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1. Introduction

The Standard Model (SM) of particle physics has been successfully verified by experiment

at low energies. Nevertheless, even if the Higgs boson is discovered, the SM will still be

considered to be an incomplete theory, as it fails to provide the long-sought missing link

between Einstein’s General Relativity and Quantum Mechanics. The leading candidate for

a quantum theory of gravity, string theory, typically posits the existence of several new

ingredients, which are absent in the SM: new spatial dimensions, a symmetry between

bosons and fermions (supersymmetry), as well as new gauge interactions. All of these new

ingredients are manifestly present at the Planck scale, but it is not at all clear which of them

survive down to low energies. Traditionally, supersymmetry and extra gauge interactions

have attracted the most attention, and their consequences for collider phenomenology have

been extensively studied [1,2]. Within the last 10 years or so, there has been a resurgence of

interest in models with extra spatial dimensions, whose presence might be revealed in high

energy collider experiments such as the Tevatron at Fermilab, the Large Hadron Collider

(LHC) at CERN, or the proposed International Linear Collider (ILC). By now a whole

plethora of extra-dimensional models have been described and studied to various extent in

the literature. Roughly speaking, they can all be classified according to the following two

criteria:

• How many and which of the SM particles can access the extra dimensions (the bulk).

The two extremes here are provided by the “large” extra dimension models (also known

as ADD, after the initials of their original proponents) [3], in which only gravity can

enter into the bulk, and the Universal Extra Dimensions (UED) models [4], in which all

SM particles are allowed to propagate in the bulk.

• What is the metric of the bulk. It can be flat (e.g. in UED), or warped [5].

In this paper, we shall concentrate on the simplest case of a single flat extra dimension,

which is accessible to the full SM particle content [4] (see Refs. [6–11] for the case of two

universal extra dimensions). This particular scenario has recently been studied in relation to

collider phenomenology [12–29], indirect low-energy constraints [30–43], dark matter [44–66]

and cosmology [67–73]. It is therefore of great interest to have an implementation of the

Minimal UED model (reviewed below in Section 2) in the most popular general purpose

computer programs for collider and astroparticle phenomenology. The main goal of this
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paper is to present one such implementation, suitable for either CalcHEP [74] or CompHEP [75].

There are several advantages of choosing CalcHEP and CompHEP for this purpose:

• CalcHEP and CompHEP can be used for parton-level event generation, preserving the full

spin correlations in both production and decay.

• CalcHEP and CompHEP can be easily interfaced [76] to a general purpose event generator

such as PYTHIA [77] for the simulation of fragmentation, hadronization and showering.

• CalcHEP and CompHEP can be easily interfaced with a dark matter program such as

micrOMEGAs [78] for the calculation of the relic density and detection rates of a generic

dark matter candidate.

• The implementation of new models is very straightforward and user-friendly, as we shall

demonstrate below with the example of Minimal UED.

The paper is organized as follows. In Section 2 we first review the Minimal UED model

(MUED), introducing the relevant new particles, couplings and interactions. In Section 3

we explain how those were incorporated in CalcHEP and CompHEP. Throughout the paper we

assume that the readers are already familiar with these programs, so that we only need to

explain the additional *.mdl model files related to our UED implementation‡. In Section 4

we discuss how the implementation can be used to study the collider phenomenology of

MUED and show some illustrative results. In the Appendices we list some more technical

results which may be useful to some readers. For example, Appendix A contains the five-

dimensional UED Lagrangian and Appendix C contains the resulting Feynman rules for the

level 1 KK particles after compactification.

2. The Minimal UED Model

2.1. KK decomposition

The five-dimensional (5D) UED model [4] is simply the Standard Model placed in an extra

dimension compactified on an S1/Z2 orbifold, as shown in Fig. 1. Let us label the usual

3 + 1 space-time dimensions with xµ, µ = 0, 1, 2, 3, reserving the coordinate y for the extra

dimension. In order to end up with chiral fermions in 4 dimensions and to project out

‡ Our implementation was originally developed for the Second MC4BSM workshop in Princeton, March

24-27, 2007. Since then, the Minimal UED model has been partially implemented in PYTHIA [79], and more

fully in CalcHEP, MadGraph, PYTHIA or Sherpa through FeynRules [80, 81].
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Figure 1. The S1/Z2 compactification of a single extra dimension on a circle with opposite

points identified, as indicated by the grey arrows. The blue dots represent the fixed

(boundary) points and y is the coordinate along the extra dimension.

unwanted gauge degrees of freedom, one typically imposes an additional symmetry, thus

creating a manifold with boundaries. For example, in the case of the S1/Z2 orbifold shown

in Fig. 1, one identifies the opposite points on the circle, which creates two fixed points,

denoted with the blue dots. Any 5-dimensional field can now be assigned a definite parity

with respect to the orbifold projection P5 : y → −y. For example, consider a generic scalar

field φ(x, y). An even scalar field φ+(x, y) is expanded in Kaluza-Klein (KK) modes as

φ+(x, y) =
1√
πR

φ+
0 (x) +

2√
πR

∞
∑

n=1

φ+
n (x) cos

ny

R
, (1)

and obeys Neumann boundary conditions at the two fixed points:
(

∂φ+(x, y)

∂y

)

y=0

=

(

∂φ+(x, y)

∂y

)

y=πR

= 0. (2)

Here x is the usual 4-dimensional spacetime coordinate xµ, R is the size of the extra dimension

and n labels the KK-level. The SM modes correspond to n = 0. In contrast, the KK

decomposition of an odd scalar field

φ−(x, y) =
2√
πR

∞
∑

n=1

φ−
n (x) sin

ny

R
, (3)

is missing a zero mode (n = 0) and obeys Dirichlet boundary conditions

φ−(x, 0) = φ−(x, πR) = 0. (4)

One can similarly assign a definite P5 parity to each component of a gauge field AM(x, y),

M = 0, 1, 2, 3, 5. The usual 3+1 components Aµ, µ = 0, 1, 2, 3, are chosen to be even, which
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ensures the presence of the SM gauge fields A0
µ(x) at the n = 0 level, while the extra-

dimensional component A5 is taken to be odd. The corresponding KK expansions of the

5-dimensional gauge fields are given by

Aµ(x, y) =
1√
πR

{

A0
µ(x) +

√
2

∞
∑

n=1

An
µ(x) cos(

ny

R
)

}

, (5)

A5(x, y) =

√

2

πR

∞
∑

n=1

An
5 (x) sin(

ny

R
) . (6)

At the two fixed points y = 0 and y = πR, the components Aµ(x, y) (A5(x, y)) obey Neumann

(Dirichlet) boundary conditions analogous to eq. (2) (eq. (4)).

