Search for $\boldsymbol{C P}$ Violation in $B^{0} \bar{B}^{0}$ Mixing using Partial Reconstruction of $B^{0} \rightarrow D^{*-} X \ell^{+} \nu_{\ell}$ and a Kaon Tag

J. P. Lees, ${ }^{1}$ V. Poireau, ${ }^{1}$ V. Tisserand, ${ }^{1}$ E. Grauges, ${ }^{2}$ A. Palano ${ }^{a b},{ }^{3}$ G. Eigen, ${ }^{4}$ B. Stugu, ${ }^{4}$ D. N. Brown, ${ }^{5}$ L. T. Kerth, ${ }^{5}$ Yu. G. Kolomensky, ${ }^{5}$ M. J. Lee, ${ }^{5}$ G. Lynch, ${ }^{5}$ H. Koch, ${ }^{6}$ T. Schroeder, ${ }^{6}$ C. Hearty, ${ }^{7}$ T. S. Mattison, ${ }^{7}$ J. A. McKenna, ${ }^{7}$ R. Y. So, ${ }^{7}$ A. Khan, ${ }^{8}$ V. E. Blinov ${ }^{a c},{ }^{9}$ A. R. Buzykaev ${ }^{a},^{9}$ V. P. Druzhinin ${ }^{a b},{ }^{9}$ V. B. Golubev ${ }^{a b},{ }^{9}$ E. A. Kravchenko ${ }^{a b},{ }^{9}$ A. P. Onuchin ${ }^{a c},{ }^{9}$ S. I. Serednyakov ${ }^{a b},{ }^{9}$ Yu. I. Skovpen ${ }^{a b},{ }^{9}$ E. P. Solodov ${ }^{a b},{ }^{9}$ K. Yu. Todyshev ${ }^{a b},{ }^{9}$ A. N. Yushkov ${ }^{a},{ }^{9}$ D. Kirkby, ${ }^{10}$ A. J. Lankford, ${ }^{10}$ M. Mandelkern, ${ }^{10}$ B. Dey, ${ }^{11}$ J. W. Gary, ${ }^{11}$ O. Long, ${ }^{11}$ G. M. Vitug, ${ }^{11}$ C. Campagnari, ${ }^{12}$ M. Franco Sevilla, ${ }^{12}$ T. M. Hong, ${ }^{12}$ D. Kovalskyi, ${ }^{12}$ J. D. Richman, ${ }^{12}$ C. A. West,,12 A. M. Eisner, ${ }^{13}$ W. S. Lockman, ${ }^{13}$ A. J. Martinez, ${ }^{13}$ B. A. Schumm, ${ }^{13}$ A. Seiden, ${ }^{13}$ D. S. Chao, ${ }^{14}$ C. H. Cheng, ${ }^{14}$ B. Echenard, ${ }^{14}$ K. T. Flood, ${ }^{14}$ D. G. Hitlin, ${ }^{14}$ P. Ongmongkolkul, ${ }^{14}$ F. C. Porter, ${ }^{14}$ R. Andreassen, ${ }^{15}$ Z. Huard, ${ }^{15}$ B. T. Meadows, ${ }^{15}$ M. D. Sokoloff, ${ }^{15}$ L. Sun, ${ }^{15}$ P. C. Bloom, ${ }^{16}$ W. T. Ford, ${ }^{16}$ A. Gaz, ${ }^{16}$ U. Nauenberg, ${ }^{16}$ J. G. Smith, ${ }^{16}$ S. R. Wagner, ${ }^{16}$ R. Ayad, ${ }^{17, *}$ W. H. Toki, ${ }^{17}$ B. Spaan, ${ }^{18}$ K. R. Schubert, ${ }^{19}$ R. Schwierz, ${ }^{19}$ D. Bernard, ${ }^{20}$ M. Verderi, ${ }^{20}$ S. Playfer, ${ }^{21}$ D. Bettoni ${ }^{a},{ }^{22}$ C. Bozzi ${ }^{a},{ }^{22}$ R. Calabrese ${ }^{a b},{ }^{22}$ G. Cibinetto ${ }^{a b},{ }^{22}$ E. Fioravanti ${ }^{a b},{ }^{22}$ I. Garzia ${ }^{a b},{ }^{22}$ E. Luppi ${ }^{a b},{ }^{22}$ L. Piemontese ${ }^{a},{ }^{22}$ V. Santoro ${ }^{a},{ }^{22}$ R. Baldini-Ferroli, ${ }^{23}$ A. Calcaterra, ${ }^{23}$ R. de Sangro, ${ }^{23}$ G. Finocchiaro, ${ }^{23}$ S. Martellotti, ${ }^{23}$ P. Patteri, ${ }^{23}$ I. M. Peruzzi, ${ }^{23,} \dagger$ M. Piccolo, ${ }^{23}$ M. Rama, ${ }^{23}$ A. Zallo, ${ }^{23}$ R. Contri ${ }^{a b},{ }^{24}$ E. Guido ${ }^{a b},{ }^{24}$ M. Lo Vetere ${ }^{a b},{ }^{24}$ M. R. Monge ${ }^{a b},{ }^{24}$ S. Passaggio ${ }^{a},{ }^{24}$ C. Patrignani ${ }^{a b},{ }^{24}$ E. Robutti ${ }^{a},{ }^{24}$ B. Bhuyan, ${ }^{25}$ V. Prasad, ${ }^{25}$ M. Morii, ${ }^{26}$ A. Adametz, ${ }^{27}$ U. Uwer, ${ }^{27}$ H. M. Lacker, ${ }^{28}$ P. D. Dauncey, ${ }^{29}$ U. Mallik, ${ }^{30}$ C. Chen, ${ }^{31}$ J. Cochran, ${ }^{31}$ W. T. Meyer, ${ }^{31}$ S. Prell, ${ }^{31}$ A. E. Rubin, ${ }^{31}$ A. V. Gritsan, ${ }^{32}$ N. Arnaud, ${ }^{33}$ M. Davier, ${ }^{33}$ D. Derkach, ${ }^{33}$ G. Grosdidier, ${ }^{33}$ F. Le Diberder, ${ }^{33}$ A. M. Lutz, ${ }^{33}$ B. Malaescu, ${ }^{33}$ P. Roudeau, ${ }^{33}$ A. Stocchi, ${ }^{33}$ G. Wormser, ${ }^{33}$ D. J. Lange, ${ }^{34}$ D. M. Wright, ${ }^{34}$ J. P. Coleman, ${ }^{35}$ J. R. Fry, ${ }^{35}$ E. Gabathuler, ${ }^{35}$ D. E. Hutchcroft, ${ }^{35}$ D. J. Payne, ${ }^{35}$ C. Touramanis, ${ }^{35}$ A. J. Bevan,,${ }^{36}$ F. Di Lodovico, ${ }^{36}$ R. Sacco, ${ }^{36}$ G. Cowan, ${ }^{37}$ J. Bougher, ${ }^{38}$ D. N. Brown, ${ }^{38}$ C. L. Davis, ${ }^{38}$ A. G. Denig, ${ }^{39}$ M. Fritsch, ${ }^{39}$ W. Gradl, ${ }^{39}$ K. Griessinger, ${ }^{39}$ A. Hafner, ${ }^{39}$ E. Prencipe, ${ }^{39}$ R. J. Barlow, ${ }^{40,}{ }^{\text {毒G. D. Lafferty, }}{ }^{40}$ E. Behn, ${ }^{41}$ R. Cenci, ${ }^{41}$ B. Hamilton, ${ }^{41}$ A. Jawahery, ${ }^{41}$ D. A. Roberts, ${ }^{41}$ R. Cowan, ${ }^{42}$ D. Dujmic, ${ }^{42}$ G. Sciolla, ${ }^{42}$ R. Cheaib, ${ }^{43}$ P. M. Patel, ${ }^{43,},{ }_{3}$ S. H. Robertson, ${ }^{43}$ P. Biassoni ${ }^{a b},{ }^{44}$ N. Neri ${ }^{a},{ }^{44}$ F. Palombo ${ }^{a b},{ }^{44}$ L. Cremaldi, ${ }^{45}$ R. Godang, ${ }^{45,}{ }^{\text {I| P P S Sonnek, }}{ }^{45}$ D. J. Summers, ${ }^{45}$ X. Nguyen, ${ }^{46}$ M. Simard, ${ }^{46}$ P. Taras, ${ }^{46}$ G. De Nardo ${ }^{a b},{ }^{47}$ D. Monorchio ${ }^{a b},{ }^{47}$ G. Onorato ${ }^{a b},{ }^{47}$ C. Sciacca ${ }^{a b},{ }^{47}$ M. Martinelli, ${ }^{48}$ G. Raven, ${ }^{48}$ C. P. Jessop, ${ }^{49}$ J. M. LoSecco, ${ }^{49}$ K. Honscheid, ${ }^{50}$ R. Kass, ${ }^{50}$ J. Brau, ${ }^{51}$ R. Frey, ${ }^{51}$ N. B. Sinev, ${ }^{51}$ D. Strom, ${ }^{51}$ E. Torrence, ${ }^{51}$ E. Feltresi ${ }^{a b},{ }^{52}$ M. Margoni ${ }^{a b},{ }^{52}$ M. Morandin ${ }^{a},{ }^{52}$ M. Posocco ${ }^{a},{ }^{52}$ M. Rotondo ${ }^{a},{ }^{52}$ G. Simi ${ }^{a},{ }^{52}$ F. Simonetto ${ }^{a b},,^{52}$ R. Stroili ${ }^{a b},{ }^{52}$ S. Akar, ${ }^{53}$ E. Ben-Haim, ${ }^{53}$ M. Bomben, ${ }^{53}$ G. R. Bonneaud, ${ }^{53}$ H. Briand, ${ }^{53}$ G. Calderini, ${ }^{53}$ J. Chauveau, ${ }^{53}$ Ph. Leruste, ${ }^{53}$ G. Marchiori, ${ }^{53}$ J. Ocariz, ${ }^{53}$ S. Sitt, ${ }^{53}$ M. Biasini ${ }^{a b},{ }^{54}$ E. Manoni ${ }^{a},{ }^{54}$ S. Pacetti ${ }^{a b},{ }^{54}$ A. Rossi ${ }^{a},{ }^{54}$ C. Angelini ${ }^{a b},{ }^{55}$ G. Batignani ${ }^{a b},{ }^{55}$ S. Bettarini ${ }^{a b},{ }^{55}$ M. Carpinelli ${ }^{a b},{ }^{55,}{ }^{* *}$ G. Casarosa ${ }^{a b},{ }^{55}$ A. Cervelli ${ }^{a b},{ }^{55}$ F. Forti ${ }^{a b},{ }^{55}$ M. A. Giorgi ${ }^{a b},{ }^{55}$ A. Lusiani ${ }^{a c},{ }^{55}$ B. Oberhof ${ }^{a b}$, ${ }^{55}$ E. Paoloni ${ }^{a b},{ }^{55}$ A. Perez ${ }^{a},{ }^{55}$ G. Rizzo ${ }^{a b},{ }^{55}$ J. J. Walsh ${ }^{a},{ }^{55}$ D. Lopes Pegna, ${ }^{56}$ J. Olsen, ${ }^{56}$ A. J. S. Smith, ${ }^{56}$ R. Faccini ${ }^{a b},{ }^{57}$ F. Ferrarotto ${ }^{a},{ }^{57}$ F. Ferroni ${ }^{a b},{ }^{57}$ M. Gaspero ${ }^{a b},{ }^{57}$ L. Li Gioi ${ }^{a},{ }^{57}$ G. Piredda ${ }^{a},{ }^{57}$ C. Bünger, ${ }^{58}$ O. Grünberg, ${ }^{58}$ T. Hartmann, ${ }^{58}$ T. Leddig, ${ }^{58}$ C. Voß, ${ }^{58}$ R. Waldi, ${ }^{58}$ T. Adye, ${ }^{59}$ E. O. Olaiya, ${ }^{59}$ F. F. Wilson, ${ }^{59}$ S. Emery, ${ }^{60}$ G. Hamel de Monchenault, ${ }^{60}$ G. Vasseur, ${ }^{60}$ Ch. Yèche, ${ }^{60}$ F. Anulli ${ }^{a},{ }^{61}$ D. Aston, ${ }^{61}$ D. J. Bard, ${ }^{61}$ J. F. Benitez, ${ }^{61}$ C. Cartaro, ${ }^{61}$ M. R. Convery, ${ }^{61}$ J. Dorfan, ${ }^{61}$ G. P. Dubois-Felsmann, ${ }^{61}$ W. Dunwoodie, ${ }^{61}$ M. Ebert, ${ }^{61}$ R. C. Field, ${ }^{61}$ B. G. Fulsom, ${ }^{61}$ A. M. Gabareen, ${ }^{61}$ M. T. Graham, ${ }^{61}$ C. Hast, ${ }^{61}$ W. R. Innes, ${ }^{61}$ P. Kim, ${ }^{61}$ M. L. Kocian, ${ }^{61}$ D. W. G. S. Leith, ${ }^{61}$ P. Lewis, ${ }^{61}$ D. Lindemann, ${ }^{61}$ B. Lindquist, ${ }^{61}$ S. Luitz, ${ }^{61}$ V. Luth, ${ }^{61}$ H. L. Lynch, ${ }^{61}$ D. B. MacFarlane, ${ }^{61}$ D. R. Muller, ${ }^{61}$ H. Neal, ${ }^{61}$ S. Nelson, ${ }^{61}$ M. Perl, ${ }^{61}$ T. Pulliam, ${ }^{61}$ B. N. Ratcliff, ${ }^{61}$ A. Roodman, ${ }^{61}$ A. A. Salnikov, ${ }^{61}$ R. H. Schindler, ${ }^{61}$ A. Snyder, ${ }^{61}$ D. Su, ${ }^{61}$ M. K. Sullivan, ${ }^{61}$ J. Va'vra, ${ }^{61}$ A. P. Wagner, ${ }^{61}$ W. F. Wang, ${ }^{61}$ W. J. Wisniewski, ${ }^{61}$ M. Wittgen, ${ }^{61}$ D. H. Wright, ${ }^{61}$ H. W. Wulsin, ${ }^{61}$ V. Ziegler, ${ }^{61}$ W. Park, ${ }^{62}$ M. V. Purohit, ${ }^{62}$ R. M. White, ${ }^{62, ~}{ }^{\dagger \dagger}$ J. R. Wilson, ${ }^{62}$ A. Randle-Conde, ${ }^{63}$ S. J. Sekula, ${ }^{63}$ M. Bellis, ${ }^{64}$ P. R. Burchat, ${ }^{64}$ T. S. Miyashita, ${ }^{64}$ E. M. T. Puccio, ${ }^{64}$ M. S. Alam, ${ }^{65}$ J. A. Ernst, ${ }^{65}$ R. Gorodeisky, ${ }^{66}$ N. Guttman, ${ }^{66}$ D. R. Peimer, ${ }^{66}$ A. Soffer, ${ }^{66}$ S. M. Spanier, ${ }^{67}$ J. L. Ritchie, ${ }^{68}$ A. M. Ruland, ${ }^{68}$ R. F. Schwitters, ${ }^{68}$ B. C. Wray, ${ }^{68}$ J. M. Izen, ${ }^{69}$ X. C. Lou, ${ }^{69}$ F. Bianchi ${ }^{a b},{ }^{70}$ F. De Mori ${ }^{a b},{ }^{70}$ A. Filippi ${ }^{a},{ }^{70}$ D. Gamba ${ }^{a b},{ }^{70}$ S. Zambito ${ }^{a b},{ }^{70}$ L. Lanceri ${ }^{a b},{ }^{71}$ L. Vitale ${ }^{a b},{ }^{71}$ F. Martinez-Vidal, ${ }^{72}$ A. Oyanguren, ${ }^{72}$ P. Villanueva-Perez, ${ }^{72}$

