4 simulation toolkit can import directly. This
provides a pathway for simulating the response of detector
elements which have been designed in CAD programs without
having to write any code.

I. INTRODUCTION

THE ability to directly import CAD geometries into the
detector response simulation package Geant4 [1] is a

feature often requested by end users. There are many obstacles
to a fully automatic workflow, including but not limited to:
the difficulty in accessing proprietary formats, the mismatch
between level of detail in producing a part and simulating it,
the often disparate approaches to parent-child relationships and
the difficulty in maintaining or assigning material definitions
to parts. Despite these recognized limitations, the possibility
of having one single geometric description of a detector,
apparatus or experimental setup which can be used for both
construction and simulation is quite appealing.

Geant4 provides a very rich library of basic geometrical
shapes, often referred to as primitives, plus the ability to
define compound geometries via boolean operations such as
union, subtraction, and intersection. It is therefore capable of
supporting extremely complex physical geometries composed
of simple primitives. Most CAD systems also incorporate
primitive volumes, but their definitions differ between pro-
grams and often do not map onto the Geant4 primitives,
making the conversion difficult at best. However, one can also
define a solid in Geant4 as a volume composed of surface
facets. This G4TessellatedSolid can be composed of either
triangular or quadrangular facets and therefore provides a
mechanism for the programmatic importation of shapes and
volumes defined in many CAD systems. In addition to CAD
programs, there are very many 3D modeling programs which
provide the user with convenient graphical user interfaces to
create solid models. Usually aimed at gaming or rendering
engines, these could be useful as a front end for a graphical
geometry editor. Many output formats are supported, including
tesselations. Furthermore, the use of tesselated objects to

Manuscript received November 19, 2012. This work was supported in part
by the U.S. Department of Energy.

N. A. Graf is with the SLAC National Accelerator Laboratory,
Menlo Park, CA 94025 USA (telephone: 650-926-5317, e-mail: Nor-
man.Graf@slac.stanford.edu).

define a geometry provides a useful solution in cases where the
objects are intrinsically irregular, such as biological phantoms.

The main impediment to the importation of CAD files
into Geant4 has been their proprietary formats. Some existing
solutions target recognized interchange formats such as STEP
or IGES, but even these formats provide challenges, such as
complicated file formats, possible loss of hierarchy or material
association and little or no mapping to primitives. In this paper,
we present mesh2gdml, a program which converts tesselated
3D objects in a number of open formats into a file which can
be imported directly into Geant4. The Geometry Description
Markup Language (GDML) [2] is a specialized XML-based
language designed as an application-independent persistence
format for describing the geometries of detectors associated
with physics measurements. It provides support for all of
the Geant4 primitives and can be used by Geant4 for the
description of detector elements. By targeting this intermediate
file format, we make it possible for end users to import
geometries without having to write any additional code. This
is not a ”silver bullet” which provides automatic translation of
CAD models into Geant4 solids, but does provide a pathway
for importing shapes which are otherwise too complicated to
easily model with Geant4 primitives.

II. TESSELATED OBJECTS

Most CAD programs use analytic 3D surfaces and curves
to define the topological boundaries of faces and edges
of volumes. These boundary representations, also known as
BREPs, can be very efficiently implemented, but vendors
develop their own proprietary file formats. In addition to being
undocumented, these formats also differ between programs,
and often change between program versions. There are two
major vendor-neutral data formats which enable exchange
of models between CAD systems, STEP (Standard for the
Exchange of Product model data) and IGES(Initial Graphics
Exchange Specification). However, as their names imply, both
standards encompass digital data well beyond the description
of 3D volumes. Therefore, implementing a program which
will be able to read and interpret generic STEP or IGES
files is very difficult. Additionally, programmatically mapping
arbitrary 3D volumes onto Geant4 primitives would be an
almost impossible task. However, one can always approximate
these volumes with a mesh of small polygons in a process
normally referred to as tesselation. Geant4 provides support
for such meshes in the form of the G4TessellatedSolid object.
It is defined as a list of facets, either triangular or quadrangular,
implemented as G4TriangularFacet and G4QuadrangularFacet,
respectively. Thanks to the proliferation of rapid prototyping
and additive manufacturing processes, the surface tesselation
language STL (also known as STereo Lithography) format is

SLAC-PUB-15298

Presented at IEEE 2012 Nuclear Science Symposium, Medical Imaging Conference
Anaheim, California, October 29 - November 3, 2012

Work supported by US Department of Energy contract DE-AC02-76SF00515.

Fig. 1. Analytic or ”primitive” sphere. A point is inside the sphere if
r < rsphere. Other calculations such as distance to edge are simple as
well.