The KK decomposition of a fermion is rather interesting. Since there is no chirality

in 5 dimensions, the KK modes of the SM fermions come in vectorlike pairs, i.e. there is

a left-handed and a right-handed KK mode for each SM chiral fermion. For example, the

SU(2)W -singlet chiral fermions ψ0
R(x) of the SM (which happen to be all right-handed) are

obtained from the following decomposition

ψ+
R(x, y) =

1√
2πR

ψ0
R(x) +

1√
πR

∞
∑

n=1

ψn
R(x) cos

ny

R
, (7)

ψ−
R(x, y) =

1√
πR

∞
∑

n=1

ψn
L(x) sin

ny

R
, (8)

where upon compactification, the two KK fermions ψn
R(x) and ψ

n
L(x) at any given KK level

n pair up to give a Dirac fermion of mass n
R
. Similarly, the SU(2)W -doublet SM fermions

Ψ0
L(x) (which happen to be left-handed) arise from

Ψ+
L(x, y) =

1√
2πR

Ψ0
L(x) +

1√
πR

∞
∑

n=1

Ψn
L(x) cos

ny

R
, (9)

Ψ−
L(x, y) =

1√
πR

∞
∑

n=1

Ψn
R(x) sin

ny

R
, (10)

where the massive Dirac fermion at each n is now formed from Ψn
L(x) and Ψn

R(x).

From eqs. (7-10) we see that there exist left-handed KK modes ψn
L(x), which are

associated with the right-handed SM fermions ψ0
R(x) and vice versa — there are right-

handed KK modes Ψn
R(x), which go along with the left-handed SM fermions Ψ0

L(x). This

often leads to some confusion in the literature when it comes to the labelling of fermion KK

partners. It should be understood that the chiral index (L or R) of a KK mode fermion

refers to the chirality of its SM partner. Here we shall also utilize an alternative convention,

introduced in [82], where the KK fermions are identified by their SU(2)W quantum numbers
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Table 1. Fermion content of the Minimal UEDmodel. SU(2)W -doublets (SU(2)W -singlets)

are denoted with capital (lowercase) letters. KK modes carry a KK index n, and for

simplicity we omit the index “0” for the SM zero modes.

SU(2)W representations SM mode KK modes

Quark doublet qL(x) =





UL(x)

DL(x)



 Qn
L(x) =





Un
L(x)

Dn
L(x)



, Qn
R(x) =





Un
R(x)

Dn
R(x)





Lepton doublet LL(x) =





νL(x)

EL(x)



 Ln
L(x) =





νnL(x)

En
L(x)



, Ln
R(x) =





νnR(x)

En
R(x)





Quark Singlet uR(x) un
R(x), u

n
L(x)

Quark Singlet dR(x) dnR(x), d
n
L(x)

Lepton Singlet eR(x) enR(x), e
n
L(x)

instead: SU(2)W -doublets (SU(2)W -singlets) are denoted with capital (lowercase) letters.

This convention was already employed in eqs. (7-10) as well. With those conventions, the

fermion content of the Minimal UED model is listed in Table 1.

Finally, notice that the geometry in Fig. 1 is still invariant under the interchange of the

two fixed points. The corresponding Z2 symmetry is the celebrated KK parity and will be a

symmetry of the Lagrangian as long as one continues to treat the two boundary points in a

symmetric fashion.

2.2. KK mass spectrum

At tree level, the mass mn of any KK mode at the n-th KK level is given by

m2
n =

n2

R2
+m2

0 , (11)

where R is the radius of the extra dimension as illustrated in Fig. 1, and m0 is the mass

of the corresponding SM particle (zero mode). The resulting mass spectrum for the first

KK level is shown in Fig. 2a for R−1 = 500 GeV, and can be seen to be highly degenerate.

In fact, several of the lightest n = 1 KK modes have no allowed decays and are absolutely

stable.

However, this drastic conclusion is completely reversed, once radiative corrections are

taken into account [82]. First, the mass spectrum gets renormalized by bulk interactions,

which are uniquely fixed in terms of the SM gauge and Yukawa couplings, and thus contain no

new parameters beyond those already appearing in the SM. At the same time, the KK masses

also receive contributions from terms localized on the boundary points (the two blue dots in
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Figure 2. The spectrum of the first KK level at (a) tree level and (b) one-loop, for

R−1 = 500 GeV, ΛR = 20, mh = 120 GeV, and assuming vanishing boundary terms at the

cut-off scale Λ. (From Ref. [82].)

Fig. 1). The coefficients of the boundary terms are in principle new free parameters of the

theory. The Minimal UED model makes the ansatz that all boundary terms simultaneously

vanish at some high scale Λ > R−1. The boundary terms are then regenerated at lower scales

through RGE running, and lead to additional corrections to the KK mass spectrum [82]. The

resulting one-loop corrected mass spectrum is shown in Fig. 2b. The mass splittings among

the different n = 1 KK modes are now sufficiently large to allow prompt cascade decays to

the lightest KK particle (LKP). For the parameter values shown in the figure, the LKP turns

out to be§ the KK “photon” γ1, although at larger mh the LKP can also be the charged KK

Higgs boson H±
1 [23].

