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Abstract

We propose a new approach to the consistency test of dark energy models with observations. To

test a category of dark energy models, we suggest introducing a characteristic Q(z) that in general

varies with the redshift z but in those models plays the role of a (constant) distinct parameter.

Then, by reconstructing dQ(z)/dz from observational data and comparing it with zero we can assess

the consistency between data and the models under consideration. For a category of models that

passes the test, we can further constrain the distinct parameter of those models by reconstructing

Q(z) from data. For demonstration, in this paper we concentrate on quintessence. In particular we

examine the exponential potential and the power-law potential via a widely used parametrization

of the dark energy equation of state, w(z) = w0 + waz/(1 + z), for data analysis. This method

of the consistency test is particularly efficient because for all models we invoke the constraint of

only a single parameter space that by choice can be easily accessed. The general principle of our

approach is not limited to dark energy. It may also be applied to the testing of various cosmological

models and even the models in other fields beyond the scope of cosmology.
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I. INTRODUCTION

The accelerating expansion of the universe in the present epoch was discovered in 1998

[1, 2] via Type Ia supernova (SN Ia) distance measurement. This has been confirmed by more

recent observations, including SN Ia [3, 4, 5], cosmic microwave background (CMB) [6] and

large-scale structure (LSS) [7] observations. Models with a wide variety of strategies have

been proposed to explain this salient phenomenon. One of the approaches invokes an energy

source, generally referred to as “dark energy”, that provides a significant negative pressure

and therefore a repulsive gravity (anti-gravity). Examples of dark energy candidates include

a positive cosmological constant [8, 9, 10] and a dynamical scalar field such as quintessence

[11, 12, 13] and phantom [14].

So far many of these models remain consistent with observational results. In this situation

the dark energy information obtained by comparing the individual theoretical model with

the observational data is indecisive. Responding to this deficiency, recently cosmologists

attempt to extract the generic features of dark energy, such as (the constraints on) the

equation of state (EoS) or the energy density as a function of the redshift, from observational

results by invoking model-independent parametrizations in data analysis [15, 16, 17, 18]. It is

hoped that several generic questions can be addressed through this approach. A particularly

important question is: Is dark energy a cosmological constant? If not, it is essential to explore

how the dark energy density evolves with time. A specific manifestation of this would be

the deviation of the dark energy EoS from −1.

Along a similar line with the utilization of a parametrization, in the present paper we

propose a new approach to the testing of the consistency between observational results and

dark energy models or, more generally, cosmological models. For each category of dark

energy models we suggest introducing a distinct characteristic Q(z) that in general varies

with time and the redshift z but is equivalent to an essential constant parameter within the

scope of that category of models. In general the quantities, Q(z) and dQ(z)/dz, by design

can be reconstructed from data with no reliance on the other parameters of the models. The

consistency between data and models can then be assessed by comparing the observational

constraint on dQ(z)/dz with the theoretical prediction, dQ(z)/dz = 0. This approach

in principle provides a simple “litmus test” for each category of dark energy models. In

addition, for a category of models that passes the test we can further constrain the distinct
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parameter of those models by reconstructing Q(z) from data.

Close in spirit to our approach, Zunckel and Clarkson [19] investigated the consistency test

of the flat ΛCDM model with a parametrization of the luminosity distance-redshift relation

invoked. For the consistency test of ΛCDM, a natural choice of the distinct characteristic

is the dark energy density ρde(z) that in general is time-varying but is constant within

ΛCDM. An equivalent alternative choice invoked by Zunckel and Clarkson in [19] is QΛ(z) =

1−ρde(z)/ρc that within flat ΛCDM is equal to the matter density fraction Ωm, an essential

constant parameter. By comparing the observational constraint on dQΛ(z)/dz with zero,

one can assess the consistency between data and the ΛCDM model.

