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Abstract

We study the threshold of longitudinal instability driven by co-
herent synchrotron radiation in a rectangular chamber in electron
storage rings. Starting with Maxwell’s equation, we first derive a
point-charge wakefield for longitudinal motion. Then we use the
wake, along with the Vlasov-Fokker-Planck equation, to show
that the threshold can be described by a simple scaling law of
ξ = ξth(χ,A, β̂), where ξ is a dimensionless current, χ the shield-
ing parameter, A the aspect ratio of the vacuum chamber, and β̂
the damping rate relative to the rate of synchrotron oscillation.
We further investigate the threshold with simulations for various
values of aspect ratios. In particular for a square chamber, we find
that ξth ≈ 0.25, which is a factor two lower than the threshold in
free space.
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1 Introduction

Coherent synchrotron radiation (CSR) by circulating electrons in betatron
was first investigated in an unpublished report[1] by Schwinger who was
concerned with excessive radiation power. He discovered that the radiated
power was actually suppressed by the parallel conducting walls. Essentially
the same result was found later [2] by Nodvick and Saxon. Since then,
mostly theoretical works[3, 4] continued along a path of calculating its wake
and impedance.

A decade ago, an idea of utilizing CSR as coherent Tera Hz (THz) radi-
ation sources in the third generation light sources was systematically devel-
oped [5, 6, 7, 8]. However, the brightness of these THz sources is severely
limited by a longitudinal instability [9, 10] driven by CSR. The renewed
experimental interests and diagnostics [11] provided by the radiation itself
allows precision characterization of the threshold of this instability. Most
recent observations [12, 13, 14] are in good agreement with a simple scaling
law [15, 16], which is derived based on the parallel-plate wake [4]. But why
the theory works so well even without side walls? What role if any do the side
walls play? In particular, does the scaling law remain valid for a rectangular
chamber? Those are the questions to be studied in this paper.

The earliest study of CSR in a rectangular chamber was carried out by
Warnock and Morton[3] in the late 90’s. In particular, they derived the
longitudinal impedance in terms of harmonic expansion by a rigid bunch,
sometimes called a needle beam with a small vertical height. Recently, the
investigation has been extended to include the transient effect[17, 18, 19]
under the paraxial approximation. In this paper, we will continue these
works with a focus on the wakefield and impedance generated by a point
charge and its scaling property similar to those found by Murphy, Krinsky,
and Gluckstern [4] in the parallel plate model.

In section 2 and 3, we will solve Maxwell’s equation with the boundary
condition on a rectangular chamber made with perfectly conducting medal.
Continuing in section 4, we will introduce the longitudinal wakefield and
impedance naturally according to the functional form in the derived solu-
tion. In section 5, the scaling property of the impedance will be derived
under an approximation that is suitable for most circular accelerators. To
validate our point-charge wakefield, we will derive the bunch wakes and com-
pare them with the previously known results. In section 7, we will introduce
the equation that governs the longitudinal beam dynamics and derive a func-
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tional form of the scaling law for the threshold of instability. To determine
the function itself, we will perform simulations for chambers with various as-
pect ratios in section 8. Finally, in section 9, we will make some concluding
remarks.

2 Field Equations

In this and the next two sections, we will closely follow the approach used by
Warnock and Morton [3] to derive the electromagnetic field and impedance
for a point charge circulating in a rectangular chamber. We will start with
the Maxwell equation in its component form. In cylindrical coordinates,
r, θ, y, they can be written as
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To solve these equations, we make Fourier expansions:
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Here we consider only a perfectly conducting chamber as illustrated in Fig. 1.
To satisfy the boundary conditions, Er(r, θ,±h/2, t) = Eθ(r, θ,±h/2, t) = 0,
and By(r, θ,±h/2, t) = 0, we set the wave number in the vertical direction
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pπ

h
, (2.5)

where h is the height of the rectangular chamber. For the other field com-
ponents and sources, we choose their expansion
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(jr, jθ, jy, ρ) ∼ (sin, sin, cos, sin), (2.7)

accordingly so that each component equation in Eqs (2.1) has either a sine
or cosine dependence of αp(y + h/2).
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Figure 1: A segment of a rectangular vacuum chamber in the cylindrical
coordinate.

The vertical components of the fields Eynp and Bynp satisfy
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Without the sources ρ, j, the general solution of these two equations is a
linear combination of the Bessel functions Jn(γpr) and Yn(γpr).

3 Field Solutions

With the sources, we need to solve equation,
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and ∆(y1, y2) is the Wronskian

∆(y1, y2) =

∣∣∣∣ y1 y′1
y2 y′2

∣∣∣∣ . (3.4)

It is worth noting that we have chosen the homogeneous solution so that
ψn(a) = y1(a) and ψn(b) = y2(b). It is therefore convenient to choose y1
and y2 so that they satisfy the boundary condition at r = a and r = b
respectively.

