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Abstract

Recently, the BABAR collaboration published (arXiv:0905.4778) data for the photon-pion tran-

sition form factor Fπγγ∗

(
Q2

)
, which are in strong contradiction to the predictions of the standard

factorization approach to perturbative QCD. Immediately afterwards, two mechanisms were sug-

gested (A.E. Dorokhov, arXiv:0905.4577; A.V. Radyushkin, arXiv:0906.0323), that logarithmically

enhance the form factor asymptotics and therefore provide a qualitatively satisfactory description

of the BABAR data. However, the physics of the BABAR effect was not fully clarified. In the

present work, based on a nonperturbative approach to the QCD vacuum and on rather universal

assumptions, we show that there exists two asymptotic regimes for the pion transition form factor.

One regime with asymptotics Fπγ∗γ

(
Q2

)
∼ 1/Q2 corresponds to the result of the standard QCD

factorization approach, while other violates the standard factorization and leads to asymptotic

behavior as Fπγ∗γ

(
Q2

)
∼ ln

(
Q2

)
/Q2. Furthermore, considering specific nonlocal chiral quark

models, we find the region of parameters, where the existing CELLO, CLEO and BABAR data for

the pion transition form factor are successfully described.
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I. INTRODUCTION

In the years 1977-1981, the theory of hard exclusive processes was formulated within the

factorization approach to perturbative quantum chromodynamics (pQCD) [1–7]. The main

ingredients of this approach are the operator product expansion (OPE), the factorization

theorems, and the pQCD evolution equations. In this context, the form factor for the photon-

pion transition γ∗γ∗ → π0, with both photons being spacelike (with photon virtualities

Q2
1, Q

2
2 > 0), was considered in [6, 7]. Since only one hadron is involved, the corresponding

form factor Fπγ∗γ∗(Q2
1, Q

2
2) has the simplest structure for the pQCD analysis among the hard

exclusive processes. The nonperturbative information about the pion is accumulated in the

pion distribution amplitude (DA) ϕπ (x) for the fraction x of the longitudinal pion momenta

p, carried by a quark. Another simplification is, that the short-distance amplitude for the

γ∗γ∗ → π0 transition is, to leading order, just given by a single quark propagator. Finally,

the photon-pion form factor is related to the axial anomaly [8, 9], when both photons are

real.

Experimentally, the easiest situation is, when one photon virtuality is small and the other

large. Under these conditions, the form factor Fπγ∗γ(Q
2, 0) was measured at e+e− colliders

by CELLO [10], CLEO [11] Collaborations (Fig. 1). In the region of large virtualities

Q2 >> 1 GeV2, the pQCD factorization approach for exclusive processes predicts to leading

order in the strong coupling constant [6, 7]

F pQCD
πγ∗γ (Q2, 0) =

2fπ
3Q2

J, (1)

where

J =

∫ 1

0

dx
ϕπ (x)

x
(2)

is the inverse moment of the pion DA, and fπ = 92.4 MeV. The factor 1/Q2 reflects the

asymptotic property of the quark propagator connecting two quark-photon vertices (Figs.

2a and 3). The formula (1) is derived under the assumption, that the QCD dynamics

at large distances (the factor Jfπ) and the QCD dynamics at small distances (the factor

1/Q2) is factorized. Moreover, under this assumption, the asymptotics is reached already

at the typical hadronic scale of a few GeV2. The pion DA ϕπ (x), in addition, evolves

in shape with the change of the renormalization scale [4, 6] and asymptotically equals [3]

ϕAs
π (x) = 6x (1− x). From this follows the famous asymptotic prediction (the short-dashed
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line in Fig. 1)

F pQCD,As
πγ∗γ (Q2, 0) =

2fπ
Q2

. (3)

To describe the soft nonperturbative region of Q2, a simple interpolation between the Q2 → 0

and Q2 → ∞ limits has been proposed by Brodsky and Lepage (BL) (the dashed line in

Fig. 1)

FBL
πγ∗γ(Q

2, 0) =
1

4π2fπ

1

1 +Q2/ (8π2f 2
π)
. (4)

Recently, the BABAR collaboration published new data (Fig. 1) for the γγ∗ → π0

transition form factor in the momentum transfer range from 4 to 40 GeV2 [12]. They found

the following puzzling result: At Q2 > 10 GeV2 the measured form factor multiplied by the

photon virtuality Q2Fπγ∗γ(Q
2, 0) exceeds the predicted asymptotic limit (3) and, moreover,

continues to grow with increasing Q2. This result is in strong contradiction to the predictions

of the standard QCD factorization approach mentioned above. The BABAR data very well

match the older data obtained by the CLEO collaboration in the smaller Q2 region, but

extend to a much lager Q2 values. There is numerous literature discussing the BABAR

effect. We refer here only to the first two publications [13, 14] appeared soon after the

data were announced and it is these works that are the most relevant for the following

consideration. In these works two scenarios were suggested, that logarithmically enhance

the form factor asymptotics and well describe the BABAR data.

The first scenario [13] uses the simple constituent quark model [15]. Within this model,

the pion transition form factor, determined by the quark-loop (triangle) diagram with a

momentum-independent quark mass Mq, is given by

Fπγγ∗(Q2, 0) =
1

4π2fπ

m2
π

m2
π +Q2

1

2 arcsin2( mπ

2Mq
)
{2 arcsin2(

mπ

2Mq

) +
1

2
ln2 βq + 1

βq − 1
}, (5)

where βq =
√

1 + 4M2
q /Q

2. The form factor (5) has correct normalization at zero photon

virtualities, by the axial anomaly, and has double logarithmic asymptotics ln2(Q2/M2
q )/Q

2

at large Q2. This asymptotics corresponds to the case when large virtuality pass through all

three quark propagators (Fig. 2c). In [13] it was shown that the pion transition form factor

calculated from (5) with the parameter Mq = 135 MeV well reproduces the BABAR data.

However, this model has serious shortcomings. Firstly, it has an incorrect chiral limit as

Mq → 0 and mπ → 0. Secondly, the corresponding integral for the decay constant fπ within

this quark model is divergent and thus the model should be regularized for consistency. After
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FIG. 1. The transition form factor γ∗γ → π0. The data are from the CELLO [10] (empty squares),

CLEO [11] (empty triangles) and BABAR (filled circles) [12] Collaborations. The solid line is the model

of this work, the dashed line is the Brodsky-Lepage prediction (4), the short-dashed line is massless QCD

asymptotic limit ( 3).

regularization, however, the double logarithmic asymptotics is lost. Thirdly, just like in the

Nambu–Jona-Lasinio model, it uses a local γ5 vertex for the quark-pion vertex and the local

quark propagator at all quark virtualities, in contradiction with pQCD, where there is no

γ5 operator, no pion as a bound state and no constituent quark mass. It is also well known,

that in the local quark model the distribution amplitude and distribution function of the

pion are constants [16–19].