A conventional method of comparing models with observational results is the model-

based approach. In this approach one directly invokes a specific category of models to fit

data and obtains the constraint on the parameter space associated with those models (e.g.,

see [20, 21, 22]). One can then assess the goodness of fit (e.g., see Ref. [23]) for manifesting

how well a model fits the data. In contrast, the consistency test is for examining whether

the condition required for a category of models is excluded by observational results, which

is different in spirit from the model-based approach. These two methods are complimentary

to each other in the quest for revealing the nature of dark energy.

Our approach to the consistency test and to the constraining of dark energy models can

be efficiently performed because for all models we invoke the constraint of only a single

parameter space that by choice can be easily accessed. Our approach is particularly simple

and fast when applied to quintessence. It is because in this approach one does not need

to numerically solve the coupled field equations, the quintessence field equation and the

Einstein equations. This benefit will be demonstrated in Sec. III and discussed in Sec. IV.

In contrast to the benefit, on the other hand we note that the utilization of parametrization

may be accompanied with a bias against certain models. For all the approaches invoking

parametrization, the model-(in)dependence and the potential concomitant bias of the chosen

parametrization are a separate and essential issue that requires further exploration. We are

currently investigating this issue for our approach [24].

To demonstrate our approach, in the rest of the present paper we will concentrate on

quintessence. We attempt to extract physical information about quintessence from the

current observational results via a widely used parametrization of the EoS of dark energy
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(DE) [15, 25],

wde(z) or wφ(z) = w0 + wa(1 − a) = w0 + waz/(1 + z) . (1)

Here z is the redshift and a the scale factor of the universe; the present scale factor a0

has been set to unity by assuming the (spatial) flatness of the universe for simplicity. The

constraints on w0 and wa from observational data have been obtained by Riess et al. [4].

We adopt the constraints of these two parameters with the “weak prior” [4], for which they

invoked the SN Ia data [4] as well as the constraints from the LSS measurement [26, 27],

the baryon acoustic oscillation (BAO) measurement [28], the Cepheid measurement [29, 30]

and the 3-year WMAP results for CMB [31]. With the observational constraint on the

chosen parameter space we proceed the testing and the constraining of quintessence in

three directions: (A) We reconstruct the quintessence potential with data. (B) We assess

the consistency between the quintessence models and data. (C) We constrain the distinct

parameter of the quintessence models by data.

(A) Reconstruction of potential

To reconstruct the quintessence potential, we will convert the constraint on the chosen

parameter space (w0, wa) to that on the potential V (φ). The results will be presented in

Sec. IIIA.

Quintessence can be reconstructed [32, 33, 34] from data via the parametrization of its

potential [35] or other relevant physical quantities. In the present demonstration of our

approach we invoke the parametrization of the dark energy EoS (e.g., see [36]) in Eq. (1).

The reconstruction in this way is particularly simple when the observational constraints on

the EoS parameters can be easily accessed or have already been obtained.

(B) Assessment of consistency

To assess the consistency between quintessence models and data, for each category of

quintessence models we invoke a characteristic Q(z) that possesses the following features,

as our guidelines of constructing Q(z).

1. In general Q(z) is time-varying.

2. Within the scope of the models under consideration Q(z) is constant.

3. For those models Q(z) plays the role of a distinct parameter.

(This feature is oriented to fulfilling Direction C.)

5



4. By our construction Q(z) is a functional of the parametrized physical quantity P (z),

which in the present demonstration is the dark energy EoS, wde(z). This is so de-

signed that Q(z) and its derivative dQ(z)/dz can be reconstructed from data via the

constraint on the parameters involved in the P (z) parametrization, for example, via

the constraint on (w0, wa) as considered in the present demonstration.

5. Accordingly, the (in)compatibility between the observational constraint on dQ(z)/dz

and the theoretical prediction, dQ(z)/dz = 0, tells the (in)consistency between data

and models.

We will convert the constraint on the chosen parameter space (w0, wa) to that on dQ(z)/dz,

and compare it with zero, thereby assessing the consistency between the data and the models

under consideration. The results will be presented in Sec. III B.