For a charged particle that orbits on a circle with radius of R in the plane
defined by y = 0, its charge density is given in terms of delta functions,

ρ(r, θ, y, t) =
q

r
δp(θ − ω0t)δ(y)δ(r −R), (3.5)

where δp(θ) should be understood as a periodic delta function and its angular
frequency ω0 = βc/R. Similarly, the current density can be written as

(jr, jθ, jz) = (0, βcρ, 0). (3.6)
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Note that these source terms are zero if p is an even number. So only odd p
modes are excited by this source in the y = 0 plane.

Referring to Eqs. (2.13) and (3.1) for Eynp, we have v = 4παpρnp. To
satisfy the boundary condition, Eynp(a) = Eynp(b) = 0, we choose y1 =
pn(γpr, γpa) and y2 = pn(γpr, γpb). Here we use the notation of the Bessel
function cross-products

pn(x, y) = Jn(x)Yn(y)− Yn(x)Jn(y), (3.9)
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Carrying out two integrals in Eq. (3.2), we obtain
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{
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(3.13)
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2
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with B′
ynp(a) = B′

ynp(b) = 0. Here, we choose y1 = qn(γpr, γpa) and y2 =
qn(γpr, γpb). Again carrying out the integrals, we find
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With the solutions of Eynp and Bynp in hand, we can compute all com-
ponents of electric and magnetic fields. In particular we can calculate the
electric field along the circular orbit and find
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4 Wakefield and Impedance

It is obvious that the wavelength of the Fourier mode n is λn = 2πR/n.
Hence its wave number kn = 2π/λn = n/R. To study beam dynamics of a
single bunch with length σz, we are interested in the modes with λn < 2πσz
or equivalently kn > 1/σz. This implies n > R/σz. For a typical storage
ring, say R = 10 meter and σz = 5 mm, we have n > 2000. In this region
of parameters, kn = 1/R is nearly continuous in comparison to 1/σz and
therefore we can approximate the summation of n

∞∑
n=−∞

→ R

∫ ∞

−∞
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by a continues integral of k = n/R. Now the longitudinal field for CSR can
be written as

Eθ(z) = −2πiq

h

∫ ∞
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dkneikz

nβh/πR∑
p(odd)≥1

[β2 sn(γpR, γpa)sn(γpR, γpb)

sn(γpa, γpb)

+ (
αp

γp
)2
pn(γpR, γpa)pn(γpR, γpb)

pn(γpa, γpb)
], (4.2)

where z = s−βct describes the circular position relative to the point charge,
where the positive z points toward the front in the direction of motion. Here
we have restricted the summation to the modes that are propagating and have
real γp. Now we have shown that the dependencies of s and t are through
z and therefore naturally we shall introduce a concept of wakefield [21] inte-
grated over 2πR,

W (z) = −2πREθ(z)/q. (4.3)

Now if we use the concept of the impedance
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∫ ∞
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we can derive the impedance Z(k) and then write it in terms of
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], (4.5)

to compare the result obtained by Warnock and Morton [3]. The results
agree if we set Λp = 2, Z0 = 4π/c, ω = nω0, and add the finite upper bound
of the summation in Eq. (3.9) in their paper. It is worth pointing out that we
have used a point charge instead of a charged bunch in the previous work [3]
as the source for generating the field.

5 Scaling Property

For simplicity, we will assume that β = 1 and the beam is at the center
of the chamber. As we have discussed at the beginning of this section, we
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are dealing with a very large Fourier mode number n. For such large n, it
is well known that asymptotic expansions are an excellent way to calculate
the values of the Bessel functions. In particular, we need to compute the
Bessel functions in the form of Jn(n

√
1− x2), which leads us to the uniform

asymptotic expansion [22] associated with the Airy function Ai. Applying
the first term in the expansions of the Bessel functions and their derivatives,
namely
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to Eq. (4.5), we can express the impedance in terms of Airy functions,
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ŝ(u, u+)ŝ(u, u−)
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where k̂ is a dimensionless wave number,

k̂ = kh3/2/R1/2, (5.6)

and p̂ and ŝ are the cross-products of Airy functions and their derivatives,

p̂(x, y) = Ai(x)Bi(y)− Bi(x)Ai(y), (5.7)

ŝ(x, y) = Ai′(x)Bi′(y)− Bi′(x)Ai′(y). (5.8)

Their arguments u and u± can be computed by applying γp from Eq. (3.18)
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where A = w/h is the aspect ratio and w = b−a the width of the rectangular
chamber. We should mention that it is necessary to assume that w/R << 1
and p << kh/π in our derivation. The first approximation is well justified
for typical accelerators and the second one implies that p should not be too
large in the expansion. As we will see later, one needs to expand p up to 7
in the cases of interests when 1 ≤ A ≤ 3.

It is worth emphasizing that all dependency of the wave number k is
through k̂. This scaling property of the impedance was first discovered by
Murphy, Krinsky, and Gluckstern for parallel plates. Here we have shown
that it remains valid for a rectangular chamber. Of course, an additional
parameter, namely the aspect ratio A, is necessary to describe the impedance.
We should mention that our impedance agrees with the expression derived
by Agoh [18] under the paraxial approximation if we set β = 1,Λp = 1, Z0 =
4π/c, add the finite upper bound, and finally multiply a factor of 2πR in Eq.
(69) in his paper.