The mass eigenstates of the KK photon γn and the KK Z-boson Zn are mixtures of the

corresponding interaction eigenstates: the KK mode Bn of the hypercharge gauge boson and

the KK mode W 3
n of the neutral SU(2)W gauge boson. The mixing angle θn is obtained by

diagonalizing the mass matrix in the (Bn,W
3
n) basis







n2

R2 +
1
4
g21v

2 + δ̂m2
Bn

1
4
g1g2v

2

1
4
g1g2v

2 n2

R2 +
1
4
g22v

2 + δ̂m2
W 3

n





 , (12)

where g1 (g2) is the hypercharge (weak) gauge coupling, v = 246 GeV is the vev of the SM

Higgs boson, and δ̂ represents the total one-loop correction, including both bulk (δ) and

§ Strictly speaking, the true LKP in Fig. 2b is the KK graviton G1 (not shown). However, due to its

extremely weak couplings, G1 is irrelevant for collider phenomenology. For its astrophysical implications,

see [83].
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f̄0

f0

V2
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f0

Figure 3. The effective f̄0V
µ
2 f0 KK-number violating coupling on the left is generated at

one loop order from the one loop diagram on the right.

boundary (δ̄) contributions [82]:

δ̂m2
Vn

≡ δm2
Vn

+ δ̄m2
Vn
. (13)

Note that for n ≥ 1 the KK mixing angle θn is in general different from the zero-mode

(Weinberg) angle θ0 ≡ θW in the SM. For typical values of R−1 and Λ, θn ≪ θW , and

the neutral gauge boson KK mass eigenstates become approximately aligned with the

corresponding interaction eigenstates: γn ≈ Bn and Zn ≈W 3
n for n ≥ 1. This approximation

will be used in our MUED implementation described below in Section 3.

2.3. KK interactions

The bulk interactions of the KK modes are already fixed by the SM. The 5D MUED

Lagrangian is a straightforward generalization of the SM Lagrangian to 5 dimensions, as

discussed in Appendix A. Upon compactification, integrating over the extra-dimensional

coordinate y, one recovers the bulk interactions among the various KK modes and their SM

counterparts (see Appendix C). Since translational invariance holds in the bulk, all these

bulk interactions conserve both KK number and KK parity.

However, as already alluded to in the previous subsection, there may also exist

“boundary” interactions localized on the fixed points in Fig. 1. They do not respect

translational invariance and therefore break KK number by even units. Such interactions

may already appear at the scale Λ, being generated by the new physics which is the ultraviolet

completion of UED. In the Minimal UED version, one makes the assumption that no such

terms are present at the scale Λ. Even so, upon renormalization to lower energy scales,

boundary terms are radiatively generated from bulk interactions. This is illustrated in Fig. 3,

where we show how an effective coupling between a level 2 KK gauge boson V2 and two SM
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Table 2. Boundary interactions involving level 2 KK gauge bosons and two SM fermions.

Here I3 is the fermion isospin and YL (YR) is the hypercharge of a left-handed (right-handed)

SM fermion. In the case of top quarks, one has to include in δ̄(mf2) the additional corrections

proportional to the top Yukawa coupling ht: δ̄ht
mTn

and δ̄ht
mtn , respectively (see [82] for

details).

n = 2 KK boson n = 0 SM fermion Vertex

U(1)Y gauge boson Lepton ig1γ
µ 1√

2

1

16π2 ln
(

Λ

µ

)2
[

YL

2
PL

(

31

24
g21 +

27

8
g22
)

+YR

2
PR

(

14

3
g21
)]

B2 Quark (up) ig1γ
µ 1√

2

1

16π2 ln
(

Λ

µ

)2
[

YL

2
PL

(

7

24
g21 +

27

8
g22 + 6g23

)

+YR

2
PR

(

13

6
g21 + 6g23

)]

Quark (down) ig1γ
µ 1√

2

1

16π2 ln
(

Λ

µ

)2
[

YL

2
PL

(

7

24
g21 +

27

8
g22 + 6g23

)

+YR

2
PR

(

2

3
g21 + 6g23

)]

SU(2)W gauge boson Lepton iI3g2γ
µ 1√

2

1

16π2 ln
(

Λ

µ

)2

PL

[

9

8
g21 − 33

8
g22
]

Z2 Quark iI3g2γ
µ 1√

2

1

16π2 ln
(

Λ

µ

)2

PL

[

1

8
g21 − 33

8
g22 + 6g23

]

SU(2)W gauge boson Lepton i g2√
2
γµ 1√

2

1

16π2 ln
(

Λ

µ

)2

PL

[

9

8
g21 − 33

8
g22
]

W2 Quark i g2√
2
γµ 1√

2

1

16π2 ln
(

Λ

µ

)2

PL

[

1

8
g21 − 33

8
g22 + 6g23

]

SU(3)c gauge boson Quark (up) ig3
λA

2
γµ 1√

2

1

16π2 ln
(

Λ

µ

)2
[

PL

(

1

8
g21 +

27

8
g22 − 11

2
g23
)

+PR

(

2g21 − 11

2
g23
)]

G2 Quark (down) ig3
λA

2
γµ 1√

2

1

16π2 ln
(

Λ

µ

)2
[

PL

(

1

8
g21 +

27

8
g22 − 11

2
g23
)

+PR

(

1

2
g21 − 11

2
g23
)]

fermions is generated at one loop from a diagram with level 1 KK particles running in the

loop. This effective coupling

−i g√
2

(

δ̄m2
A2

m2
2

− 2
δ̄mf2

m2

)

ψ̄0γ
µT aP+ψ0A2µ

can be expressed in terms of the boundary contributions δ̄mn (see eq. (13)) to the one-loop

mass corrections [82]. The explicit form of this effective coupling is summarized in Table 2

for each different type of level 2 KK gauge boson and for the various possible SM fermion

pairs.