(C) Constraining the distinct parameter

For a category of quintessence models with a characteristic Q(z) introduced in the above-

mentioned manner, we will convert the constraint on the chosen parameter space (w0, wa)

to that on Q(z), thereby giving the constraint on the distinct parameter of the potential.

The results will be presented in Sec. IIIC.

As a demonstration of the effectiveness of our approach, for Direction B we examine the

exponential potential (for a recent study see [22] and references therein) and the power-

law potential (that with a negative power is invoked in the tracker quintessence [37]). We

conclude: (Direction B) at the 68% confidence level both are ruled out; at the 95% confidence

level the exponential potential remains disfavored, while the power-law potential is consistent

with data. Since the exponential potential is inconsistent with data, for Direction C we deal

with only the power-law potential for which the power-law index is the distinct parameter

in our treatment. We conclude: (Direction C) for the power-law potential, at the 95%

confidence level a negative power-law index between −2 and 0 can fit the data, whereas a

positive power is ruled out.
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II. THE BASICS

Consider a Friedmann-Lemaitre-Robertson-Walker (FLRW) universe described by the

Robertson-Walker metric,

ds2 = dt2 − a2(t)

(

dr2

1 − kr2
+ r2dΩ2

)

, (2)

and assume that it is dominated by pressureless matter and quintessence in the present

epoch. Quintessence is a dynamical scalar field described by the Lagrangian density,

L =
√

|g|

[

1

2
gµν(∂µφ)(∂νφ) − V (φ)

]

. (3)

For simplicity, we assume that the universe is spatially flat (k = 0) and that the spatial

dependence of quintessence is weak so that the spatial curvature and the spatial derivative

terms are ignored. The governing equations, i.e. the Einstein equations and the quintessence

field equation, for the cosmic evolution are then as follows.

(

ȧ

a

)2

=
8πG

3
ρ =

8πG

3
(ρm + ρφ) , (4)

ä

a
= −

4πG

3
(ρ + 3p) = −

4πG

3
(ρm + ρφ + 3pφ) , (5)

φ̈ + 3Hφ̇ + V ′(φ) = 0 , (6)

where the Hubble expansion rate is defined as H ≡ ȧ/a, and the energy density and pressure

of quintessence are given by

ρφ =
1

2
φ̇2 + V (φ) = K + V , (7)

pφ =
1

2
φ̇2 − V (φ) = K − V . (8)

The EoS of quintessence is therefore

wφ = pφ/ρφ = (K − V )/(K + V ) . (9)

Next we derive the expressions for the relevant quantities in terms of wφ(z) and the

essential cosmological parameters such as Ωφ and Ωm. From the Einstein equations, we have

ρφ(z) = ρcΩφ exp

(

3

∫ z

0

[1 + wφ(z
′)]

dz′

1 + z′

)

, (10)
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where the critical density ρc ≡ 3H2
0/8πGN . Therefore,

H2(z) =
8πGN

3
(ρm + ρφ)

= H2
0

[

Ωm(1 + z)3 + Ωφ exp

(

3

∫ z

0

[1 + wφ(z
′)]

dz′

1 + z′

)]

. (11)

In addition, from Eqs. (7) – (9), we have

K(z) = [1 + wφ(z)] ρφ(z)/2 , (12)

V (z) = [1 − wφ(z)] ρφ(z)/2 , (13)

from the former of which we obtain

φ(z) − φ0 = ±

∫ z

0

√

[1 + wφ(z′)] ρφ(z′)

H(z′)

dz′

1 + z′
, (14)

where φ0 is the present value of the quintessence field.

For a given parametrization of wφ(z), a parametric relationship between the potential

V and the quintessence field φ can be deduced from Eqs. (13) and (14) with the help of

Eqs. (10) and (11). Based on this relation, from the observational constraint of wφ(z) one

can then in principle reconstruct the quintessence potential V (φ) as well as other quantities

which can be expressed in terms of V (z), φ(z) and their derivatives.