Fig. 2. A tesselated approximation to a sphere. Each facet must be checked
to see whether a point is inside the volume.

the industrial standard for handling triangulated meshes and
is ubiquitous as an export format for both CAD and other 3D
modelling software. The format consists of a plain list of three
dimensional corner point coordinates (vertex) and flat triangles
(facet) with an associated normal vector, making it an ideal
candidate for importation into Geant4. In what follows we
restrict our comments to the use of tesselated solids described
in STL format, but other mesh formats, such as OBJ, OFF,
PLY, etc. can also be imported. By targeting STL as the lowest-
common-denominator geometry format, we can rely on the
CAD programs to convert their native representations into
meshes. This ensures that the exported geometry is closed,
complete, and has the correct level of detail and precision as
determined by the design engineers.

III. FROM STL TO GDML

There are both plain text and binary formats defined for
STL files. The ASCII format is outline below.

solid name
facet normal n1 n2 n3

outer loop
vertex v1x v1y v1z

vertex v2x v2y v2z

vertex v3x v3y v3z

end loop


repeated nFacet times

end solid name

(1)

Although verbose, the format is quite simple and easily parsed.
The STL facets are translated directly into G4TriangularFacets
which are used to create a G4TessellatedSolid. If the file
describes a single solid, this is all which needs to be done.
There is, however, no way to specify how many topologically
distinct objects are described in any file, and most often many
different volumes are included in a single file. Since there is
no other structure in an STL file, one has to also solve the
problem of creating ”topology from a bucket of facets.” This
has been done in a manner which is efficient enough to handle

the test cases encountered to-date (see following sections for
examples). No further tests of the validity of the objects are
currently performed; it is assumed that the facets fully enclose
a space which is the solid, that solids do not overlap, and
that the precision of the tesselation is sufficient to accurately
model the geometry. In addition to defining the geometrical
properties of the solid one needs to add physical characteristics
in order to create a physical volume for Geant4. The most
important characteristic is the material of the volume. The
assignment of material to the newly created solid or solids
requires manual intervention. If all of the volumes in a file
are composed of the same material this assignment can be
done by simply providing the material name as a command-
line argument to the conversion program. The most efficient
semi-automated workflow would involve exporting from the
CAD program all volumes of the same material to separate
STL files and converting each in turn, applying the correct
material at conversion time. Work is ongoing to develop a
graphical user interface which allows the user to graphically
select individual geometrical objects and assign material to
them. Figure 9 shows a screen capture of the current program.
Having read in an STL file describing the HPS detector (see
following section) the code has successfully identified the
almost thousand topologically distinct detector elements and
created individual tesselated volumes. The graphical interface
is being used to select each of the distinct elements (bounding
box vertices highlighted in red) and material selected from a
drop-down list of defined materials will be assigned. Addi-
tionally, the ability to create geometrical hierarchies for the
geometry is being implemented. Finally, one can either create
a world volume from the bounding box of the volume(s) found
in the STL file to use standalone within Geant4, or keep the
individual volumes to aggregate or incorporate into a common
world volume at a later stage. The output geometry is stored
as GDML.

IV. PERFORMANCE ISSUES

Much, if not most, of the time spent during a Geant4
simulation is used to calculate such geometrical quantities

as which volume the current stepping point is in and what
the distance to the next boundary is. One clear advantage of
Geant4 primitives or boundary representations is the ability to
analytically calculate such quantities. Doing so for tesselated
volumes requires looping over all of the facets defining the
object, which can be very CPU intensive. For instance, as
shown in Figures 1 and 2, calculating whether a point is
inside a sphere involves a simple comparison of the radius of
the point to the radius of the sphere in the local coordinates of
the sphere. Doing so for a tesselated approximation of a sphere
involves looping over each of the individual facets, calculating
the orientation of the point with respect to the polygon and
maintaining a running tally before finally deciding whether
the point is inside the volume and, if so, the distance to the
volume’s surface. This clearly increases faster than linearly
with the resolution of the tesselated approximation. In order
to benchmark the performance of Geant4 using tesselated
volumes, we have also written code which allows the expor-
tation of Geant4 geometries in STL format. This geometry
can then be reimported into Geant4 after being processed
with mesh2gdml, allowing us to directly compare the CPU
time difference between a geometry composed of primitives
and tesselated solids. A number of systematic studies are
currently underway. A side effect of this STL export is the
ability to create a real 3D model of the Geant4 geometry
on 3D printers. This would enable rapid prototyping of parts,
direct comparison of the modeled geometry to CAD geometry,
communication with colleagues and outreach to the public.

V. EXAMPLE IMPLEMENTATIONS

We recently tested the implementation on a number of
detectors for which we had access to the CAD models.
The designs were exported in STL format directly from the
modelling software and segregated by material. The files were
converted to GDML and imported into Geant4 as a proof of
concept.

A. EXO

The Enriched Xenon Observatory (EXO) [3] is an experi-
ment designed to detect neutrino-less double beta decay using
a liquid Xenon Time Projection Chamber (TPC). The need to
reduce radioactive backgrounds led to a detector design with
a minimum number of materials, allowing essentially the full
detector to be exported to only four STL files. The roughly
seven thousand topologically distinct detector elements were
correctly identified from the over two million facets in the
STL files. These volumes were assigned materials, converted
to GDML and then imported into Geant4. Although the CPU
time to process such a large number of facets makes this
model prohibitive for large scale simulations it does serve as
an end-to-end demonstration of the technical feasibility of this
conversion approach.