3. Model files

Having reviewed the MUED model, we are now in a position to describe its implementation

in CalcHEP and CompHEP. Each one of these programs gives its users an opportunity to

incorporate new physics in the already existing framework of the SM, MSSM, etc. To
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Table 3. KK gauge bosons.

Name A A+ 2*spin mass width color

G1
µ KG KG 2 MKG wKG 8

B1
µ B1 B1 2 MB1 0 1

Z1
µ Z1 Z1 2 MZ1 wZ1 1

W 1
µ ∼ W+ ∼ W− 2 MW1 wW1 1

G2
µ ∼ G2 ∼ G2 2 MKG2 wKG2 8

B2
µ B2 B2 2 MB2 wB2 1

Z2
µ Z2 Z2 2 MZ2 wZ2 1

W 2
µ ∼ W2 ∼ w2 2 MW2 wW2 1

this end, one must simply supply an updated version of the four model files defining a

given physics scenario in CalcHEP and CompHEP: prtclsN.mdl, varsN.mdl, funcN.mdl and

lgrngN.mdl, where N stands for the numerical label of the physics scenario in the model

menu of CalcHEP and CompHEP. We shall now discuss each one of those files, which are

available from http://home.fnal.gov/∼kckong/mued/.

3.1. Particles

New particles are defined in the prtclsN.mdl model file. We incorporate the n = 1 and

n = 2 KK modes of the gauge bosons (see Table 3), leptons (see Table 4) and quarks (see

Table 5). In Tables 3-5 the KK number is represented by a superscript n = 1 or n = 2, while

the subscript is either the Lorentz index (µ) of the vector particles in Table 3 or the chirality

index of the fermion particles in Tables 4 and 5. We remind the reader that all KK fermions

are vectorlike and the chirality index refers to the chirality of their SM counterparts. The

corresponding masses and widths of the KK fermions in Tables 4 and 5 carry “D” or “S” to

indicate their nature, SU(2)W -doublet or SU(2)W -singlet, respectively. The new particles

listed in Tables 3-5 are in addition to the usual SM particles which are not shown here.

3.2. Variables

The input parameters for any given physics scenario are defined in the varsN.mdl model file.

In principle, MUED has only two additional input parameters beyond the SM: the radius R

of the extra dimension and the cut-off scale Λ. For convenience, we use the inverse radius

R−1 and the number of KK levels ΛR which can fit below the scale Λ. R−1 has dimensions

http://home.fnal.gov/~kckong/mued/
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Table 4. KK leptons.

Name A A+ 2*spin mass width color

e1L ∼ eL ∼ EL 1 DMe wDe1 1

µ1
L ∼ mL ∼ ML 1 DMm wDe2 1

τ1L ∼ tL ∼ TL 1 DMt wDe3 1

e1R ∼ eR ∼ ER 1 SMe wSe1 1

µ1
R ∼ mR ∼ MR 1 SMm wSe2 1

τ1R ∼ tR ∼ TR 1 SMt wSe3 1

ν1e ∼ n1 ∼ N1 1 DMen wDn1 1

ν1µ ∼ n2 ∼ N2 1 DMmn wDn2 1

ν1τ ∼ n3 ∼ N3 1 DMtn wDn3 1

e2L ∼ le ∼ lE 1 DMe2 wDe12 1

µ2
L ∼ lm ∼ lM 1 DMm2 wDe22 1

τ2L ∼ lt ∼ lT 1 DMt2 wDe32 1

e2R ∼ re ∼ rE 1 SMe2 wSe12 1

µ2
R ∼ rm ∼ rM 1 SMm2 wSe22 1

τ2R ∼ rt ∼ rT 1 SMt2 wSe32 1

ν2e ∼ en ∼ eN 1 DMen2 wDn12 1

ν2µ ∼ mn ∼ mN 1 DMmn2 wDn22 1

ν2τ ∼ tn ∼ tN 1 DMtn2 wDn32 1

of GeV, while ΛR is dimensionless. Our additions to the varsN.mdl model file are listed in

Table 6. As seen from the table, we also include several other variables of interest. RG is used

to turn on and off the running of coupling constants, while scaleN is the renormalization

scale µ at which the couplings are evaluated. The remaining parameters in Table 6 are

some useful numerical constants related to the RGE running of the gauge couplings (see

Section 3.5).

3.3. Constraints

The funcN.mdl model file is reserved for variables which are not numerical inputs, but

are instead computed in terms of the parameters already defined in the varsN.mdl model

file. In our case, we use funcN.mdl to supply the masses and two-body decay widths of

the KK particles introduced in Section 3.1. Therefore they are automatically computed

by CalcHEP/CompHEP at the beginning of each numerical session. The masses for all KK

particles are evaluated based on the 1-loop formulas of Ref. [82] and we have also made
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Table 5. KK quarks.

Name A A+ 2*spin mass width color

u1
L Du DU 1 DMu wDu 3

d1L Dd DD 1 DMd wDd 3

c1L Dc DC 1 DMc wDc 3

s1L Ds DS 1 DMs wDs 3

t1L Dt DT 1 DMtop wDt 3

b1L Db DB 1 DMb wDb 3

u1
R Su SU 1 SMu wSu 3

d1R Sd SD 1 SMd wSd 3

c1R Sc SC 1 SMc wSc 3

s1R Ss SS 1 SMs wSs 3

t1R St ST 1 SMtop wSt 3

b1R Sb SB 1 SMb wSb 3

u2
L ∼ Du ∼ DU 1 DMu2 wDu2 3

d2L ∼ Dd ∼ DD 1 DMd2 wDd2 3

c2L ∼ Dc ∼ DC 1 DMc2 wDc2 3

s2L ∼ Ds ∼ DS 1 DMs2 wDs2 3

t2L ∼ Dt ∼ DT 1 DMtop2 wDt2 3

b2L ∼ Db ∼ DB 1 DMb2 wDb2 3

u2
R ∼ Su ∼ SU 1 SMu2 wSu2 3

d2R ∼ Sd ∼ SD 1 SMd2 wSd2 3

c2R ∼ Sc ∼ SC 1 SMc2 wSc2 3

s2R ∼ Ss ∼ SS 1 SMs2 wSs2 3

t2R ∼ St ∼ ST 1 SMtop2 wSt2 3

b2R ∼ Sb ∼ SB 1 SMb2 wSb2 3

numerical cross-checks with the results from the private code used in Ref. [82]. Our formulas

for the widths have been derived analytically and cross-checked with CalcHEP/CompHEP (see