III. TESTING AND CONSTRAINING QUINTESSENCE

In this section we test and constrain quintessence with the current observational re-

sults via the wφ(z) parametrization in Eq. (1) in three directions: (A) reconstructing the

quintessence potential V (φ), (B) assessing the consistency between a category of quintessence

models and data via the derivative of a distinct characteristic, dQ(z)/dz, and (C) constrain-

ing the distinct parameter of a category of quintessence models played by the characteristic

Q(z). The observational constraints on the two parameters in wφ(z) have been obtained

by Riess et al. in Ref. 4, as shown in Fig. 10 therein. We invoke the 68% and the 95%

confidence contours in the left panel, i.e. with a weak prior, of that figure and focus on the

region satisfying w(z) > −1 ∀ z for quintessence.1 These contours were deduced from the

SN Ia data [4] and the constraints from other measurements [26, 27, 28, 29, 30, 31]. The

1 By definition, no quintessence can be reconstructed from the region where w < −1 for some z.
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redshift range of these supernovae is 0 < z < 1.8. In the reconstruction we set Ωm = 0.28

and Ωφ = 0.72.

A. Reconstruction of potential

The reconstructed potential is sketched in Fig. 1, where the dark gray and the light gray

areas correspond to the 68% and the 95% confidence regions, respectively. From this figure

the shape of the quintessence potential is already apparent.

Note that the 68% and the 95% confidence contours in the (w0, wa) parameter space, from

which the potential is reconstructed, enclose both the quintessence and the non-quintessence

cases. It is therefore the probability space of (w0, wa), but not that of the quintessence

models, that the confidence of the constraints in Fig. 1 is measured against.

B. Assessment of consistency

To assess the consistency between quintessence models and data, we deal with one cat-

egory of potentials (in principle embracing infinitely many specific potentials) at once. We

facilitate this consistency assessment by introducing a characteristic Q(z) with several fea-

tures listed in Introduction. By construction, Q(z), although is in general time-varying, plays

the role of a constant distinct parameter within the scope of the models under consideration.

The characteristic Q(z) by design can be expressed in terms of V , dV/dφ, d2V/dφ2, . . ..2

As shown in the previous section, V (z) and φ(z) are the functionals of wφ(z) and the cosmo-

logical parameters {H0, Ωm, Ωφ}. Accordingly, the characteristic Q(z) so constructed and

its derivative dQ(z)/dz are also the functionals of wφ(z) and those cosmological parameters,

and can therefore be reconstructed from data via the constraint on w0 and wa (in the same

way as that for the potential reconstruction). Then, by comparing the reconstructed dQ/dz

with zero within the redshift range 0 < z < 1.8, one can determine the consistency between

the data and the quintessence potentials under consideration.

As a demonstration of the effectiveness of this approach, in the following we will examine

2 For a category of potentials V (φ; qi) involving N parameters, {qi , i = 1, 2, . . . , N}, one can treat

V, V ′, V ′′, . . . , V [N ] as N + 1 equalities for N + 1 variables: φ and qi. Then, in general, one can ob-

tain qi as a function of V, V ′, V ′′, . . . , V [N ] by solving these equalities.
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the exponential potential and the power-law potential,

Vexp(φ) = VA exp [−φ/M0] , (15)

Vpower(φ) = m4−n0φn0. (16)

To examine the exponential potential in Eq. (15), we introduce the following character-

istic,

Qexp(z) = M−1(z) ≡ −
1

V (z)

dV

dφ
(z) , (17)

which for the exponential potential is equal to the essential parameter 1/M0. This char-

acteristic, by construction, does not explicitly involve φ(z). Naively, to check whether a

(reconstructed) potential follows the exponential behavior in Eq. (15) one can plot ln V ver-

sus φ−φ0 and see whether there exists a straight line passing through the shaded region, for

which the characteristic Qexp in Eq. (17) is the slope. Note that in this exponential case the

value of φ0 does not affect the existence of the straight line within the shaded region. In-

stead of exhausting all straight lines with the try-and-error method, we take a more efficient

approach by comparing the derivative of the characteristic, dQexp(z)/dz, with the zero-line

(a single line), as mentioned earlier.