Such flat (almost constant) pion DA was used in [14] in the context of the explanation of

the BABAR data. The photon-pion transition form factor was calculated by using expression

from [6] and incorporating a light-cone wave function Ψ (x, k⊥) that has rapid falloff with

respect to the light-front energy combination k2
⊥
/x (1− x). Within this approach, for a

Gaussian shape of the light-cone wave function and assuming a flat pion DA ϕπ (x) = 1, the

pion transition form factor is given by

FAs
πγγ∗(Q2, 0) =

2

3

fπ
Q2

∫ 1

0

dx

x

[
1− exp

(
− xQ2

2σ(1− x)

)]
, (6)

and has logarithmically enhanced asymptotic behavior ∼ ln (Q2/2σ) /Q2. In [20] it was
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demonstrated, that the descriptions of the BABAR data in the model (6) and in the model

(5) practically coincide, if σ = 0.48 GeV2. In [14] it was also noted, that the use of such a

wave function is numerically close to the leading-order pQCD expression for the photon-pion

transition form factor with a modified quark propagator and a flat pion DA

FAs
πγγ∗(Q2, 0) =

2

3
fπ

∫ 1

0

dx

xQ2 +M2
, (7)

giving logarithmically enhanced asymptotics FAs
πγγ∗(Q2, 0) ∼ ln (1 +Q2/M2) /Q2. With

M2 = 0.6 GeV2 the BABAR data are well fitted. Another very important feature of

the scenario [14] is, that it was argumented, that there is no pQCD evolution modifications

in the shape of flat pion DA.

However, these approaches did not give an answer to the following serious questions.

First of all, both expressions (6) and (7) do not describe the full form factor, but only the

leading asymptotic part. They have incorrect normalization at Q2 = 0, and are valid only

at large photon virtuality Q2 >> 1 GeV2. Furthermore, the appearance of the parameter

M in the asymptotic formula (7) is not justified. Moreover, as it was emphasized in [14],

the expression (7) generates an infinite tower of false higher twist corrections (M2/xQ2)
n

in contradiction with OPE. It is well known [21], that there are only two terms in the OPE

for the handbag diagram for the pion transition form factor: the twist-2 and the twist-4

terms. Also, the relation of the parameter σ in (6) or M in (7) to the fundamental QCD

parameters and their values remained unclear. The decay constant fπ is external parameter

in this approach and is not calculated dynamically. Finally, the origin of the flat DA is not

well understood. Most of the QCD sum rule and the instanton model calculations lead to

the endpoint suppressed amplitudes (see, e.g. [22, 23]). Below we show, how to generalize

the results (5)-(7), and how to avoid the above mentioned problems with the interpretation

of the BABAR data.

There are several QCD based approaches to treat the nonperturbative aspects of strong in-

teractions. They are the lattice QCD, QCD sum rules, Schwinger–Dyson approach, Nambu–

Jona-Lasinio model, etc. In the present paper, we analyze the photon-pion transition form

factor in the gauged nonlocal chiral quark model based on the picture of nontrivial QCD

vacuum. The attractive feature of this model is, that it interpolates the physics at large and

small distances. At low energy, it enjoys the spontaneous breaking of chiral symmetry, the

generation of the dynamical quark mass, and it satisfies the basic low energy theorems. At
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FIG. 2. The triangle diagram in momentum and α-representation notation and its different hard regimes

for asymmetric kinematic. Hard photon is fat wavy line, real photon is thin wavy line; the fat line is the

hard propagator, the thin line is the soft propagator: a) the standard factorization regime, b) the regime

violating standard factorization, c) the double logarithmic regime with constant quark masses.

energies much higher than the characteristic hadronic scale, it becomes the theory of free

massless quarks (in chiral limit).

The paper is organized as follows: In Sec. II, we give the basic elements of the ef-

fective chiral quark model, the quark propagator and the quark-photon and quark-pion

vertices. In Sec. III, we transform the expression for the pion transition form factor into

the α-representation and analyze, under rather general requirements on the nonperturbative

dynamics, the asymptotic behavior of the form factor for different kinematics. Considering

the kinematics when one photon is virtual and other is real, we show that two possible

behaviors of the quark-pion vertex at large quark virtualities results in two different asymp-

totic regimes for the pion form factor. One of them corresponds to a standard factorized

scheme with actual 1/Q2 asymptotics. The other provides a nonstandard asymptotic regime

leading to ∼ ln (Q2) /Q2 large-Q2 behavior of the pion form factor. In Sec. IV, we specify

two kinds of nonlocal chiral quark model implementing different asymptotic regimes and

obtain the pion DA for various sets of parameters. In Sec. V, we are looking for the space

of parameters that give a satisfactory fit of the CELLO, CLEO and BABAR data. Sec. VI

contains our conclusions.

6



II. NONLOCAL CHIRAL QUARK MODEL

Let us discuss the properties of the triangle diagram (Fig. 2) within the effective ap-

proach to nonperturbative QCD dynamics. To consider the asymptotics of the photon-pion

transition form factor, we do not need to completely specify the elements of the diagram

technique, which are, in general, model dependent, but shall restrict ourselves to rather

general requirements. All expressions will be treated in Euclidean space appropriate for the

nonperturbative physics. The nonperturbative quark propagator, dressed by the interaction

with the QCD vacuum, is

S (k) =
k̂ +m (k2)

D (k2)
. (8)

The main requirement to the quark propagator is, that at large quark virtualities one has

S (k)
k2→∞→ k̂

k2
. (9)

We assume also, that the dynamical quark mass is a function of the quark virtuality k2 and

normalized at zero as

m (0) = Mq, D (0) = M2
q . (10)

At large virtualities, it drops to the current quark mass mcurr faster than any power of k−2

(see the discussion in [26])

m
(
k2
)
∼ Mq exp

(
−
(
k2
)a)

+mcurr, a > 0. (11)

This is, firstly, because the dynamical quark mass is directly related to the nonlocal quark

condensate [18, 27] and, secondly, the quark propagators with powerlike dynamical mass

induce false power corrections that are in contradiction to OPE. On the other hand, the dy-

namical quark mass (11) generates exponentially small corrections, invisible in the standard