IN2P3/CNRS, Université Pierre et Marie Curie-Paris6, Université Denis Diderot-Paris7, F-75252 Paris, France
${ }^{54}$ INFN Sezione di Perugia ${ }^{a}$; Dipartimento di Fisica, Università di Perugia ${ }^{b}$, I-06123 Perugia, Italy
${ }^{55}$ INFN Sezione di Pisa ${ }^{a}$; Dipartimento di Fisica,
Università di Pisa ${ }^{b}$; Scuola Normale Superiore di Pisa ${ }^{c}$, I-56127 Pisa, Italy
${ }^{56}$ Princeton University, Princeton, New Jersey 08544, USA
${ }^{57}$ INFN Sezione di Roma ${ }^{a}$; Dipartimento di Fisica, Università di Roma La Sapienza ${ }^{b}$, I-00185 Roma, Italy
${ }^{58}$ Universität Rostock, D-18051 Rostock, Germany
${ }^{59}$ Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
${ }^{60}$ CEA, Irfu, SPP, Centre de Saclay, F-91191 Gif-sur-Yvette, France
${ }^{61}$ SLAC National Accelerator Laboratory, Stanford, California 94309 USA
${ }^{62}$ University of South Carolina, Columbia, South Carolina 29208, USA
${ }^{63}$ Southern Methodist University, Dallas, Texas 75275, USA
${ }^{64}$ Stanford University, Stanford, California 94305-4060, USA
${ }^{65}$ State University of New York, Albany, New York 12222, USA
${ }^{66}$ Tel Aviv University, School of Physics and Astronomy, Tel Aviv, 69978, Israel
${ }^{67}$ University of Tennessee, Knoxville, Tennessee 37996, USA
${ }^{68}$ University of Texas at Austin, Austin, Texas 78712, USA
${ }^{69}$ University of Texas at Dallas, Richardson, Texas 75083, USA
${ }^{70}$ INFN Sezione di Torino ${ }^{a}$; Dipartimento di Fisica Sperimentale, Università di Torino ${ }^{b}$, I-10125 Torino, Italy
${ }^{71}$ INFN Sezione di Trieste ${ }^{a}$; Dipartimento di Fisica, Università di Trieste ${ }^{b}$, I-34127 Trieste, Italy
${ }^{72}$ IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
${ }^{73}$ University of Victoria, Victoria, British Columbia, Canada V8W 3P6
${ }^{7}$ Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
${ }^{75}$ University of Wisconsin, Madison, Wisconsin 53706, USA

Abstract

We present results of a search for $C P$ violation in $B^{0} \bar{B}^{0}$ mixing with the $B A B A R$ detector. We select a sample of $B^{0} \rightarrow D^{*-} X \ell^{+} \nu$ decays with a partial reconstruction method and use kaon tagging to assess the flavor of the other B meson in the event. We determine the $C P$ violating asymmetry $\mathcal{A}_{C P} \equiv \frac{N\left(B^{0} B^{0}\right)-N\left(\bar{B}^{0} \bar{B}^{0}\right)}{N\left(B^{0} B^{0}\right)+N\left(\bar{B}^{0} \bar{B}^{0}\right)}=\left(0.06 \pm 0.17_{-0.32}^{+0.38}\right) \%$, corresponding to $\Delta_{C P}=1-|q / p|=$ $\left(0.29 \pm 0.84_{-1.61}^{+1.88}\right) \times 10^{-3}$.