The derivative of the characteristic w.r.t. the redshift z, dM−1(z)/dz, reconstructed from

data for 0 < z < 1.8 is shown in Fig. 2 (dark gray for 68% confidence and light gray for 95%).

From this figure, one can see that the horizontal zero-line lies outside the 68% confidence

constraint for all z and is on the margin of the 95% confidence constraint for z > 0.8.

Accordingly, at the 68% confidence level [with regard to the (w0, wa) probability space] the

quintessence model with the exponential potential is ruled out, and at the 95% confidence

level the likelihood of this model to describe the cosmic evolution is marginal for z > 0.8.

To examine the power-law potential in Eq. (16), we introduce the following characteristic,

Qpower(z) = n(z) ≡

[

1 − V (z)

(

dV

dφ
(z)

)

−2
d2V

dφ2
(z)

]

−1

, (18)

which for the power-law potential is equal to the power-law index n0, an essential constant

that characterizes the potential. This characteristic, by construction, does not explicitly

involve φ(z). Naively, to check whether a (reconstructed) potential follows the power-law

behavior in Eq. (16) one can plot lnV versus ln φ and see within the constrained region

whether there exists a straight line, of which the characteristic Qpower in Eq. (18) is the
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slope. However, the variable we reconstruct is φ(z)− φ0, not φ(z) itself. Therefore what we

can directly plot is ln V versus ln(φ − φ0), but not ln V versus ln φ. We note that in this

power-law case the value of φ0 plays an essential role in the existence of the straight line, and

accordingly in this naive method one cannot assess the consistency without the information

about φ0. This is the reason why we avoid invoking φ(z) in constructing the characteristics,

such as those in Eqs. (17) and (18). Following the same procedure mentioned in the previous

paragraphs, we proceed again with the derivative of the characteristic.

The quantity, dn(z)/dz, reconstructed from data for 0 < z < 1.8 is shown in Fig. 3 (dark

gray for 68% confidence and light gray for 95%). As shown in this figure, the horizontal

zero-line is outside the 68% confidence constraint for most of the redshift z but within the

95% confidence constraint for all z under consideration. Accordingly, while the quintessence

model with the power-law potential is ruled out at the 68% confidence level, it can fit the

current data at the 95% confidence level [with regard to the (w0, wa) probability space].

C. Constraining the distinct parameter

In addition to the derivative, dn(z)/dz, the characteristic n(z) itself is also reconstructed

from data, as illustrated in Fig. 4 (dark gray for 68% confidence and light gray for 95%).

According to the 95% confidence constraint, a negative power-law index between −2 and 0

is favored, whereas the model with a positive power is inconsistent with the current data.

D. Distinguishing between models

Here we demonstrate how well the two models considered above can be distinguished from

other models via our approach with the future supernova observations. We invoke the SNAP-

quality [38] simulated data with 2023 SNe [39] distributed in the redshift range between 0

and 1.7, as well as the current-quality simulated CMB [6] and BAO [28] data. We take the

other models one by one as the fiducial model to generate 1000 realizations of the simulated

data, with which we obtain the observational constraints on dQexp(z)/dz and dQpower(z)/dz.

If the observational constraint is inconsistent with the theoretical prediction, dQ(z)/dz = 0,

the fiducial model can be distinguished from the model with which the characteristic Q(z)

is associated.

11



We consider eight fiducial models:

M1: wde = wΛ = −1,

M2: wde = −0.8,

M3: wde = −1 + 0.5z/(1 + z),

M4: wde = −1 + 1.5z/(1 + z),

M5: wde = −0.8 − 0.2z/(1 + z),

M6: wde = −1.05 + 0.2z/(1 + z),

M7: wde = −0.6 − 0.5z/(1 + z),

M8: wde = −1.05 + 1.0z/(1 + z).