OPE. The direct instanton contributions provide a famous example of these exponential cor-

rections in the QCD sum rules approach [28, 29]. The denominator in (8) at large virtualities

is D (k2)
k2→∞→ k2 and the typical expression is

D
(
k2
)
= k2 +m2 (k) . (12)

It is well known (see, e.g., [30, 31]), that the change of the quark propagator leads to a

modification of the quark-photon vertex in order to preserve the Ward-Takahashi identity

Γµ (k, q, k
′ = k + q) = −ieq [γ

µ −∆Γµ (k, q, k
′ = k + q)] , (13)
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where the extra term guarantees the property

qµΓµ (k, q, k
′ = k + q) = S−1 (k′)− S−1 (k) . (14)

The term ∆Γµ (q) is not uniquely defined, even within a particular model, especially its

transverse part. The importance of the full vertex Γµ is, that the axial anomaly is reproduced

[32], and thus the photon-transition form factor correctly normalized. Fortunately, due

to the fact, that ∆Γµ is not proportional to γµ matrix, the corresponding amplitude has

no projection onto the leading twist operator. Thus, this term is suppressed, if a large

photon virtuality passes through the vertex, and hence does not participate in the leading

asymptotics of the form factor. Its leading asymptotics results exclusively from the local

part of the photon vertex

ΓAs
µ (k, q, k′ = k + q) = −ieqγ

µ. (15)

Furthermore, we need the quark-pion vertex,

Γa
π (p) =

i

fπ
γ5τ

aF
(
k2
+, k

2
−

)
, (16)

where k+ and k− are the quark and antiquark momenta. It is important to note, that the

quark-pion vertex function F
(
k2
+, k

2
−

)
plays a similar role in our consideration as the light-

cone wave function Ψ (x, k⊥) in [1–7]. The vertex function F
(
k2
+, k

2
−

)
is symmetric in the

quark virtualities k2
+ and k2

−
, and rapidly decreases, when both virtualities are large. If it

were a function of a linear combination of the quark momenta k+ and k−, then it would led

to a growing form factor with increasing spacelike photon momenta (see for discussions [23]).

The spontaneous breaking of chiral symmetry ensures, that the vertex function F
(
k2
+, k

2
−

)
is

a functional of the dynamical mass m (k2). In particular, the vertex function is normalized

via

F
(
k2, k2

)
= m

(
k2
)
. (17)

In the following, the important feature of the vertex function F
(
k2
+, k

2
−

)
will be its be-

havior in the limit, when one quark virtuality is asymptotically large and the other remains

finite. There are two possibilities,

F f
(
k2
+, k

2
−

) k2
−
→∞

→ 0, (18)

and

F uf
(
k2
+, k

2
−

) k2
−
→∞→ g

(
k2
+

)
. (19)
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Finally, one needs the projection of the pion state onto the leading twist operator, see

Fig. 3,

Γ5,As
µ (k, q, k′ = k + q) = γµγ5. (20)

This projection is determined by the matrix element 〈0 |qγµγ5τaq|πa (p)〉 = −i2fπ,PS, where

the constant fπ,PS is (here m′ (u) = dm (u) /du)

f 2
π,PS =

Nc

4π2

∫
∞

0

du u
F (u, u)

D2 (u)

(
m (u)− 1

2
um′ (u)

)
, (21)

which coincides with the square of the pion decay constant fπ,PS in the so-called Pagels-

Stokar form [33]. However note, that the physical pion decay constant, fπ, entering the

pion vertex (16), is calculated by using the axial vertex corresponding to the conserved axial

current Γ5
µ (q). It turns out that the constant fπ,PS and the physical decay constant fπ are

not always identical. We return to this point in Sec. IV.

Thus, we emphasize again, that in order to analyze the asymptotic behavior of the pion

transition form factor Fπγ∗γ∗(Q2
1, Q

2
2) by inspecting the triangular diagram, one needs to

specify only very general properties of the transition, from soft to hard regimes of the

quark-pion-photon dynamics encoded in (9), (15), (16) and (21). At the same time, the

full dynamics (8), (13), (16) should guarantee the low energy theorems, in particular, the

correct normalization of the form factor by the axial anomaly

Fπγγ(0, 0) = 1/
(
4π2fπ

)
, (22)

and the Goldberger-Treiman relation, connecting the quark-pion coupling gqπ and the dy-

namical quark mass Mq with the physical pion decay constant fπ: fπ = Mq/gqπ.

III. ASYMPTOTICS OF PION-PHOTON TRANSITION FORM FACTOR

The invariant amplitude for the process γ∗γ∗ → π0 is given by

A
(
γ∗ (q1, ǫ1) γ

∗ (q2, ǫ2) → π0 (p)
)
= −ie2εµνρσǫ

µ
1ǫ

ν
2q

ρ
1q

σ
2Fπγ∗γ∗

(
−q21 ,−q22

)
, (23)

where ǫµi are the photon polarization vectors, p2 = m2
π, q

2
1 = −Q2

1, q
2
2 = −Q2

2. In the effective

nonlocal quark-model considered above, one finds the contribution of the triangle diagram

to the invariant amplitude [23],

A
(
p2; q21, q

2
2

)
= Aloc

(
p2; q21, q

2
2

)
+ Anonloc

(
p2; q21, q

2
2

)
,
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where the first term contains only local part of the photon vertices

Aloc
(
p2; q21, q

2
2

)
= −ie2

Nc

3fπ

∫
d4k

(2π)4
F (−k2

+,−k2
−
) (24)

· {tr[iγ5S(k−)ǫ̂2S (k+ − q1)]ǫ̂1S(k+)] + (q1 ↔ q2; ǫ1 ↔ ǫ2)} ,

and the second term comprises the rest

Anonloc
(
p2; q21, q

2
2

)
= −ie2

Nc

3fπ

∫
d4k

(2π)4
F (−k2

+,−k2
−
) (25)

· {tr[iγ5S(k−)S (k+ − q1) ǫ̂1S(k+)] (ǫ2,∆Γ (k+,−q1, k+ − q1))

+tr[iγ5S(k−)ǫ̂2S (k+ − q1)S(k+)] (ǫ1,∆Γ (k+ − q1,−q2, k−))}+ (q1 ↔ q2; ǫ1 ↔ ǫ2) ,

with p = q1 + q2, q = q1 − q2, k± = k ± p/2.