B. HPS

The Heavy Photon Search (HPS) [4] is a fixed-target exper-
iment at Jefferson Lab aimed at discovering a hidden-sector,

heavy photon. Electron-positron pairs produced in the decay
of such a particle are momentum-analyzed using silicon strip
detectors inside a dipole magnetic field and their energy is
measured in a crystal calorimeter array. The time to design and
optimize the detector via simulations was extremely short, yet
the need to precisely model the very high backgrounds very
close to the beam was critical to the success of the recently
completed test run. The support structures and vacuum enclo-
sures were exported from the CAD design and used directly
in the Geant4 simulations. Because these elements were only
rarely hit by particles, one could afford to use the tesselated
volumes in the production simulation of events. Figures 5
and 6 show the CAD model and the GDML model used in
the Geant4 simulations.

C. LHCb

The LHCb experiment [5] is designed to study the subtle
differences between matter and antimatter produced at CERN’s
Large Hadron Collider. The silicon sensors of the vertex
detector are positioned as close as possible to the interaction
region, in a vacuum vessel separated by a very thin sheet
of aluminum from the primary vacuum of the beam pipe.
The shape of this ”rf foil” is very complicated and extremely
difficult to model using Geant4 primitives. Figure 7 shows
the CAD model of the ”rf foil” and Figure 8 shows a detail
view of the resulting GDML model. This would clearly not
be used for large-scale simulations of millions of events, but
can be critical in understanding subtle differences between the
predicted and measured track parameter resolutions, especially
for low momentum tracks.

VI. FUTURE DIRECTIONS

STL was originally defined for monochrome 3D printers
and, as seen above, does not contain any information regarding
color, texture or other common CAD model attributes such as
volume hierarchy. Recently, a new standard has been proposed
to serve as a replacement for STL. ASTM F2915 [6] defines
a standard specification for an Additive Manufacturing File
Format (AMF). It takes the STL format for vertices and facets
and adds native support for color, materials, and hierarchies,
known as constellations. The format is xml-based, with the
following tags:

<object>
Defines a volume associated with a material ID.

<material>
Optional element defines one or more materials.

<texture>
Optional element defines images or textures for color
or texture mapping.

<constellation>
Optional element provides hierarchy support.

<metadata>
Optional element contains additional information.

The specification has just recently been approved but it is
expected that CAD vendors will begin to add support for
this format. AMF goes a long way towards resolving the
deficiencies of STL and, in expectation of industry support

Fig. 3. The EXO TPC as modelled in SolidEdge with over 7000 discrete
elements.

Fig. 4. A tesselated approximation to the EXO TPC with over 2 million
facets.

Fig. 5. The HPS dipole magnet and vacuum vessel CAD model.
Fig. 6. A closeup view of the tesselated approximation to the HPS dipole
magnet and vacuum vessel

Fig. 7. The LHCb ”rf foil”.
Fig. 8. A closeup view of the tesselated approximation to the LHCb ”rf
foil.”

for this standard, we have begun implementing code which
targets the additional information available in this format.

Being able to recognize volumes which correspond to
Geant4 primitives and provide the user with the ability to re-
place the tesselated shape with its primitive counterpart would

improve the performance of the resulting model. Automating
this procedure would, however, be difficult for anything other
than a few of the very simplest shapes.

Fig. 9. Screen capture of the graphical user interface used to assign materials to the discrete volumes identified within an STL file before conversion to
GDML.

VII. CONCLUSIONS

The program mesh2gdml provides a workflow whereby
geometrical volumes defined by triangular or quadrangular
meshes, such as STL, can be converted into volumes ap-
propriate for simulation using Geant4. Writing the resulting
volumes to GDML files makes them available for simulation
within Geant4 without any further coding. Despite the inherent
performance issues related to navigating through geometries
composed of many individual facets and the requirement
that material be assigned manually to volumes during the
translation process, we believe the approach outlined in this
talk provides access to a wider range of geometry inputs and
will prove to be useful to a number of user communities
interested in using Geant4 to simulate complex geometries
without having to develop any code. The package is still under
development and testing but we anticipate a release of the
program by the second quarter of 2013.

REFERENCES

[1] S. Agostinelli et al., Nucl. Instr. and Meth. A, 506 (2003) 250
J. Allison et al., IEEE Trans. On Nucl. Sci., 53 (2006) 270
http://geant4.cern.ch/

[2] R. Chytracek, J. McCormick, W. Pokorski, G. Santin, IEEE Trans. On
Nucl. Sci., 53 (2006) 2892

[3] http://www-project.slac.stanford.edu/exo/
[4] https://confluence.slac.stanford.edu/display/hpsg/Heavy+Photon+Search+Experiment
[5] http://lhcb.web.cern.ch/lhcb/
[6] www.astm.org/Standards/F2915.htm