(The first four models are considered in [19].) The observational constraints obtained w.r.t.

these fiducial models on dQexp(z)/dz and dQpower(z)/dz are presented in Fig. 5 (dark gray

for 68% confidence and light gray for 95%). As shown by this figure, with the future

observations considered above and via our approach, the exponential-potential quintessence

model is distinguishable from all the eight dark energy models, while the power-law potential

can be distinguished from the models with faster evolving w: M3 (68% confidence), M4, M7

and M8 (95% confidence), but not from those with more slowly evolving w: M1, M2, M5

and M6.

IV. SUMMARY

In this paper we propose a new approach to the testing and the constraining of dark energy

models based on observational results. To demonstrate our approach, we concentrate on

quintessence and proceed in three directions: (A) We reconstruct the quintessence potential.

(B) We assess the consistency between quintessence models and data. (C) We obtain the

constraint on the distinct parameter of one category of quintessence models.

For Direction B, to assess the consistency between quintessence models and data, we

introduce a characteristic Q(z) for each category of theoretical potentials. This characteristic

Q(z) is in general time-varying, but within the scope of those potentials it is constant and

equivalent to a distinct parameter therein. By comparing the reconstructed dQ(z)/dz with

zero we can assess the consistency between data and that category of potentials. This

approach provides a simple “litmus test” for each category of quintessence models. For

Direction C, since the characteristic Q(z) plays the role of the distinct parameter within the
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scope of a category of models, via reconstructing Q(z) from data we obtain the constraint

on that distinct parameter.

Our approach to the consistency test and the constraining of dark energy models is

simple and efficient to perform. This is because in this approach (i) for all models the

characteristics Q(z) and their derivatives dQ(z)/dz are reconstructed from data via the

observational constraints of a single parameter space that by choice can be easily accessed,

and (ii) with our design of the characteristic Q(z) we can test the models and constrain

their distinct parameter without the knowledge of the other parameters of the models. The

simplicity and the efficiency of our approach is particularly manifest when it is applied to

quintessence. In this case, in addition to the above-mentioned two general features, a specific

technical reason for this benefit is that in our approach one does not need to numerically

solve the quintessence field equation and the Einstein equations coupled together.

To demonstrate the effectiveness of our approach, we invoked a widely used parametriza-

tion of the dark energy EoS, and investigated the exponential potential and the power-law

potential of quintessence models. For each of them a characteristic was introduced. Via

these characteristics, the two theoretical potentials were compared with the current data.

We found that at the 68% confidence level both the exponential and the power-law potentials

were ruled out. When relaxed to the 95% confidence constraint, the power-law potential

with a negative power-law index between −2 and 0 can fit the current data. In contrast,

the exponential potential remains disfavored.

To perform our approach, one may choose other parametrizations. Generally speaking, an

approach invoking parametrization may be accompanied with a bias against certain models.

This is an essential issue that requires further study. The potential bias of performing our

approach via the parametrization of the dark energy EoS in Eq. (1) is currently under our

investigation [24].

To sum up, our approach provides a useful tool for testing and constraining dark en-

ergy models based on observational results. This approach can be applied to a variety of

quintessence models and other dark energy models, and probably to other explanations of the

cosmic acceleration. The general principle of our approach may also be applied to different

cosmological models and even the models in other fields beyond the scope of cosmology.
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FIG. 1: The potential reconstructed from data via the wφ(z) parametrization in Eq. (1).
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FIG. 2: The derivative of the characteristic of the exponential potential reconstructed from data.

17



0 0.5 1 1.5
z

-2

-1

0

1

2

d
n
�d

z

0 0.5 1 1.5

-2

-1

0

1

2

0 0.5 1 1.5
z

-2

-1

0

1

2

d
n
�d

z

0 0.5 1 1.5

-2

-1

0

1

2

FIG. 3: The derivative of the characteristic of the power-law potential reconstructed from data.