Section 4). A partial list of 2 body decay widths can be found in [14,15,20] and our formulas

agree with their expressions. In the older versions of CalcHEP/CompHEP, defining the widths

as constraints was very convenient in our implementation, since one did not have to launch

a separate numerical session for their calculation, and then enter their numerical values as

input parameters. However, the more recent versions of CalcHEP and CompHEP allow for the

automatic calculation of the particle widths on the fly, using the interactions defined in the

lgrngN.mdl model file. Our implementation thus allows for backward compatibility with
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Table 6. Parameters added to the varsN.mdl model file.

Parameters Default values Symbols Comments

Rinv 500 R−1 Inverse radius of the extra dimension

LR 20 ΛR The number of KK levels below Λ

RG 1 1 turn on the running of the coupling constants

0 turn off the running of the coupling constants

Renormalization scale, µ = n
R

scaleN 2 n n=2 can be used for KK level 1 pair production

or level 2 single production

n=4 can be used for KK level 2 pair production

cb1 6.8333 b1
41

6
, The coefficient of the SM β-function for U(1)Y

cb2 -3.16667 b2 − 19

6
, The coefficient of the SM β-function for SU(2)W

cb3 -7 b3 −7, The coefficient of the SM β-function for SU(3)c

cb1t 6.8333 b̃1
41

6
, The coefficient of the KK β-function for U(1)Y

cb2t -2.83333 b̃2 − 17

6
, The coefficient of the KK β-function for SU(2)W

cb3t -6.5 b̃3 − 13

2
, The coefficient of the KK β-function for SU(3)c

c1MZ 98.4151 α−1
1 α−1

1 (µ = MZ)

c2MZ 29.5846 α−1
2 α−1

2 (µ = MZ)

c3MZ 8.53244 α−1
3 α−1

3 (µ = MZ)

older versions of CalcHEP/CompHEP.

3.4. Interactions

The new interactions of the KK particles of Section 3.1 are added to the lgrngN.mdl model

file. We include the usual bulk interactions, as well as the KK number violating boundary

interactions listed in Table 2 [82]. Since the Weinberg angle θn for any n ≥ 1 is small [82],

we ignore the mixing among the neutral KK gauge bosons. Thus the KK-photon γn is

identical to the hypercharge gauge boson Bn and the KK Z-boson Zn is identical to the

neutral SU(2)W gauge boson W 3
n . We also ignore the mixing between SU(2)W -doublet and

SU(2)W -singlet KK fermions.

Our lgrngN.mdl model file includes all interactions of level-1 and level-2 KK particles

except for the KK Higgs bosons. The phenomenology of the KK Higgs bosons is very model

dependent, depending on the value of the SM Higgs mass mh and the bulk Higgs mass term

(see [82] for details). Therefore we omit any interactions involving KK Higgs bosons ‖.
‖ The collider phenomenology of the KK Higgs bosons has been discussed in [23, 24, 29].
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The UED Lagrangian can be easily derived as shown in Appendix C. Here we only

point out how to deal with 4-point interactions involving KK gluons, since this case requires

special treatment when implemented in CalcHEP/CompHEP.

The Lagrangian for the quartic interactions with KK gluons is the following

L4 = − 1

4
g23f

abcfadeG0,b
µ G0,c

ν G0,dµG0,eν − g23
2
fabcfadeG0,d

µ G0,e
ν G1,bµG1,cν

− g23
4

(

fabc(G0,b
µ G1,c

ν +G0,c
ν G1,b

µ )
)2 − 1

4
· 3
2
g23f

abcfadeG1,b
µ G1,c

ν G1,dµG1,eν . (14)

The color structure of these 4-point interactions cannot be directly written down in

CalcHEP/CompHEP format. Hence, to implement this vertex in CalcHEP/CompHEP, we use

the following trick. We introduce three auxiliary tensor fields taµν , s
a
µν and uaµν in the same

way as the original CalcHEP/CompHEP approach for SM gluons. Then one can rewrite the

Lagrangian as

L = − 1

2
taµνt

aµν + i
g3√
2
taµνf

abcG0bµG0cν + i
g3√
2
taµνf

abcG1bµG1cν

− 1

2
saµνs

aµν + i
g3
2
saµνf

abcG1bµG1cν

− 1

2
uaµνu

aµν + i
g3√
2
uaµνf

abc
(

G0bµG1cν +G1bµG0cν
)

= − 1

2

(

taµν − ig3
1√
2
fabcG0b

µ G
0c
ν − ig3

1√
2
fabcG1b

µ G
1c
ν

)2

(15)

− 1

4
g23f

abcfade
(

G0b
µ G

0c
ν +G1b

µ G
1c
ν

) (

G0dµG0eν +G1dµG1eν
)

− 1

2

(

saµν − ig3
1

2
fabcG1b

µ G
1c
ν

)2

− 1

8
g23f

abcfadeG1b
µ G

1c
ν G

1dµG1eν

− 1

2

(

uaµν − ig3
1√
2
fabc

(

G0b
µ G

1c
ν +G1b

µ G
0c
ν

)

)2

− 1

4
g23
(

fabc
(

G0b
µ G

1c
ν +G1b

µ G
0c
ν

))2
,

It is easy to show that the functional integration over the three auxiliary tensor fields

reproduces the 4-gluon interactions (14).