PACS numbers: $13.25 . \mathrm{Ft}, 13.20 . \mathrm{He}, 13.20 . \mathrm{Gd}$

Experiments at B factories have observed $C P$ violation in direct B^{0} decays [1 and in the interference between B^{0} mixing and decay [2]. $C P$ violation in mixing has so far eluded observation.

The weak-Hamiltonian eigenstates are related to the flavor eigenstates of the strong interaction Hamiltonian by $\left|B_{L, H}\right\rangle=p\left|B^{0}\right\rangle \pm q\left|\bar{B}^{0}\right\rangle$. The value of the ratio $|q / p|$ can be determined from the asymmetry between the two oscillation probabilities $\mathcal{P}=P\left(B^{0} \rightarrow \bar{B}^{0}\right)$ and $\overline{\mathcal{P}}=P\left(\bar{B}^{0} \rightarrow B^{0}\right)$ through $\mathcal{A}_{C P}=(\overline{\mathcal{P}}-\mathcal{P}) /(\overline{\mathcal{P}}+\mathcal{P})=$ $\frac{1-|q / p|^{4}}{1+|q / p|^{4}} \approx 2 \Delta_{C P}$, where $\Delta_{C P}=1-|q / p|$ and the Standard Model (SM) prediction is $\mathcal{A}_{C P}=-(4.0 \pm 0.6) \times$ 10^{-4} [3]. Any observation with the present experimental sensitivity $\left(\mathcal{O}\left(10^{-3}\right)\right)$ would therefore reveal physics beyond the SM.

Experiments measure $\mathcal{A}_{C P}$ from the dilepton asymmetry, $\mathcal{A}_{\ell \ell}=\frac{N\left(\ell^{+} \ell^{+}\right)-N\left(\ell^{-} \ell^{-}\right)}{N\left(\ell^{+} \ell^{+}\right)+N\left(\ell^{-} \ell^{-}\right)}$, where an $\ell^{+}\left(\ell^{-}\right)$tags a $B^{0}\left(\bar{B}^{0}\right)$ meson, and ℓ refers either to an electron or a muon [4]. These measurements benefit from the large number of produced dilepton events. However, they rely on the use of control samples to subtract the charge-asymmetric background originating from hadrons wrongly identified as leptons or leptons from light hadron
decays, and to compute the charge-dependent lepton identification asymmetry that may produce a false signal. The systematic uncertanties associated with the corrections for these effects constitute a severe limitation to the precision of the measurements.

Using a sample of dimuon events, the $D \emptyset$ Collaboration measured a value of $\mathcal{A}_{C P}$ for a mixture of B_{s} and B^{0} decays that deviates from the SM by 3.9 standard deviations [5]. Measurements of $\mathcal{A}_{C P}$ for B_{s} mesons performed by the $D \emptyset$ Collaboration with $B_{s} \rightarrow D_{s} \mu X$ decays are consistent with the SM [7].

We present a measurement of $\mathcal{A}_{C P}\left(B^{0}\right)$ with a new analysis technique. We reconstruct a sample of B^{0} mesons (hereafter called B_{R}; charge conjugate states are implied unless otherwise stated) from the semileptonic transition $B^{0} \rightarrow D^{*-} X \ell^{+} \nu$, with a partial reconstruction of the $D^{*-} \rightarrow \pi^{-} \bar{D}^{0}$ decay (see Ref. [8] and references therein). The observed asymmetry between the number of events with an ℓ^{+}compared to those with an ℓ^{-}is then:

$$
\begin{equation*}
A_{\ell} \approx \mathcal{A}_{r \ell}+\mathcal{A}_{C P} \chi_{d} \tag{1}
\end{equation*}
$$

where $\chi_{d}=0.1862 \pm 0.0023$ [9] is the integrated mixing probability for B^{0} mesons and $\mathcal{A}_{r \ell}$ is the detector-
induced charge asymmetry in the B_{R} reconstruction.
We identify ("tag") the flavor of the other B^{0} meson (labeled B_{T}) using events with a charged kaon $\left(K_{T}\right)$. An event with a $K^{+}\left(K^{-}\right)$usually arises from a state that decays as a $B^{0}\left(\bar{B}^{0}\right)$ meson. When mixing takes places, the ℓ and the K_{T} then have the same electric charge. The observed asymmetry in the rate of mixed events is:

$$
\begin{equation*}
A_{T}=\frac{N\left(\ell^{+} K_{T}^{+}\right)-N\left(\ell^{-} K_{T}^{-}\right)}{N\left(\ell^{+} K_{T}^{+}\right)+N\left(\ell^{-} K_{T}^{-}\right)} \approx \mathcal{A}_{r \ell}+\mathcal{A}_{K}+\mathcal{A}_{C P} \tag{2}
\end{equation*}
$$

where \mathcal{A}_{K} is the detector charge asymmetry in kaon reconstruction. A kaon with the same charge as the ℓ might also arise from the Cabibbo-Favored (CF) decays of the D^{0} meson produced with the lepton from the partially reconstructed side $\left(K_{R}\right)$. The asymmetry observed for these events is:

$$
\begin{equation*}
A_{R}=\frac{N\left(\ell^{+} K_{R}^{+}\right)-N\left(\ell^{-} K_{R}^{-}\right)}{N\left(\ell^{+} K_{R}^{+}\right)+N\left(\ell^{-} K_{R}^{-}\right)} \approx \mathcal{A}_{r \ell}+\mathcal{A}_{K}+\mathcal{A}_{C P} \chi_{d} \tag{3}
\end{equation*}
$$

Eqs. 1, 2, and 3 can be used to extract $\mathcal{A}_{C P}$ and the detector induced asymmetries $\left(\mathcal{A}_{r \ell}\right.$ and $\left.\mathcal{A}_{K}\right)$.

A detailed description of the $B A B A R$ detector is provided elsewhere [10]. We use a sample with an integrated luminosity of $425.7 \mathrm{fb}^{-1}$ 11] collected on the peak of the $\Upsilon(4 S)$ resonance. A $45 \mathrm{fb}^{-1}$ sample collected 40 MeV below the resonance ("off-peak") is used for background studies. We also use a simulated sample of $B \bar{B}$ events [12] with an integrated luminosity equivalent to approximately three times the data.