0 0.5 1 1.5
z

-3

-2

-1

0

n

0 0.5 1 1.5

-3

-2

-1

0

0 0.5 1 1.5
z

-3

-2

-1

0

n

0 0.5 1 1.5

-3

-2

-1

0

FIG. 4: The characteristic of the power-law potential reconstructed from data.

18



M1: wde = wΛ = −1 M2: wde = −0.8 M3: wde = −1 +
0.5z

1 + z
M4: wde = −1 +

1.5z

1 + z

0.25 0.5 0.75 1 1.25 1.5
z

0

0.5

1

1.5

2

2.5

3

Hd
Q
e
x
p
�d
z
LH
�
!!!
!!!
!!!
!!!
!!!
!!!!

8
 Π
G
�
3
L

0.25 0.5 0.75 1 1.25 1.5
z

0

0.5

1

1.5

2

2.5

3

Hd
Q
e
x
p
�d
z
LH
�
!!!
!!!
!!!
!!!
!!!
!!!!

8
 Π
G
�
3
L

0.25 0.5 0.75 1 1.25 1.5
z

0

0.5

1

1.5

2

2.5

3

Hd
Q
e
x
p
�d
z
LH
�
!!!
!!!
!!!
!!!
!!!
!!!!

8
 Π
G
�
3
L

0.25 0.5 0.75 1 1.25 1.5
z

0

0.5

1

1.5

2

2.5

3

Hd
Q
e
x
p
�d
z
LH
�
!!!
!!!
!!!
!!!
!!!
!!!!

8
 Π
G
�
3
L

0.25 0.5 0.75 1 1.25 1.5
z

0

0.5

1

1.5

2

2.5

3

Hd
Q
e
x
p
�d
z
LH
�
!!!
!!!
!!!
!!!
!!!
!!!!

8
 Π
G
�
3
L

0.25 0.5 0.75 1 1.25 1.5
z

0

0.5

1

1.5

2

2.5

3

Hd
Q
e
x
p
�d
z
LH
�
!!!
!!!
!!!
!!!
!!!
!!!!

8
 Π
G
�
3
L

0.25 0.5 0.75 1 1.25 1.5
z

0

1

2

3

4

5

Hd
Q
e
x
p
�d
z
LH
�
!!!
!!!
!!!
!!!
!!!
!!!!

8
 Π
G
�
3
L

0.25 0.5 0.75 1 1.25 1.5
z

0

1

2

3

4

5

Hd
Q
e
x
p
�d
z
LH
�
!!!
!!!
!!!
!!!
!!!
!!!!

8
 Π
G
�
3
L

0.25 0.5 0.75 1 1.25 1.5
z

-0.4

-0.2

0

0.2

0.4

d
Q
p
o
w
e
r
�d
z

0.25 0.5 0.75 1 1.25 1.5
z

-0.4

-0.2

0

0.2

0.4

d
Q
p
o
w
e
r
�d
z

0.25 0.5 0.75 1 1.25 1.5
z

-1

0

1

2

3

4

5

d
Q
p
o
w
e
r
�d
z

0.25 0.5 0.75 1 1.25 1.5
z

-1

0

1

2

3

4

5

d
Q
p
o
w
e
r
�d
z

0.25 0.5 0.75 1 1.25 1.5
z

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

d
Q
p
o
w
e
r
�d
z

0.25 0.5 0.75 1 1.25 1.5
z

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

d
Q
p
o
w
e
r
�d
z

0.25 0.5 0.75 1 1.25 1.5
z

-5

-4

-3

-2

-1

0

1

d
Q
p
o
w
e
r
�d
z

0.25 0.5 0.75 1 1.25 1.5
z

-5

-4

-3

-2

-1

0

1

d
Q
p
o
w
e
r
�d
z

M5: wde = −0.8 −
0.2z

1 + z
M6: wde = −1.05 +

0.2z

1 + z
M7: wde = −0.6 −

0.5z

1 + z
M8: wde = −1.05 +

1.0z

1 + z

0.25 0.5 0.75 1 1.25 1.5
z

-0.5

0

0.5

1

1.5

2

2.5

3

Hd
Q
e
x
p
�d
z
LH
�
!!!
!!!
!!!
!!!
!!!
!!!!