3.5. Running of the coupling constants

Due to the additional contributions from the KK modes to the beta functions, the gauge

couplings run faster in theories with extra dimensions. The RGE for αi ≡ g2i
4π

is given by [84]

dα−1
i

dt
= −bi − b̃i

2π
− b̃iXδ

2π

(

µ

µ0

)δ

, (16)
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where δ is the number of extra dimensions, µ0 is some reference energy scale, Xδ =
2πδ/2

δΓ(δ/2)
,

(b1, b2, b3) =
(

41

6
,−19

6
,−7

)

(17)

are the SM beta function coefficients, while
(

b̃1, b̃2, b̃3
)

=
(

41

6
,−17

6
,−13

2

)

(18)

correspond to the contributions of the Kaluza-Klein states at each massive KK excitation

level [85, 86]. The solution to (16) becomes

α−1
i = α−1

i (MZ)−
bi
2π

ln
µ

MZ
+

b̃i
2π

ln
µ

µ0
− b̃iXδ

2πδ





(

µ

µ0

)δ

− 1



 . (19)

The effect of the RGE running (19) can be accounted for by setting the RG parameter in

Table 6 to 1 and choosing the appropriate renormalization scale via scaleN.

4. Discussion

4.1. Code validation

In general, the availability of CalcHEP/CompHEP model files opens the door to a number

of applications related to collider phenomenology and dark matter searches. Each such

individual study contributes to the validation of the code. Further consistency checks are

provided by comparing to existing analytical and/or numerical results in the literature.

• For starters, we have compared the KK mass spectrum calculated with our

implementation to the results shown in Fig. 2, which were obtained independently in

Ref. [82]. Using identical inputs, and neglecting the running of the gauge couplings (as

was done in [82]), we found perfect agreement.

• The interaction vertices of Appendix C can be independently derived with the

automated tool LanHEP [87]. We checked some of the more technically challenging

cases (especially the self-interactions of gauge bosons) and also found agreement.

• To minimize the possibility of typing mistakes, we computed analytically the cross-

sections for a selected number of simple scattering processes, and compared to the

analytical expressions derived by CalcHEP/CompHEP.

• We have similarly checked that the KK particle widths calculated from our analytical

expressions agree with those computed with CalcHEP/CompHEP by means of our MUED

implementation.
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Figure 4. Strong production of n = 1 KK particles at the LHC for
√
s = 7 TeV: (a) KK-

quark pair production; (b) KK-quark/KK-gluon associated production and KK-gluon pair

production. The cross sections have been summed over all quark flavors and also include

charge-conjugated contributions such as Q1q̄1, Q̄1q1, g1Q̄1, etc. We use CTEQ6L parton

distributions [91] and choose the scale of the strong coupling constant αs to be equal to the

parton level center of mass energy.

• Our analytic formulas for decay widths agree with the expressions given in [14, 15, 20].

• Our implementation was used for the analytic calculation of all (co)annihilation cross-

sections of level 1 KK particles [59] and the results were in complete agreement

with [44, 58].

• Our model files have already been used for various collider studies [17,19–22,26,59,88–

90]. One example is shown in Fig. 4, which shows the strong production cross-section

of level 1 KK particles at the imminent LHC energy of 7 TeV.

• We have compared results for various production cross-sections in MUED to those in

published papers [12, 13] and find agreement.

• Our model files were also cross-checked against the known analytical expressions for

various invariant mass distributions [18, 92, 93].

• Our model files have also been tested by other groups, for example in creating

Pythia UED [79,94,95], which implemented the matrix elements for certain processes in

PYTHIA [77]. Another extensive comparison to an independent MUED implementation

via FeynRules was done in [81].
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4.2. Outlook

Moving forward, it is important to be mindful of the limitations of our implementation.

First of all, it is still Minimal UED, and the spectrum is quite constrained, given in terms of

only 2 parameters: R−1 and Λ. If a signal consistent with UED is discovered at the LHC or

the Tevatron, one would like to start testing the data with a more general UED framework,

which allows for the presence of arbitrary boundary terms at the scale Λ. Work along these

lines has already started and a beta version of the corresponding UED model files is available

from the authors upon request.
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Appendix A. UED Lagrangian in 5 dimensions

The Lagrangian for the 5-dimensional UED model is written as

LGauge =
∫ πR

0
dy
{

−1

4
BMNB

MN − 1

4
W a

MNW
aMN − 1

4
GA

MNG
AMN

}

, (A.1)

LGF =
∫ πR

0
dy

{

− 1

2ξ
(∂µBµ − ξ∂5B5)

2 − 1

2ξ

(

∂µW a
µ − ξ∂5W

a
5

)2
(A.2)

− 1

2ξ

(

∂µGA
µ − ξ∂5G

G
5

)2
}

,

LLeptons =
∫ πR

0
dy
{

iL̄(x, y)ΓMDML(x, y) + iē(x, y)ΓMDMe(x, y)
}

, (A.3)

LQuarks =
∫ πR

0
dy
{

iQ̄(x, y)ΓMDMQ(x, y) + iū(x, y)ΓMDMu(x, y) (A.4)

+id̄(x, y)ΓMDMd(x, y)
}

,

LY ukawa =
∫ πR

0
dy
{

λuQ̄(x, y)u(x, y)iτ
2H∗(x, y) + λdQ̄(x, y)d(x, y)H(x, y)

+λeL̄(x, y)e(x, y)H(x, y)
}

, (A.5)

LHiggs =
∫ πR

0
dy
[

(DMH(x, y))†
(

DMH(x, y)
)

+ µ2H†(x, y)H(x, y)

−λ
(

H†(x, y)H(x, y)
)2
]