We preselect a sample of hadronic events requiring the number of charged particles to be at least four. We reduce non- $B \bar{B}$ (continuum) background by requiring the ratio of the second to the zeroth order Fox-Wolfram moments [13] to be less than 0.6.

We select the B_{R} sample by searching for combinations of a charged lepton (in the momentum range $1.4<p_{\ell}<2.3 \mathrm{GeV} / c$) and a low momentum pion π_{s}^{-} $\left(60<p_{\pi_{s}^{-}}<190 \mathrm{MeV} / c\right)$, which is taken to arise from $D^{*-} \rightarrow \bar{D}^{0} \pi_{s}^{-}$decay. Here and elsewhere momenta are calculated in the-center-of-mass frame. The ℓ^{+}and the π_{s}^{-}must have opposite electric charge. Their tracks must be consistent with originating from a common vertex, which is constrained to the beam collision point in the plane transverse to the beam axis. Finally, we combine $p_{\ell}, p_{\pi_{s}^{-}}$, and the probability of the vertex fit in a likelihood ratio variable (η) optimized to reject combinatorial $B \bar{B}$ events. If more than one candidate is found in the event, we choose the one with the largest value of η.

We determine the square of the unobserved neutrino mass as:

$$
\mathcal{M}_{\nu}^{2}=\left(E_{\mathrm{beam}}-E_{D^{*}}-E_{\ell}\right)^{2}-\left(\mathbf{p}_{D^{*}}+\mathbf{p}_{\ell}\right)^{2}
$$

where we neglect the momentum of the $B^{0}\left(\mathrm{p}_{B}\right.$ $\approx 340 \mathrm{MeV} / c$) and identify the B^{0} energy with the beam
energy $E_{\text {beam }}$ in the $e^{+} e^{-}$center-of-mass frame; E_{ℓ} and \mathbf{p}_{ℓ} are the energy and momentum of the lepton and $\mathbf{p}_{D^{*}}$ is the estimated momentum of the D^{*}. As a consequence of the limited phase space available in the D^{*+} decay, the soft pion is emitted nearly at rest in the D^{*+} rest frame. The D^{*+} four-momentum can therefore be computed by approximating its direction as that of the soft pion, and parametrizing its momentum as a linear function of the soft-pion momentum. All B^{0} semileptonic decays with \mathcal{M}_{ν}^{2} near zero are considered to be signal events, including $B^{0} \rightarrow D^{*-} X^{0} \ell^{+} \nu_{\ell}$ (primary), $B^{0} \rightarrow D^{*-} X^{0} \tau^{+} \nu_{\tau}, \tau^{+} \rightarrow \ell^{+} \nu_{\ell} \bar{\nu}_{\tau}$ (cascade), and $B^{0} \rightarrow$ $D^{*-} h^{+}$(misidentified), where the hadron $(h=\pi, K)$ is erroneously identified as a lepton (in most cases, a muon). B^{0} decays to flavor-insensitive $C P$ eigenstates, $B^{0} \rightarrow D^{* \pm} D X, D \rightarrow \ell^{\mp} X$, and $B^{+} \rightarrow D^{*-} X^{+} \ell^{+} \nu_{\ell}$ decays accumulate around zero as the signal events ("peaking background"). The uncorrelated background consists of continuum and combinatorial $B \bar{B}$ events. The latter category includes events where a genuine D^{*-} is combined with an ℓ^{+}from the other B meson.

We identify charged kaons in the momentum range $0.2<p_{K}<4 \mathrm{GeV} / c$ with an average efficiency of about 85% and $\mathrm{a} \sim 3 \%$ pion misidentification rate. We determine the K production point from the intersection of the K track and the beam spot, and then determine the distance Δz between the $\ell^{+} \pi_{s}^{-}$and K vertices coordinates along the beam axis. Finally, we define the proper time difference Δt between the B_{R} and the B_{T} in the so called "Lorentz boost approximation" [14, $\Delta t=\frac{\Delta z}{\beta \gamma}$, where the product $\beta \gamma=0.56$ is the average Lorentz boost of the $\Upsilon(4 S)$ in the laboratory frame. Since the B mesons are not at rest in the $\Upsilon(4 S)$ rest frame, and in addition the K is usually produced in the cascade process $B_{T} \rightarrow D X, D \rightarrow K Y, \Delta t$ is in fact only an approximation of the actual proper time difference between the B_{R} and the B_{T}. We reject events if the uncertainty $\sigma(\Delta t)$ exceeds 3 ps . This selection reduces to a negligible level the contamination from protons produced in the scattering of primary particles with the beam pipe or the detector material and wrongly identified as kaons, which would otherwise constitute a large charge-asymmetric source of background.

We define an event as "mixed" if the K and the ℓ have the same electric charge and as "unmixed" otherwise. In about 20% of the cases, the K has the wrong charge correlation with respect to the B_{T}, and the event is wrongly defined (mistags).

About 95% of the K_{R} candidates have the same electric charge as the ℓ; they constitute 75% of the mixed event sample. Due to the small lifetime of the D^{0} meson, the separation in space between the K_{R} and the $\ell \pi_{s}$ production points is much smaller than for K_{T}. Therefore, we use Δt as a first discriminant variable. Kaons in the K_{R} sample are usually emitted in the hemisphere opposite to the ℓ, while genuine K_{T} are produced randomly,
so we use in addition the cosine of the angle $\theta_{\ell K}$ between the ℓ and the K.

In about 20% of the cases, the events contain more than one K; most often we find both a K_{T} and a K_{R} candidate. As these two carry different information, we accept multiple-candidate events. Using ensembles of simulated samples of events, we find that this choice does not affect the statistical uncertainty.