8
 Π
G
�
3
L

0.25 0.5 0.75 1 1.25 1.5
z

-0.5

0

0.5

1

1.5

2

2.5

3

Hd
Q
e
x
p
�d
z
LH
�
!!!
!!!
!!!
!!!
!!!
!!!!

8
 Π
G
�
3
L

0.25 0.5 0.75 1 1.25 1.5
z

0

0.5

1

1.5

2

2.5

Hd
Q
e
x
p
�d
z
LH
�
!!!
!!!
!!!
!!!
!!!
!!!!

8
 Π
G
�
3
L

0.25 0.5 0.75 1 1.25 1.5
z

0

0.5

1

1.5

2

2.5

Hd
Q
e
x
p
�d
z
LH
�
!!!
!!!
!!!
!!!
!!!
!!!!

8
 Π
G
�
3
L

0.25 0.5 0.75 1 1.25 1.5
z

-1.5

-1

-0.5

0

0.5

1

1.5

2

Hd
Q
e
x
p
�d
z
LH
�
!!!
!!!
!!!
!!!
!!!
!!!!

8
 Π
G
�
3
L

0.25 0.5 0.75 1 1.25 1.5
z

-1.5

-1

-0.5

0

0.5

1

1.5

2

Hd
Q
e
x
p
�d
z
LH
�
!!!
!!!
!!!
!!!
!!!
!!!!

8
 Π
G
�
3
L

0.25 0.5 0.75 1 1.25 1.5
z

0

2

4

6

8

10

Hd
Q
e
x
p
�d
z
LH
�
!!!
!!!
!!!
!!!
!!!
!!!!

8
 Π
G
�
3
L

0.25 0.5 0.75 1 1.25 1.5
z

0

2

4

6

8

10

Hd
Q
e
x
p
�d
z
LH
�
!!!
!!!
!!!
!!!
!!!
!!!!

8
 Π
G
�
3
L

0.25 0.5 0.75 1 1.25 1.5
z

-1

0

1

2

3

d
Q
p
o
w
e
r
�d
z

0.25 0.5 0.75 1 1.25 1.5
z

-1

0

1

2

3

d
Q
p
o
w
e
r
�d
z

0.25 0.5 0.75 1 1.25 1.5
z

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

d
Q
p
o
w
e
r
�d
z

0.25 0.5 0.75 1 1.25 1.5
z

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

d
Q
p
o
w
e
r
�d
z

0.25 0.5 0.75 1 1.25 1.5
z

-2

0

2

4

6

d
Q
p
o
w
e
r
�d
z

0.25 0.5 0.75 1 1.25 1.5
z

-2

0

2

4

6

d
Q
p
o
w
e
r
�d
z

0.25 0.5 0.75 1 1.25 1.5
z

-1.25

-1

-0.75

-0.5

-0.25

0

0.25

0.5

d
Q
p
o
w
e
r
�d
z

0.25 0.5 0.75 1 1.25 1.5
z

-1.25

-1

-0.75

-0.5

-0.25

0

0.25

0.5

d
Q
p
o
w
e
r
�d
z

FIG. 5: Observational constraints on dQexp(z)/dz and dQpower(z)/dz from the simulated data

generated w.r.t. eight fiducial modes.

19


	Introduction
	The Basics
	Testing and Constraining Quintessence 
	Reconstruction of potential
	Assessment of consistency
	Constraining the distinct parameter
	Distinguishing between models

	Summary
	Acknowledgments
	References