As we discussed above, the leading asymptotics results from the local part of the ampli-

tude, Aloc. After taking the Dirac trace and going to Euclidian metric (d4k → id4k, k2 → −k2),

one obtains

Aloc
(
p2; q21, q

2
2

)
=

e2Nc

6π2fπ

∫
d4k

π2
F (k2

+, k
2
−
)
m

(
k2
+

)
(ε12kq2 − ε12q1q2)−m

(
k2
−

)
ε12q1k +m (k2

3) ε12pk

D (k2
+)D (k2

−)D (k2
3)

,

(26)

where k2
3 = (k+ − q1)

2, and ε12kq2 = εµνλρǫ
µ
1ǫ

ν
2k

λqρ2 , etc.

In order to analyze the asymptotic properties of the form factor, let us transform the

integral in (26) formally into the α representation (see [34, 35]), which is one of the basic

methods for the study of hard processes in perturbative QCD [36], as well as in nonpertur-

bative quark models [18]. Let us define for any function F of virtuality k2, decaying at large

virtuality as 1/k2 or faster, its α representation (Laplace transform)

F
(
k2
)
=

∫
∞

0

dαe−αk2f (α) , F
(
k2
)
∼ f (α) , (27)

where F (k2) is the image of the original f (α). The important asymptotic property of this

representation is, that the large power-like k2 behavior of F (k2) is given by derivatives of

the original g (α) at α = 0

F
(
k2
) k2→∞

=
f (0)

k2
+

f ′ (0)

k4
+

f ′′ (0)

k6
+ ... (28)

Thus, the large k2 asymptotics of the image F (k2) is related to the small α behavior of the

original f (α) .
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Let us introduce the following notations

1

D (k2)
∼ d (α) ,

m (k2)

D (k2)
∼ dm (α) , (29)

F (k2
+, k

2
−
)

D (k2
+)D (k2

−)
∼ G (α, β) ,

m
(
k2
+

)
F (k2

+, k
2
−
)

D (k2
+)D (k2

−)
∼ Gm,0 (α, β) , (30)

where in the second line the double α representation is implied. Because of the properties

(9) and (11) one has

d (0) = 1, d′ (0) = 0, d′′ (0) = 0, ...,

dm (0) = 0, d′m (0) = 0, ...

With this notation, using the standard technique of the α representation ([34, 35]), the

momentum integral in (26) is transformed into the following expression for the form factor

F loc
πγ∗γ∗

(
p2;Q2

1, Q
2
2

)
=

Nc

6π2fπ

∫
d (αβγ)

∆3
e−

1

∆ [−αβp2+γ(αQ2
1+βQ2

2)] (31)

· [d (γ) (αGm,0 (α, β) + βG0,m (α, β)) + γdm (γ)G (α, β)] ,

where ∆ = α + β + γ and
∫
d (αβγ) ... =

∫
∞

0
dα

∫
∞

0
dβ

∫
∞

0
dγ...

A. Symmetric kinematics

Let us first consider the symmetric kinematics Q2
1 = Q2

2 = Q2. Then one has

F loc
πγ∗γ∗

(
p2;Q2, Q2

)
=

Nc

6π2fπ

∫
d (αβγ)

∆3
e−

1
∆ [−αβp2+γ(α+β)Q2] (32)

· [d (γ) (αGm,0 (α, β) + βG0,m (α, β)) + γdm (γ)G (α, β)] .

Large Q2 behavior of F loc
πγ∗γ∗ (p2;Q2, Q2) corresponds to either small γ, small α + β, or to

large ∆. It is easy to check, that the leading asymptotics is ensured by small γ and thus

∆ → α + β. The term with factor γdm (γ) provides only exponentially small corrections

and does not contribute to the leading asymptotics. In this way, in (32), the integral over γ

(small distances) and the integral over α, β (large distances) is factorized. The integral over

γ, using (27), transforms the original d (γ) back to momentum space 1/D (Q2)

F loc
πγ∗γ∗

(
p2;Q2, Q2

) Q2→∞

=
Nc

6π2fπ

1

D (Q2)

∫
d (αβ)

(α + β)3
e

αβ
α+β

p2 (αGm,0 (α, β) + βG0,m (α, β)) .

(33)
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For the quark propagator, one obtains in this limit 1/D (Q2) → 1/Q2 plus exponentially

small corrections, due to the properties (9) and (11). It turns out, that the integral in (33)

is the α representation of the pion decay constant (21)

f 2
PS,π =

Nc

4π2

∫
d (αβ)

(α + β)3
e

αβ
α+β

p2 (αGm,0 (α, β) + βG0,m (α, β)) . (34)

Thus one obtains the asymptotic formula

F loc
πγ∗γ∗

(
0;Q2, Q2

) Q2→∞

=
2

3

1

Q2

f 2
PS,π

fπ
, (35)

for the form factor in symmetric kinematics, which for models, where fPS,π = fπ, reproduces

the Brodsky-Lepage factorization result [7].

γµγ5

π0(p)

⇒

γ∗(q1)

γ(q2)

π0(p)

γ∗(q1)

γ(q2)

⊗
Γπ(p)

FIG. 3. At large photon virtualities in the leading twist, in the standard factorization regime, the amplitude

is factorized into the soft pion matrix element and the hard coefficient function.

In order to define the pion DA, we carry out a change of variables in (34)

α → xL, β → xL, (36)

with x = (1− x) , then

ϕπ (x) =
Nc

4π2f 2
PS,π

∫
∞

0

dL

L
exxLp

2

(xGm,0 (xL, xL) + xG0,m (xL, xL)) , (37)

with ∫ 1

0

dxϕπ (x) = 1.

In the momentum representation and using the chiral limit p2 = 0, the result (37) for the

leading twist DA is [23]

ϕπ(x) =
Nc

4π2f 2
PS,π

∫
∞

−∞

dλ

2π

∫
∞

0

du
F (u+ iλx, u− iλx)

D (u− iλx)D (u+ iλx)
[xm (u+ iλx) + xm (u− iλx)] .

(38)
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This result is also in agreement with earlier calculations made in the instanton model

under some simplified assumptions [19, 37–39]. The arguments in the integrand have the

simple meaning of the transverse u ≡ k2
⊥
and longitudinal parts of the quark (antiquark)

virtualities.