The \mathcal{M}_{ν}^{2} distribution of all signal candidates in shown in Fig. 1. We determine the signal fraction by fitting the \mathcal{M}_{ν}^{2} distribution in the interval $[-10,2.5] \mathrm{GeV}^{2} / \mathrm{c}^{4}$ with the sum of continuum, $B \bar{B}$ combinatorial, and $B \bar{B}$ peaking events. We split peaking $B \bar{B}$ into direct $\left(B^{0} \rightarrow\right.$ $\left.D^{*-} \ell^{+} \nu\right)$, " $D^{* * "}\left(B \rightarrow D^{*-} X^{0} \ell^{+} \nu_{\ell}\right)$, cascade, hadrons wrongly identified as leptons, and $C P$ eigenstates. In the fit, we float the fraction of direct, $D^{* *}$, and $B \bar{B}$ combinatorial background, while we fix the continuum contribution to the expectation from off-peak events, rescaled
by the on-peak to off-peak luminosity ratio, and the rest (less than 2% of the total) to the level predicted by the Monte Carlo simulation. Based on the assumption of isospin conservation, we attribute 66% of the $D^{* *}$ events to B^{+}decays and the rest to B^{0} decays. We use the result of the fit to compute the fractions of continuum, combinatorial, and peaking B^{+}background, $C P$ eigenstates, and B^{0} signal in the sample, as a function of \mathcal{M}_{ν}^{2}. We find a total of $(5.945 \pm 0.007) \times 10^{6}$ peaking events (see Fig. 1).

We then repeat the fit after dividing events in the four lepton categories $\left(e^{ \pm}, \mu^{ \pm}\right)$and eight tagged samples $\left(e^{ \pm} K^{ \pm}, \mu^{ \pm} K^{ \pm}\right)$.

We measure $\mathcal{A}_{C P}$ with a binned four-dimensional fit to $\Delta t(100 \mathrm{bins}), \sigma(\Delta t)(20), \cos \theta_{\ell k}(4)$, and $p_{K}(5)$. Following Ref. 15 and neglecting resolution effects, the Δt distributions for signal events with a K_{T} are represented by the following expressions:

$$
\begin{aligned}
& \mathcal{F}_{\bar{B}^{0} B^{0}}(\Delta t)=\frac{\Gamma_{0} e^{-\Gamma_{0}|\Delta t|}}{2\left(1+r^{\prime 2}\right)}\left[\left(1+\left|\frac{q}{p}\right|^{2} r^{\prime 2}\right) \cosh (\Delta \Gamma \Delta t / 2)+\left(1-\left|\frac{q}{p}\right|^{2} r^{\prime 2}\right) \cos \left(\Delta m_{d} \Delta t\right)-\left|\frac{q}{p}\right|(b+c) \sin \left(\Delta m_{d} \Delta t\right)\right], \\
& \mathcal{F}_{B^{0} \bar{B}^{0}}(\Delta t)=\frac{\Gamma_{0} e^{-\Gamma_{0}|\Delta t|}}{2\left(1+r^{\prime 2}\right)}\left[\left(1+\left|\frac{p}{q}\right|^{2} r^{\prime 2}\right) \cosh (\Delta \Gamma \Delta t / 2)+\left(1-\left|\frac{p}{q}\right|^{2} r^{\prime 2}\right) \cos \left(\Delta m_{d} \Delta t\right)+\left|\frac{p}{q}\right|(b-c) \sin \left(\Delta m_{d} \Delta t\right)\right], \\
& \mathcal{F}_{\bar{B}^{0} \bar{B}^{0}}(\Delta t)=\frac{\Gamma_{0} e^{-\Gamma_{0}|\Delta t|}}{2\left(1+r^{\prime 2}\right)}\left[\left(1+\left|\frac{p}{q}\right|^{2} r^{\prime 2}\right) \cosh (\Delta \Gamma \Delta t / 2)-\left(1-\left|\frac{p}{q}\right|^{2} r^{\prime 2}\right) \cos \left(\Delta m_{d} \Delta t\right)-\left|\frac{p}{q}\right|(b-c) \sin \left(\Delta m_{d} \Delta t\right)\right]\left|\frac{q}{p}\right|^{2}, \\
& \mathcal{F}_{B^{0} B^{0}}(\Delta t)=\frac{\Gamma_{0} e^{-\Gamma_{0}|\Delta t|}}{2\left(1+r^{\prime 2}\right)}\left[\left(1+\left|\frac{q}{p}\right|^{2} r^{\prime 2}\right) \cosh (\Delta \Gamma \Delta t / 2)-\left(1-\left|\frac{q}{p}\right|^{2} r^{\prime 2}\right) \cos \left(\Delta m_{d} \Delta t\right)+\left|\frac{q}{p}\right|(b+c) \sin \left(\Delta m_{d} \Delta t\right)\right]\left|\frac{p}{q}\right|^{2},
\end{aligned}
$$

where the first index of \mathcal{F} refers to the flavor of the B_{R} and the second to the $B_{T}, \Gamma_{0}=\tau_{B^{0}}^{-1}$ is the average width of the two B^{0} mass eigenstates, Δm_{d} and $\Delta \Gamma$ are respectively their mass and width difference, the parameter r^{\prime} results from the interference of CF and Doubly Cabibbo Suppressed (DCS) decays on the B_{T} side [15] and has a very small value $(\mathcal{O}(1 \%))$, and b and c are two parameters expressing the $C P$ violation arising from that interference. In the $\mathrm{SM}, b=2 r^{\prime} \sin (2 \beta+\gamma) \cos \delta^{\prime}$ and $c=-2 r^{\prime} \cos (2 \beta+\gamma) \sin \delta^{\prime}$, where β and γ are angles of the Unitary Triangle and δ^{\prime} is a strong phase. The quantities $\Delta m_{d}, \tau_{B^{0}}, b, c$, and $\sin (2 \beta+\gamma)$ are left free in the fit to reduce the systematic uncertainty. The value of $\Delta \Gamma$ is fixed to zero. Neglecting the tiny contribution from DCS decays, the main contribution to the asymmetry is time independent and due to the normalization factors of the two mixed terms.

The Δt distribution for the decays of the B^{+} mesons is parametrized by an exponential function, $\mathcal{F}_{B^{+}}=\Gamma_{+} e^{-\left|\Gamma_{+} \Delta t\right|}$, where the B^{+}decay width is computed as the inverse of the lifetime $\Gamma_{+}^{-1}=\tau_{B^{+}}=$ $(1.641 \pm 0.008) \mathrm{ps}$.