, (A.6)

in terms of 5-dimensional fields decomposed as discussed in Section 2.1:

H(x, y) =
1√
πR

{

H(x) +
√
2

∞
∑

n=1

Hn(x) cos(
ny

R
)

}

,

Bµ(x, y) =
1√
πR

{

B0
µ(x) +

√
2

∞
∑

n=1

Bn
µ(x) cos(

ny

R
)

}

,

B5(x, y) =

√

2

πR

∞
∑

n=1

Bn
5 (x) sin(

ny

R
) ,

Wµ(x, y) =
1√
πR

{

W 0
µ(x) +

√
2

∞
∑

n=1

W n
µ (x) cos(

ny

R
)

}

,

W5(x, y) =

√

2

πR

∞
∑

n=1

W n
5 (x) sin(

ny

R
) ,

Gµ(x, y) =
1√
πR

{

G0
µ(x) +

√
2

∞
∑

n=1

Gn
µ(x) cos(

ny

R
)

}

, (A.7)

G5(x, y) =

√

2

πR

∞
∑

n=1

Gn
5 (x) sin(

ny

R
) ,

Q(x, y) =
1√
πR

{

qL(x) +
√
2

∞
∑

n=1

[

PLQ
n
L(x) cos(

ny

R
) + PRQ

n
R(x) sin(

ny

R
)
]

}

,
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u(x, y) =
1√
πR

{

uR(x) +
√
2

∞
∑

n=1

[

PRu
n
R(x) cos(

ny

R
) + PLu

n
L(x) sin(

ny

R
)
]

}

,

d(x, y) =
1√
πR

{

dR(x) +
√
2

∞
∑

n=1

[

PRd
n
R(x) cos(

ny

R
) + PLd

n
L(x) sin(

ny

R
)
]

}

,

L(x, y) =
1√
πR

{

LL(x) +
√
2

∞
∑

n=1

[

PLL
n
L(x) cos(

ny

R
) + PRL

n
R(x) sin(

ny

R
)
]

}

,

e(x, y) =
1√
πR

{

eR(x) +
√
2

∞
∑

n=1

[

PRe
n
R(x) cos(

ny

R
) + PLe

n
L(x) sin(

ny

R
)
]

}

.

Here H(x, y) is the 5D Higgs scalar field and (Bµ(x, y), B5(x, y)), (Wµ(x, y),W5(x, y)) and

(Gµ(x, y), G5(x, y)) are the 5D gauge fields BM ,WM andGM for U(1)Y , SU(2)W and SU(3)c,

respectively. The 5D index M runs over M = µ, 5, where µ = 0, 1, 2, 3. The SU(2)W and

SU(3)c gauge fields are

WM ≡W a
M

τa

2
,

GM ≡ GA
M

λA

2
,

where τa, a = 1, 2, 3, are the usual Pauli matrices and λA, A = 1, 2, ..., 8, are the usual Gell-

Mann matrices. The 5D field strength tensors for U(1)Y , SU(2)W and SU(3)c are defined

as follows

BMN = ∂MBN − ∂NBM ,

W a
MN = ∂MW

a
N − ∂NW

a
M + g

(5)
2 ǫabcW b

MW
c
N , (A.8)

GA
MN = ∂MG

A
N − ∂NG

A
M + g

(5)
3 fABCGB

MG
C
N ,

where ǫabc and fABC are the structure constants for SU(2)W and SU(3)c, respectively. The

parameter ξ in (A.2) is the gauge fixing parameter in the generalized Rξ gauge.

The 5-dimensional (4-dimensional) gauge couplings are denoted by g
(5)
i (gi), where

i = 1, 2, 3 stands for U(1)Y , SU(2)W and SU(3)c, correspondingly. The two types of

couplings are related by

gi =
g
(5)
i√
πR

. (A.9)

Finally, Q(x, y) and L(x, y) are the SU(2)W -doublet fermions from Table 1, while u(x, y),

d(x, y) and e(x, y) are the corresponding SU(2)W -singlet fermions from Table 1. PL,R = 1∓γ5

2

are the 4D chiral projectors in terms of the usual γ5 matrix. The gamma matrices in 5D

ΓM = (γµ, iγ5) , (A.10)
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satisfy the Dirac-Clifford algebra

{ΓM ,ΓN} = 2gMN , (A.11)

where gMN is the 5D metric

gMN =







gµν 0

0 −1





 , (A.12)

and gµν = (+−−−) is the usual 4D metric.

The covariant derivatives act on 5D fields as follows

DMQ(x, y) =
(

∂M + ig
(5)
3 GM + ig

(5)
2 WM + i

YQ
2
g
(5)
1 BM

)

Q(x, y) , (A.13)

DMu(x, y) =
(

∂M + ig
(5)
3 GM + i

Yu
2
g
(5)
1 BM

)

u(x, y) ,

DMd(x, y) =
(

∂M + ig
(5)
3 GM + i

Yd
2
g
(5)
1 BM

)

d(x, y) ,

DML(x, y) =
(

∂M + ig
(5)
2 WM + i

YL
2
g
(5)
1 BM

)

L(x, y) ,

DMe(x, y) =
(

∂M + i
Ye
2
g
(5)
1 BM

)

e(x, y) ,

where the fermion hypercharges are YQ = 1
3
, Yu = 4

3
, Yd = −2

3
, YL = −1 and Ye = −2.