For the pion vertex with the property (18), the pion DA vanishes at the endpoints

ϕf
π (x = 0) = ϕf

π (x = 1) = 0,

while for the second type of the pion vertex (19), one has instead

ϕuf
π (x = 0) = ϕuf

π (x = 1) =
Nc

4π2f 2
PS,π

∫
∞

0

du
m (u) g (u)

D (u)
. (39)

The pion DA ϕπ (x) in (37) is the leading twist-2 DA, defined as a gauge-invariant matrix

element of the nonlocal operator
〈
0

∣∣∣∣d (z) γµγ5P exp

(∫ z

−z

dzµAµ (z)

)
u (−z)

∣∣∣∣ π
+ (p)

〉
= i

√
2fPS

π pµ

∫ 1

0

dxei(2x−1)pzϕπ(x),

(40)

with the Dirac structure γµγ5 between the pion and vacuum states, z a light-like four-vector

(z2 = 0), and the gluon field Aµ (z).

Thus, in symmetric kinematics, the standard factorization is not violated and the OPE

is modified only by exponentially small terms.

B. Asymmetric kinematics I

Let us now consider the asymmetric kinematics Q2
1 = Q2, Q2

2 = 0. Then one has

F loc
πγ∗γ

(
p2;Q2, 0

)
=

Nc

6π2fπ

∫
d (αβγ)

∆3
e−

1
∆ [−αβp2+γαQ2] (41)

· [d (γ) (αGm,0 (α, β) + βG0,m (α, β)) + γdm (γ)G (α, β)] .

For simplicity in the following we shell consider the chiral limit, mcurr = 0, p2 = 0.

Let us first consider the model with the quark-pion vertex possessing the property (18).

In this case, the regime of small α does not lead to the leading asymptotic terms because of

property G (α, β) → 0 as α → 0. The leading large Q2 behavior corresponds to small γ, i.e.

∆ → α + β, (Fig. 2a), as for symmetric kinematics,

F loc,I
πγ∗γ

(
0;Q2, 0

) Q2→∞

= (42)

Nc

6π2fπ

∫
d (αβγ)

(α+ β)3
e−

1

α+β
γαQ2

d (γ) (αGm,0 (α, β) + βG0,m (α, β)) .

13



This asymptotic term corresponds to the standard factorization contribution (Fig. 3) and

the integral over γ again can be transformed back to the momentum space

F loc,I
πγ∗γ

(
0;Q2, 0

) Q2→∞

=
Nc

6π2fπ

∫
d (αβ)

(α + β)3
αGm,0 (α, β) + βG0,m (α, β)

D
(

αQ2

α+β

) .

After change of variables (36), we arrive at the representation

F loc,I
πγ∗γ

(
0;Q2, 0

) Q2→∞

=
2

3

f 2
PS,π

fπ

∫ 1

0

dx
1

D (xQ2)
ϕf
π (x) , (43)

where ϕπ (x) is defined in (37). Because in the considered case ϕπ (x) vanishes at the

endpoints the actual asymptotics is

FAs,I
πγ∗γ

(
0;Q2, 0

) Q2→∞

=
1

Q2

2

3

f 2
PS,π

fπ
Jf (44)

in agreement with (1), where Jf =
∫ 1

0
dx
x
ϕf
π (x) is given in the momentum space representa-

tion as [23]

Jf =
Nc

4π2f 2
PS,π

∫
∞

0

du
u

D (u)

∫ 1

0

dy
F f (u, yu)m (yu)

D (yu)
. (45)

As we have already noted in Introduction the asymptotic behavior (44) is not seen in

the BABAR data. Nevertheless, even for the case considered, in principle, it is possible to

simulate in some wide preasymptotic kinematical region a logarithmically enhanced behavior

of the form factor. This happens if one assumes that the pion DA entering (43) is almost

flat ϕπ (x) ≈ 1, i.e. it is close to a constant everywhere except small vicinity near endpoints.

Then, in order to regularize the integral for Jf in the infrared region, one needs to keep the

exponentially small terms in (43).

To this end, let us analyze the asymptotic behavior of the integral

JL = Q2

∫ 1

0

dx
1

D (xQ2)
, (46)

corresponding to a flat pion DA, for some popular models of the nonperturbative quark

propagator. Firstly, we consider the quark propagator

1

D (k2)
=

1− exp (−k2/Λ2)

k2
(47)

with the property of analytical confinement [40, 41]. In quark models, where this propagator

is used, the parameter Λ has the meaning of a dynamical quark mass [42], Λ ≡ Mq, with

typical values of Mq = 200− 300 MeV. Inserting (47) into (46) one obtains

JL
AC =

∫ 1

0

dx
1− exp

(
−xQ2/M2

q

)

x
(48)
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with the leading asymptotic behavior

JL
AC

Q2→∞

= ln
(
Q2/M2

q

)
+ γE, (49)

where γE is the Euler-Mascheroni constant. Both expressions (48) and (49) are very close to

the result (6) obtained in [14]. The difference is, that in the expression (48) the extra factor

(1− x)−1 in the exponent is absent, and more important the parameter in the exponent in

(48) has clear physical sense as a dynamical quark mass squared.

Secondly, let us take the propagator of the general form given in (8)

JL
Q = Q2

∫ 1

0

dx
1

xQ2 +m2 (xQ2)
. (50)

Then one obtains the asymptotic behavior

JL
Q

Q2
→∞

= ln
(
Q2/M2

q

)
+

∫
∞

0

du
M2

q −m2 (u)

(u+m2 (u))
(
u+M2

q

) . (51)

Again, this is similar to (7) obtained in [14], but with important differences. In fact, (7) is a

purely asymptotic formula and it is not allowed to keep the parameter M in the asymptotic

quark propagator. The expression (50) is valid for all Q2 and provides the leading asymp-

totics for the flat DA (51). It has correct large Q2 behavior for the quark propagator, 1/Q2,

and does not contain false power corrections.

C. Asymmetric kinematics II

Now, let us consider the model with the quark-pion vertex possessing the property (19).

It is convenient to rearrange the terms in the pion form factor in the following way

F loc,II
πγ∗γ

(
0;Q2, 0

)
=

Nc

6π2fπ

∫
d (αβγ)

∆3
e−

γα
∆

Q2 {βrm (β) (52)

+ αGm,0 (α, β) d (γ) + β [G0,m (α, β)− rm (β)]

+ γG (α, β) dm (γ) + βrm (β) [d (γ)− 1]

+β [d (γ)− 1] [βG0,m (α, β)− rm (β)]} ,

where we introduce notations for the originals

g (k2)

D (k2)
∼ r (α) ,

m (k2) g (k2)

D (k2)
∼ rm (α) .
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The term in the fourth line of (52) vanishes as γ → 0 or α → 0, and thus does not

participate in the leading asymptotics. The terms in the second line vanish as α → 0, but

remains finite as γ → 0. In this case, the 1/Q2 asymptotics is due to hard quark propagator

connecting two photon vertices and the coefficient reflects the soft properties of the pion (Fig.