When the K_{T} comes from the decay of the B^{0} meson to a $C P$ eigenstate (as, for example $\left.B^{0} \rightarrow D^{(*)} \bar{D}^{(*)}[9]\right)$, a different expression applies:
$\mathcal{F}_{C P e}(\Delta t)=\frac{\Gamma_{0}}{4} e^{-\Gamma_{0}|\Delta t|}\left[1 \pm S \sin \left(\Delta m_{d} \Delta t\right) \pm C \cos \left(\Delta m_{d} \Delta t\right)\right]$,
where the plus sign is used if the B_{R} decays as a B^{0} and the minus sign otherwise. The fraction of these events (about 1%) and the parameters S and C are fixed in the fits and are taken from simulation.

We obtain the Δt distributions for K_{T} in $B \bar{B}$ events, $\mathcal{G}_{i}(\Delta t)$, by convolving the theoretical ones with a resolution function, which consists of the superposition of several Gaussian functions, convolved with exponentials to take into account the finite lifetime of charmed mesons in the cascade decay $b \rightarrow c \rightarrow K$. Different sets of parameters are used for peaking and for combinatorial background events.

To describe the Δt distributions for K_{R} events, $\mathcal{G}_{K_{R}}(\Delta t)$, we select a subsample of data containing fewer than $5 \% K_{T}$ decays, and use background-subtracted histograms in our likelihood functions. As an alternative,

FIG. 1: (color online). \mathcal{M}_{ν}^{2} distribution for selected events. The data are represented by the points with error bars. The fitted contributions from $\bar{B}^{0} \rightarrow D^{*+} \ell^{-} \bar{\nu}_{\ell}$, other peaking background, $D^{* *}$ events, $B \bar{B}$ combinatorial background, and rescaled off-peak events are overlaid.
we apply the same selection to the simulation and correct the Δt distribution predicted by the Monte Carlo by the ratio of the histograms extracted from data and simulated events. The $\cos \theta_{\ell K}$ shapes are obtained from the histograms of the simulated distributions for $B \bar{B}$ events. The Δt distribution of continuum events is represented by a decaying exponential convolved with Gaussians parametrized by fitting simultaneously the off-peak data.

The rate of events in each bin (j) and for each tagged sample are then expressed as the sum of the predicted contributions from peaking events, $B \bar{B}$ combinatorial, and continuum background. Accounting for mistags and K_{R} events, the peaking B^{0} contributions to the samesign samples are:

$$
\begin{aligned}
\mathcal{G}_{\ell^{+} K^{+}}(j)= & \left(1+\mathcal{A}_{r \ell}\right)\left(1+\mathcal{A}_{K}\right) \\
& \left\{\left(1-f_{K_{R}}^{++}\right)\left[\left(1-\omega^{+}\right) \mathcal{G}_{B^{0} B^{0}}(j)+\omega^{-} \mathcal{G}_{B^{0} \bar{B}^{0}}(j)\right]\right. \\
+ & \left.f_{K_{R}^{+}}^{+}\left(1-\omega^{\prime+}\right) \mathcal{G}_{K_{R}}(j)\left(1+\chi_{d} \mathcal{A}_{\ell \ell}\right)\right\}, \\
\mathcal{G}_{\ell^{-} K^{-}}(j)= & \left(1-\mathcal{A}_{r \ell}\right)\left(1-\mathcal{A}_{K}\right) \\
& \left\{\left(1-f_{K_{R}}^{--}\right)\left[\left(1-\omega^{-}\right) \mathcal{G}_{\bar{B}^{0} \bar{B}^{0}}(j)+\omega^{+} \mathcal{G}_{\bar{B}^{0} B^{0}}(j)\right]\right. \\
+ & \left.f_{K_{R}}^{-}\left(1-\omega^{\prime-}\right) \mathcal{G}_{K_{R}}(j)\left(1-\chi_{d} \mathcal{A}_{\ell \ell}\right)\right\},
\end{aligned}
$$

where the reconstruction asymmetries have separate values for the e and μ samples. We allow for different mistag probabilities for $K_{T}\left(\omega^{ \pm}\right)$and $K_{R}\left(\omega^{\prime \pm}\right)$. The parameters $f_{K_{R}}^{ \pm \pm}\left(p_{k}\right)$ describe the fractions of K_{R} tags in each sample as a function of the kaon momentum.

A total of 168 parameters are determined in the fit. By analyzing simulated events as data, we observe that the fit reproduces the generated values of $1-|q / p|$ (zero) and of the other most significant parameters $\left(\mathcal{A}_{r \ell}, \mathcal{A}_{K}, \Delta m_{d}\right.$, and $\left.\tau_{B^{0}}\right)$. We then produce samples of simulated events with $\Delta_{C P}= \pm 0.005, \pm 0.010, \pm 0.025$ and $\mathcal{A}_{r \ell}$ or \mathcal{A}_{K} in the range of $\pm 10 \%$, by removing events. A total of 67 different simulated event samples are used to check for biases. In each case, the input values are correctly determined, and an unbiased value of $|q / p|$ is always obtained.

TABLE I: Principal sources of systematic uncertainties.

Source	$\sigma\left(\Delta_{C P}\right)$
Peaking Sample Composition	${ }_{-1.17}^{+1.50} \times 10^{-3}$
Combinatorial Sample Composition	$\pm 0.39 \times 10^{-3}$
Δt Resolution Model	$\pm 0.60 \times 10^{-3}$
K_{R} Fraction	$\pm 0.11 \times 10^{-3}$
$K_{R} \Delta t$ Distribution	$\pm 0.65 \times 10^{-3}$
Fit Bias	${ }_{-0.46}^{+0.58} \times 10^{-3}$
$C P$ eigenstate Description	± 0
Physical Parameters	${ }_{-0.28}^{+0} \times 10^{-3}$
Total	${ }_{-1.61}^{+1.88} \times 10^{-3}$

FIG. 2: (color online). Distribution of Δt for the continuumsubtracted data (points with error bars) and fitted contributions from K_{R} (dark) and K_{T} (light), for: (a) $\ell^{+} K^{+}$events; (b) $\ell^{-} K^{-}$events; (c) $\ell^{-} K^{+}$events; (d) $\ell^{+} K^{-}$events; (e) raw asymmetry between $\ell^{+} K^{+}$and $\ell^{-} K^{-}$events.