It is now a rather straightforward but tedious exercise to substitute the expansions (A.7)

into the 5D Lagrangians (A.1-A.6) and perform the integration over y with the help of the

orthonormality relations listed in Appendix B. The resulting Feynman rules in terms of

4-dimensional fields are listed in Appendix C.
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Appendix B. Orthonormality Relations

The following orthonormality relations can be used in the process of compactifying the 5-

dimensional Lagrangian listed in Appendix A.
∫ πR

0
dy cos(

my

R
) cos(

ny

R
) =

πR

2
δm,n ,

∫ πR

0
dy sin(

my

R
) sin(

ny

R
) =

πR

2
δm,n ,

∫ πR

0
dy cos(

my

R
) cos(

ny

R
) cos(

ly

R
) =

πR

4
∆1

mnl ,
∫ πR

0
dy cos(

my

R
) cos(

ny

R
) cos(

ly

R
) cos(

ky

R
) =

πR

8
∆2

mnlk ,
∫ πR

0
dy sin(

my

R
) sin(

ny

R
) sin(

ly

R
) sin(

ky

R
) =

πR

8
∆3

mnlk ,

∫ πR

0
dy sin(

my

R
) sin(

ny

R
) cos(

ly

R
) =

πR

4
∆4

mnl , (B.1)
∫ πR

0
dy sin(

my

R
) sin(

ny

R
) cos(

ly

R
) cos(

ky

R
) =

πR

8
∆5

mnlk ,
∫ πR

0
dy cos(

my

R
) sin(

ny

R
) = 0 ,

∫ πR

0
dy sin(

my

R
) sin(

ny

R
) sin(

ly

R
) = 0 ,

∫ πR

0
dy sin(

my

R
) cos(

ny

R
) cos(

ly

R
) = 0 ,

∫ πR

0
dy sin(

my

R
) cos(

ny

R
) cos(

ly

R
) cos(

ky

R
) = 0 ,

∫ πR

0
dy sin(

my

R
) sin(

ny

R
) sin(

ly

R
) cos(

ky

R
) = 0 ,

where the ∆ symbols are defined as

∆1
mnl = δl,m+n + δn,l+m + δm,l+n , (B.2)

∆2
mnlk = δk,l+m+n + δl,m+n+k + δm,n+k+l + δn,k+l+m (B.3)

+ δk+m,l+n + δk+l,m+n + δk+n,l+m ,

∆3
mnlk = − δk,l+m+n − δl,m+n+k − δm,n+k+l − δn,k+l+m (B.4)

+ δk+l,m+n + δk+m,l+n + δk+n,l+m ,

∆4
mnl = − δl,m+n + δn,l+m + δm,l+n , (B.5)

∆5
mnlk = − δk,l+m+n − δl,m+n+k + δm,n+k+l + δn,k+l+m (B.6)

− δk+l,m+n + δk+m,l+n + δk+n,l+m .
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Appendix C. Feynman Rules

Here we list some of the KK-number conserving vertices with subscripts ‘n’ standing for

the KK-level, which are obtained after compactifying the 5-dimensional Lagrangian of

Appendix A with the help of the orthonormality relations of Appendix B. For KK-number

violating (but still KK-parity conserving) vertices, refer to Fig. 3 and Table 2.

qbn

= −ig3γµT c
ba

Gc

q̄an

= −i g3√
2
γµT c

ba
Gc

2

qb1

q̄a1

qDb
n

= −ig3γµT c
baPL

q̄a0

Gc
n

qSbn

= −ig3γµT c
baPR

q̄a0

Gc
n

Gλc
n

= ig3f
abc [(p− q)λgµν + (q − r)µgλν + (r − p)νgλµ]

p

q r

Gνb

Gµa
n

Gρd
n

Gνb

Gµa

= −ig23
[

fabef cde(gλνgµρ − gλρgµν) + facdf bde(gλµgνρ − gλρgµν)

+ fadef bce(gλµgνρ − gλνgµρ)
]

Gλc
n
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Gρd
n

= −i3
2
g23
[

fabef cde(gλνgµρ − gλρgµν) + facdf bde(gλµgνρ − gλρgµν)

+ fadef bce(gλµgνρ − gλνgµρ)
]

Gνb
n Gλc

n

Gµa
n

f̄n

= −iQfeγ
µγ

fn fD
n

Z = −i g2
cos θW

cLγ
µ

f̄D
n

f̄S
n

Z = −i g2
cos θW

cRγ
µ

fS
n

f̄ ′D
n

= −i g2√
2
γµVff ′W±

fD
n

f̄D
n

= −iY
2
g1γ

µPL

fD
0

Bn Bn = −iY
2
g1γ

µPR

fS
0

f̄S
n

fD
n

f̄0

= −iI3g2γµPLZn
W±

n = −i g2√
2
γµPLVff ′

f̄ ′
0

fD
n
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B2

fD
1

= iY
2

g1√
2
γµγ5

f̄D
1

= −iY
2

g1√
2
γµγ5B2

fS
1

f̄S
1

f̄D
1

Z2 = iI3
g2√
2
γµγ5

fD
1

f̄ ′D
1

W±
2

fD
1

= −ig2
2
γµPLVff ′

W n−
λ

k1

k2

= −ie[(k1 − k2)gµν + (k2 − k3)gνλ + (k3 − k1)gλµ]k3
Aµ

W n+
ν

W n−
λ

W+
ν

k1

k2

k3
= −ig2[(k1 − k2)gµν + (k2 − k3)gνλ + (k3 − k1)gλµ]

Zn
µ

W n−
λ

Zµ

k1

k2

k3
= −ig2 cos θW [(k1 − k2)gµν + (k2 − k3)gνλ + (k3 − k1)gλµ]

W n+
ν
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W 1+
ν

W 1−
λ

Z2
µ

k1

k2

k3
= −i g2√

2
cos θW [(k1 − k2)gµν + (k2 − k3)gνλ + (k3 − k1)gλµ]

W n−
σ

Aµ

Aν

= −ie2(2gµνgρσ − gµρgνσ − gµσgνρ)

W n+
ρ

W n−
ρAµ

= −i e2

sin θW
(2gµνgρσ − gµρgνσ − gµσgνρ)

W+
σZn

ν

W n+
σ

Aµ

= −i cos θW e2

sin θW
(2gµνgρσ − gµρgνσ − gµσgνρ)
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