2a and Fig. 3). For the terms in the third line one has an opposite situation, they vanish

with γ, but finite as α → 0. Thus, the 1/Q2 asymptotics is due to hard quark propagator

connecting pion and hard photon vertices, while the coefficient correlates soft properties of

the pion and photon (Fig. 2b and Fig. 4). The term in the first line of (52) provides the

asymptotics ∼ ln (Q2) /Q2. This asymptotics corresponds to a combined soft-hard regime

when one parameter (i.e. α) vanishes, while the other (γ) goes to infinity1.

After standard manipulations with the integrals one obtains the following large-Q2 asymp-

totic behavior transformed to the momentum representation

FAs,II
πγ∗γ

(
0;Q2, 0

) Q2
→∞

=
1

Q2

Nc

6π2fπ

[∫
∞

0

du
m (u) g (u)

D (u)
ln

(
Q2

u

)
+ A

]
, (53)

A =

∫
∞

0

du
1

D (u)

∫ 1

0

dy
m (yu)

D (yu)

{
uF uf (u, yu)−

[
u+ 2m2 (u)

]
g (yu)

}
. (54)

The coefficient of the logarithmic term in (53) is clearly related to the fact that the pion

DA for the case considered does not vanish at the endpoints and proportional to the value

of the pion DA at these points, see (39). When the function g (u) ≡ 0, we reproduce

the asymptotics (44) and (45) corresponding to the quark pion vertex with property (18).

The variable u in the integral (53) may be considered as the square of quark transverse

momentum in the pion, u ∼ k2
⊥
. The asymptotic expression (53) generalizes the asymptotic

formula (1) for the case when the standard factorization is violated.

IV. THE INSTANTON AND CHIRAL MODELS

In the previous section we considered the asymptotic behavior of the pion transition

form factor given in (23)-(25). In order to calculate this form factor in the whole kinematic

region and compare with available experimental data, we should further specify our model

assumptions. Let us introduce the momentum-dependent dynamical quark mass entering

the propagator (8) as (we consider the chiral limit mcurr = 0)

m
(
k2
)
= Mqf

2
(
k2
)

(55)

1 See for classification of different regimes [36].
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π0(p)

⇒

γ∗(q1)

γ(q2)

π0(p)

γ∗(q1)

γ(q2)

⊗
σρλ

Γµ(q2)

FIG. 4. The factorization of the amplitude into the soft part related to the σµν projection of the photon

wave function and the hard part of the quark propagator.

and take the profile function f (k2) in a Gaussian form

f
(
k2
)
= exp

(
−Λk2

)
. (56)

Thus, the model contains two parameters, the dynamical quark massMq and the non-locality

parameter Λ.

Next, we need to specify the nonlocal part of the vector vertex that does not participate

in the leading asymptotics, but is very important in implementing the low energy theorems.

The nonlocal part of the vector vertex in (13) is taken of the form [30]

∆Γµ (k, q, k
′ = k + q) = (k + k′)µ

m (k′2)−m (k2)

k′2 − k2
. (57)

Further, we will consider two kinds of quark-pion vertex (16), the first given by

FI

(
k2
+, k

2
−

)
= Mqf

(
k2
+

)
f
(
k2
−

)
, (58)

and the second by

Fχ

(
k2
+, k

2
−

)
=

1

2
Mq

[
f 2

(
k2
+

)
+ f 2

(
k2
−

)]
. (59)

The first one is motivated by the instanton picture of QCD vacuum [24] and the second by

the nonlocal chiral quark model advertised in [25]. We shall in the further discussion refer

to vertex function (58), which has the k2 → ∞ behavior (18), as the instanton model, and

to the other choice (59), corresponding to k2 → ∞ behavior(19), as the chiral model.

The important requirement, that correlates the parameters of the models, is to fit the pion

decay constant fπ. For the instanton based model this constant is given by the expression
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found in [24]

f 2
DP,π =

Nc

4π2

∫
∞

0

du u
m (u)

D2 (u)

(
m (u)− um′ (u) + u2 (m′ (u))

2
)
, (60)

and for the chiral model [25] the expression for fπ coincides with the Pagels-Stokar form

(21). Within the nonlocal chiral model approach there is a difference between the vertex

corresponding to the conserved axial current,

Γ5
µ (k, q, k

′ = k + q) =
[
γµγ5 −∆Γ5

µ (k, q, k
′ = k + q)

]
(61)

and the local vertex (20), corresponding to the leading twist operator. The total axial vertex

Γ5
µ (q) ensures the axial Ward-Takahashi identity and the Goldberger-Treiman relation. The

nonlocal part of the axial vertex, that leads to (21) is given in [44] and to (60) is given in

[31, 45, 46].

Fig. 5 shows the parameter space where the pion decay constant is fixed by its value

taken in the chiral limit fπ = 85 MeV [47].

0,10 0,15 0,20 0,25 0,30 0,35 0,40
0,0

0,5

1,0

1,5

2,0

2,5

 (G
eV

-2
)

Mq (GeV)

FIG. 5. The correlation between dynamical quark mass Mq and the nonlocal parameter Λ that fit the pion

decay constant in chiral limit fπ = 85 MeV. The solid line is for the chiral model fPS,π = fπ, and the

dashed line is for the instanton model fDP,π = fπ.
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For the instanton model (58), the pion DA (37) is reduced to

ϕI
π (x) =

Nc

4π2f 2
PS,π

Mq

∫
∞

0

dL

L
(xσm (xL) σ (xL) + xσ (xL) σm (xL)) , (62)

ϕI
π (x = 0) = 0,

∫ 1

0

dxϕI
π (x) = 1.

For the chiral model (59), one obtains the pion DA

ϕχ
π (x) =

Nc

8π2f 2
π

∫
∞

0

dL

L
(xdm2 (xL) d (xL) + xd (xL) dm2 (xL) + dm (xL) dm (xL)) , (63)

ϕχ
π (x = 0) =

Nc

4π2f 2
π

∫
∞

0

du
m2 (u)

D (u)
,

∫ 1

0

dxϕχ
π (x) = 1 (64)

which is not vanishing at the endpoints x = 0 and x = 1.