The fit to the data yields $\Delta_{C P}=\left(0.29 \pm 0.84_{-1.61}^{+1.88}\right) \times 10^{-3}$, where the first uncertainty is statistical and the second
systematic. The values of the detector charge asymmetries are $\mathcal{A}_{r, e}=(3.0 \pm 0.4) \times 10^{-3}, \mathcal{A}_{r, \mu}=(3.1 \pm 0.5) \times$ 10^{-3}, and $\mathcal{A}_{K}=(13.7 \pm 0.3) \times 10^{-3}$. The frequency of the oscillation $\Delta m_{d}=508.5 \pm 0.9 \mathrm{~ns}^{-1}$ is consistent with the world average, while $\tau_{B^{0}}=1.553 \pm 0.002 \mathrm{ps}$ is somewhat larger than the world average, which we account for in the evaluation of the systematic uncertainties. Figures 2 and 3 show the fit projections for Δt and $\cos \theta_{\ell K}$.

The systematic uncertainty is computed as the sum in quadrature of several contributions, described below and summarized in Table IT

- Peaking Sample Composition: we vary the sample composition by the statistical uncertainty of the \mathcal{M}_{ν}^{2} fit, the fraction of B^{0} to B^{+}in the $D^{* *}$ peaking sample in the range $50 \pm 25 \%$ to account for possible violation of isospin symmetry, the fraction of the peaking contributions (taken from the simulation) by $\pm 20 \%$, and the fraction of $C P$ eigenstates by $\pm 50 \%$.
$-B \bar{B}$ combinatorial sample composition: we vary the fraction of B^{+}events in the $B \bar{B}$ combinatorial sample by $\pm 4.5 \%$, which corresponds to the uncertainty in the inclusive branching fraction for $B^{0} \rightarrow D^{*-} X$.
$-\Delta t$ resolution model: we quote the difference between the result when all resolution parameters are determined in the fit and those obtained when those that exhibit a weak correlation with $|q / p|$ are fixed.
$-K_{R}$ fraction: we vary the ratio of $B^{+} \rightarrow K_{R} X$ to $B^{0} \rightarrow K_{R} X$ by $\pm 6.8 \%$, which corresponds to the uncertainty of the fraction $\frac{B R\left(D^{* 0} \rightarrow K^{-} X\right)}{B R\left(D^{*+} \rightarrow K^{-} X\right)}$.
$-K_{R} \Delta t$ distribution: we use half the difference between the results obtained using the two different strategies to describe the $K_{R} \Delta t$ distribution.
-Fit bias: parametrized simulations are used to check the estimate of the result and its statistical uncertainty. We add the statistical uncertainty on the validation test using the detailed simulation and the difference between the nominal result and the central result determined from the ensemble of parametrized simulations.
$-C P$ eigenstates description : we vary the S and C parameters describing the $C P$ eigenstates by their statistical uncertainties as obtained from simulation.
-Physical parameters: we repeat the fit setting the value of $\Delta \Gamma$ to $0.02 \mathrm{ps}^{-1}$. The lifetimes of the B^{0} and B^{+} mesons and Δm_{d} are floated in the fit. Alternatively, we check the effect of fixing each parameter in turn to the world average.

In summary, we present a new measurement of the parameter governing $C P$ violation in $B^{0} \bar{B}^{0}$ oscillations. With a partial $B^{0} \rightarrow D^{*-} X \ell^{+} \nu$ reconstruction and kaon tagging, we find $\Delta_{C P}=\left(0.29 \pm 0.84_{-1.61}^{+1.88}\right) \times 10^{-3}$, and $\mathcal{A}_{C P}=\left(0.06 \pm 0.17_{-0.32}^{+0.38}\right) \%$. These results are consistent with, and more precise than, dilepton-based results from B factories [4]. No deviation is observed from the SM expectation 3].

We are grateful for the excellent luminosity and ma-
chine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support $B A B A R$. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), MEC (Spain), and PPARC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation.

FIG. 3: (color online). Distributions of $\cos \theta_{\ell K}$ for the continuum-subtracted data (points with error bars) and fitted contributions from B_{R} (dark) and B_{T} (light), for: (a) $\ell^{+} K^{+}$ events; (b) $\ell^{-} K^{-}$events; (c) $\ell^{-} K^{+}$events; (d) $\ell^{+} K^{-}$events.

* Now at the University of Tabuk, Tabuk 71491, Saudi Arabia
\dagger Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy
\ddagger Now at the University of Huddersfield, Huddersfield HD1 3DH, UK
§ Deceased
- Now at University of South Alabama, Mobile, Alabama 36688, USA
** Also with Università di Sassari, Sassari, Italy
$\dagger \dagger$ Now at Universidad Técnica Federico Santa Maria, Valparaiso, Chile 2390123
[1] B. Aubert et al. (BABAR collaboration), Phys. Rev. Lett. 93,131801(2004).
[2] B. Aubert et al. (BABAR collaboration), Phys. Rev. D 79, 072009 (2009), I.Adachi et al. (Belle collaboration), Phys. Rev. Lett. 108, 171802.
[3] A. Lenz et al., Phys. Rev. D 86, 033008 (2012), J. Charles et al., Phys. Rev. D 84, 033005 (2011), A. Lenz and U. Nierste, JHEP 0706, 072 (2007).
[4] B. Aubert et al. (BABAR collaboration), Phys. Rev. Lett. 96, 251802 (2006), E. Nakano et al. (Belle collaboration), Phys. Rev. D 73, 112002 (2006).
[5] V. M. Abazov et al. ($D \emptyset$ collaboration), Phys. Rev. D 84, 052007 (2011).
[6] V. M. Abazov et al. ($D \emptyset$ collaboration), Phys. Rev. D 86, 072009 (2012).
[7] V. M. Abazov et al. ($D \emptyset$ collaboration), Phys. Rev. Lett. 110, 011801 (2013).
[8] B. Aubert et al. (BABAR collaboration), Phys. Rev.

Lett. 100, 051802 (2008).
[9] J. Beringer et al., (Particle Data Group), Phys. Rev. D 86, 010001 (2012).
[10] B. Aubert et al. (BABAR collaboration), Nucl. Instr. and Meth. in Phys. Res. A 479, 1 (2002).
[11] J. P. Lees et al. (BABAR collaboration), Nucl. Instr. and Meth. in Phys. Res. A 726, 203 (2013).
[12] D. Lange, Nucl. Instr. and Meth. in Phys. Res. A 462, 152 (2001).
[13] G. C. Fox and S. Wolfram, Phys. Rev. Lett. 41, 1581 (1978).
[14] The BABAR Physics Book, SLAC Report SLAC-R-504 (1998).
[15] O. Long, M. Baak, R. N. Cahn and D. Kirkby, Phys. Rev. D 68, 034010 (2003).