In above expressions, we used the following notations for the correspondence between

momentum and α-representation (in addition to definitions (29), (30))

m2 (k2)

D (k2)
∼ dm2 (α) ,

f (k2)

D (k2)
∼ σ (α) ,

m (k2) f (k2)

D (k2)
∼ σm (α) .

The explicit form of the functions in α representation in the case of the model defined by

(55) and (56) is given in Appendix.

In Fig. 6 the different shapes of the pion DA are shown as they are calculated within the

instanton and chiral models for the values of the dynamical quark mass Mq = 300 MeV and

Mq = 125 MeV. The parameter Λ is defined to fit the pion decay constant in chiral limit

fπ = 85 MeV. For smaller Mq the pion DA is close to a flat shape. For larger Mq it is more

sensitive to the nonlocal part of the photon vertex and, in case of the instanton model, it is

strongly suppressed in the vicinity of endpoints.

In Fig. 7 the prediction for the pion transition form factor in symmetric kinematics

calculated from (23)-(25) is presented. The explicit expression for the instanton model is

F loc,I
πγ∗γ∗

(
0;Q2, Q2

)
=

NcMq

6π2fπ

∫
d (αβγ)

∆3
e−

1
∆
γ(α+β)Q2

σ (β) (65)

· [2ασm (α) d (γ) + γσ (α) dm (γ)] ,

and for the chiral model is

F loc,χ
πγ∗γ∗

(
0;Q2, Q2

)
=

Nc

6π2fπ

∫
d (αβγ)

∆3
αd (γ)

[
e−

1
∆
γ(α+β)Q2

dm2 (α) d (β) (66)

+
(
e−

1
∆
γ(α+β)Q2

+ e−
1
∆
α(β+γ)Q2

)
dm (α) dm (β)

]
.
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FIG. 6. Pion distribution amplitude for the instanton model with parameters a) Mq = 125 MeV, Λ = 0.016

GeV−2 and b) Mq = 300 MeV, Λ = 1.3 GeV−2; and chiral model with parameters c) Mq = 125 MeV,

Λ = 0.0098 GeV−2 and d) Mq = 300 MeV, Λ = 0.639 GeV−2.

As it is seen from Fig.7, the qualitative behavior of the pion transition form factor for fixed

quark mass is similar for the two different models. For Mq = 300 MeV, the combination

Q2Fπγ∗γ∗ rapidly turns into the asymptotic regime as expected in the standard factorization

scheme. The asymptotic limits are different for the two models, 2fπ/3 for the chiral model

and 2f 2
PS,π/3fπ for the instanton model. However, for smaller masses the effect of vertex

non-localities is diminished, in particular fDP,π ≈ fPS,π for the instanton model. One sees

from Fig. 7, that for Mq = 125 MeV the behavior of the form factors is similar for both

models.

V. THE BABAR DATA WITHIN THE INSTANTON AND CHIRAL MODELS

Let us consider the model predictions for the pion transition form factor in the asymmetric

kinematics (q21 = Q2, q22 = 0) calculated from (23)-(25) in the region, where experimental
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data exist. The explicit expression for the instanton model is

F loc,I
πγ∗γ

(
0;Q2, 0

)
=

NcMq

6π2fπ

∫
d (αβγ)

∆3
e−

αγ
∆

Q2

(67)

· [(ασm (α)σ (β) + βσ (α)σm (β)) d (γ) + γσ (α) σ (β) dm (γ)] ,

and for the chiral model is

F loc,χ
πγ∗γ

(
0;Q2, 0

)
=

Nc

12π2fπ

∫
d (αβγ)

∆3
e−

αγ
∆

Q2 {γdm (α) d (β) dm (γ) (68)

+d (γ) [αdm2 (α) d (β) + d (α) βdm2 (β) + (2α+ β) dm (α) dm (β)]} .

In Fig. 8, we show the predictions for different values of Mq.For a quark mass Mq = 300

MeV the model dependence is very strong and the theoretical curves are very far from the

experimental points. The chiral model overshoots the data, while the instanton model,

in correspondence with the standard factorization scenario, shows the asymptotic 1/Q2

behavior very early, already at Q2 ∼ 1 GeV2. It is clearly seen, that in order to describe

the BABAR data, one has to take the dynamical quark mass Mq ≈ 125 MeV. Then both

models have an qualitatively good description, with some preference to the chiral model. In

Figs. 9a and 10a we show that the parameter space that describes the data up to 40 GeV2 is

rather narrow. For the chiral model it is Mq ≈ 125±10 MeV, and for the instanton model it

is Mq ≈ 130± 5 MeV. Thus in this region the instanton model simulate the logarithmically

enhanced behavior due to rather flat pion DA. However, the further behavior of the form

factor is rather different for different models as it is seen in Figs. 9b and 10b, where the

kinematical region up to 100 GeV2 is shown. The instanton model finally reach its actual

asymptotic 1/Q2 that follows from (44) and (45) with the asymptotic coefficient given by

JI =
Nc

4π2f 2
PS,π

Mq

∫
∞

0

du
uf (u)

D (u)

∫ 1

0

dy
f (yu)m (yu)

D (yu)
(69)

For the chiral model the logarithmic growth continues for all Q2 with the asymptotics fol-

lowing from (53)

FAs,χ
πγ∗γ

(
0;Q2, 0

) Q2
→∞

=
1

Q2

Nc

12π2fπ

[∫
∞

0

du
m2 (u)

D (u)
ln

(
Q2

u

)
+ Aχ

]
, (70)

Aχ =

∫
∞

0

du
m (u)

D (u)

∫ 1

0

dy
m (yu)

D (yu)
[u− 2m (u)m (yu)] .
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Let us make few comments. First of all, the form factor and its asymptotics are rather

different at lower Q2. From Fig. 11 it is seen that the asymptotic curve conjugates the

calculated curve in the region of order of 100 GeV2. Secondly, the fact, that the quark mass

leading to a satisfactory fit of the data is quite small, is not fully unexpected. There are

not many quantities that are very sensitive to the dynamical quark mass. The precisely

known contribution of the hadronic vacuum to the anomalous magnetic moment of muon,

g − 2, is infrared sensitive and demands low values for the quark mass, Mq ≈ 200 MeV

[48–50]. Finally, remember also, that understanding the asymptotics of the pion transition

form factor is important for selection of realistic nonperturbative models, used to estimate

the hadronic contribution of the light-by-light process to g − 2 [51, 52].

VI. CONCLUSIONS

The present paper is devoted to the so-called BABAR puzzle. New very precise data

were obtained by the BABAR collaboration for the photon-pion transition form factor in

very wide kinematical region up to large photon virtualities Q2 ≈ 40 GeV2 [12]. The data

overshoot the asymptotic limit for Q2Fπγγ∗ (Q2) predicted by Brodsky and Lepage [7], and

have a tendency to grow further. Both facts are in strong contradiction with the standard

QCD factorization approach, which constitutes the BABAR puzzle.

The main problem is the unstopped growth of the new data points forQ2Fπγγ∗ (Q2) that is

inconsistent with the predicted Q2Fπγγ∗ (Q2) → constant, following from simple asymptotic

properties of the massless quark propagator. The key point, to solve this problem, is to

consider the properties of the pion vertex function F (k2
1, k

2
2) which is the analog of the light-

cone pion wave function. There are two possibilities for the momentum dependence of the

pion vertex function. In the limit, when one quark virtuality, k2
1, goes to infinity, and the

other, k2
2, remains finite, the vertex function may not necessarily tend to zero. When it goes

to zero, the pion DA ϕπ(x), which is a functional of the pion vertex function, is zero at the

endpoints, ϕπ(0) = ϕπ(1) = 0, with either strong or weak suppression in the neighborhood of

the endpoints x = 0 and x = 1. For the situation of strong suppression, the asymptotic 1/Q2

behavior of the pion form factor in asymmetric kinematics (Q2
1 = Q2, Q2

2 = 0) is developed

very early, in contradiction with the BABAR data. For weak suppression (resembling a flat

distribution amplitude of the pion), the asymptotic 1/Q2 behavior is developed quite late,
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and can give a reasonable description of the data in the BABAR region with a lnQ2/Q2

behavior in this region. For the other case of non-vanishing pion vertex function in the

above limit, the pion DA ϕπ(x) is not zero at the endpoints, and therefore the asymptotic

lnQ2/Q2 behavior persists over the whole range, in particular in the BABAR region.

In order to fit the available data on the photon-pion transition form factor from CELLO,

CLEO and BABAR, we have analyzed the parameter space of two examples of nonperturba-

tive models, motivated by the instanton [24] and the chiral [25] models, characterized by the

two parameters, dynamical quark mass Mq and the parameter of non-locality Λ. The main

conclusion is, that the fit to the data requires a quite small dynamical quark mass Mq ≈ 125

MeV with rather small uncertainty. As a consequence, the parameter of non-locality, that

fits the pion decay constant fπ, is very small, Λ ∼ 0.01 GeV−2. Thus, one has an almost local

quark model with very flat regulators in momentum space, that considerably diminishes the

difference between the nonperturbative models considered in this work. In this respect, this

situation resembles the fit by a simple local quark model, made in [13] with Mq = 135 MeV.

On the other hand, in [14] only the leading asymptotics were used and large mass parameter

of order of 1 GeV were required, to fit the BABAR data.

Finally we would like to point out, that in the present work, we did not consider QCD

evolution. In [14], it was argumented, that the flat pion DA corresponds to a very small

momentum scale, and hence QCD evolution is frozen. Our calculations support this point

of view. In particular, our choice of parameters fitting the BABAR data leads to quite large

values of the quark condensate, also corresponding to a very low normalization point.

Concluding we may say, that the BABAR data being unique in their accuracy and cov-

ering a very wide kinematical range, are consistent with considerations based on nonpertur-

bative QCD dynamics and may indicate specific properties of the pion wave function.
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VIII. APPENDIX

Here, the explicit expressions of the functions in α representation for the Gaussian model

defined by (55) and (56) are given

d (α) = 1 +
∞∑

n=1

(−1)n

n!

[
M2

q (α− 4Λn)
]n

Θ (α− 4Λn) ,

dm (α) = Mq

∞∑

n=0

(−1)n

n!

[
M2

q (α− Λ (2 + 4n))
]n

Θ (α− Λ (2 + 4n)) ,

dm2 (α) = M2
q

∞∑

n=0

(−1)n

n!

[
M2

q (α− Λ (4 + 4n))
]n

Θ (α− Λ (4 + 4n)) ,

σ (α) =

∞∑

n=0

(−1)n

n!

[
M2

q (α− Λ (1 + 4n))
]n

Θ (α− Λ (1 + 4n)) ,

σm (α) = Mq

∞∑

n=0

(−1)n

n!

[
M2

q (α− Λ (3 + 4n))
]n

Θ (α− Λ (3 + 4n)) .
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FIG. 7. Photon-pion transition form factor in symmetric kinematics for the instanton model with parameters

Mq = 125 MeV, Λ = 0.016 GeV−2 (short pointed line), Mq = 300 MeV, Λ = 1.3 GeV−2(dash-dotted line);

and chiral model with parameters Mq = 125 MeV, Λ = 0.0098 GeV−2 (solid line) and Mq = 300 MeV,

Λ = 0.639 GeV−2 (dashed line). The straight dotted line is asymptotic limit 2fπ/3.
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FIG. 8. Photon-pion transition form factor in asymmetric kinematics for the instanton model with param-

eters Mq = 125 MeV, Λ = 0.016 GeV−2 (short pointed line), Mq = 300 MeV, Λ = 1.3 GeV−2(dash-dotted

line); and chiral model with parameters Mq = 125 MeV, Λ = 0.0098 GeV−2 (solid line) and Mq = 300 MeV,

Λ = 0.639 GeV−2 (dashed line). The straight dotted line is asymptotic limit 2fπ.
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FIG. 9. Photon-pion transition form factor in asymmetric kinematics for the chiral model with parameters

Mq = 125 MeV, Λ = 0.0098 GeV−2 (solid line), Mq = 135 MeV, Λ = 0.0203 GeV−2 (dashed line), Mq = 115

MeV, Λ = 0.0038 GeV−2 (dotted line). The straight dotted line is asymptotic limit 2fπ.
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FIG. 10. Photon-pion transition form factor in asymmetric kinematics for the instanton model with pa-

rameters Mq = 115 MeV, Λ = 0.0038 GeV−2 (dotted line), Mq = 125 MeV, Λ = 0.0098 GeV−2 (solid line),

Mq = 135 MeV, Λ = 0.0203 GeV−2 (dashed line), Mq = 150 MeV, Λ = 0.077 GeV−2 (dash-dot-dotted line).

The straight dotted line is asymptotic limit 2fπ.
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FIG. 11. Photon-pion transition form factor (solid line) and its asymptotic part (dashed line) in asymmetric

kinematics for the chiral model with parameters Mq = 125 MeV, Λ = 0.0098 GeV−2 .
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