Given the impedance in Eq. (5.5), it is more convenient to calculate first
the integral of the wake S(z) by

S(z) =
c

2πi

∫ ∞

−∞
dkeikz(

Z(k)

k
), (5.11)

and then compute the wake with

W (z) =
dS(z)

dz
. (5.12)

The integral in Eq. (5.11) can be carried out by applying the calculus of
residues in the complex plane of k. The contour is chosen to be slightly
above the real axis along the positive direction, circling back on a huge half
circle either on the upper plane for positive z or the lower one for negative z.
As a result, the wake generated by the point charge at z = 0 can expressed
as a summation,

W (ẑ) =
R

h2

∑
j

k̂j
Rs

Q
(k̂j)[Θ(−ẑ) cos(k̂j ẑ)−

sgn(ẑ)

2
e−k̂j |ẑ|], (5.13)

where Θ is the step function and sgn for the sign function. We note ẑ =
zR1/2/h3/2 as a dimensionless longitudinal position and have assumed k̂j > 0.
The poles are defined by zeros of ŝ(u+, u−) or p̂(u+, u−). For each index j,
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we find four poles at ±k̂j,±ik̂j. The poles on the real axis contribute to the
oscillations behind the charge and imaginary ones lead to the exponential
decays. Here we plot the wake potential as a function of the dimensionless
position ẑ in Fig. 2 for aspect ratio A = 1. The rapid damping immediately
behind the driving particle is due to the decoherence among high harmonics.
Afterwards, it recoheres partially at the period of the lowest mode.
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Figure 2: A point-charge wakefield as a function of the dimensionless longi-
tudinal position ẑ for a square chamber.

For each index j, the oscillation term can be interpreted as the resonant
wake driven by an LRC circuit with an infinite quality factor Q. In such
resonance, the quantity Rs/Q remains finite and meaningful. The additional
damped terms are presumably due to the circular geometry. A hint is coming
from fact that it has contributed to the wake ahead (ẑ > 0) as shown in
Fig. 2. This is possible because the radiated photons can take a short cut
in a straight line getting ahead of the charged particle that is orbiting on a
circle.

The roots of ŝ can be easily found with a numerical search for a given p.
With the root k̂j, the dimensionless Rs/Q can be computed with

Rs

Q
(k̂j) = −Υk̂

−4/3
j

ŝ(uj, u
+
j )ŝ(uj, u

−
j )

dŝ(u+j , u
−
j )/dk̂

, (5.14)
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Figure 3: A dimensionless Rs/Q for the resonances as a function of the
dimensionless wave number k̂ for a square chamber.

where Υ = 32π321/3. Similarly, for the p̂ roots,

Rs

Q
(k̂j) = −Υk̂

−4/3
j uj

p̂(uj, u
+
j )p̂(uj, u

−
j )

dp̂(u+j , u
−
j )/dk̂

. (5.15)

The wake has no explicit dependence on the aspect ratio A. But its effect
is hidden in the values of the roots k̂j through Eq. (5.10). For a square
chamber A = 1, the dimensionless Rs/Q is shown in Fig. (3) with 46 modes,
p ≤ 7, and k̂ < 65. For two rectangular chambers with A = 2 and A = 3, we
show their resonance spectra in Fig. 4 with p ≤ 5. Naturally, the larger the
aspect ratio the more resonances but with reducing strengths. The shape of
their envelopes is very similar in these two cases.

6 Bunch Wake

Sometimes, it is useful to have a wakefield driven by a Gaussian bunch with
length σz. Given the point-charge wake W (ẑ), the bunch wake can be com-
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Figure 4: Rs/Q for the resonances as a function of k̂ for rectangular chamber
with an aspect ratio a) A = 2 with 112 resonances b) A = 3 with 204
resonances.

puted by a convolution to its distribution,

Wχ(ẑ) =
1√
2πχ

∫ ∞

−∞
dζW (ẑ − ζ)e

− ζ2

2χ2 , (6.1)

where we introduce a shielding parameter which is defined as

χ = σzR
1/2/h3/2. (6.2)

Carrying out the integral, we find

Wχ(ẑ) =
R
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∑
j

k̂j
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Q
(k̂j)[wχo(k̂j, ẑ) + wχd(k̂j, ẑ)], (6.3)
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1
2
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4
[erfc(

ẑ − ik̂χ2

χ
√
2

) + e2ik̂ẑerfc(
ẑ + ik̂χ2

χ
√
2

)], (6.4)

wχd(k̂, ẑ) =
e

1
2
k̂(−2ẑ+k̂χ2)

4
[erfc(

ẑ − k̂χ2

χ
√
2

) + e2k̂ẑerfc(
ẑ + k̂χ2

χ
√
2

)− 2], (6.5)

in terms of the complementary error function erfc. Here we use the subscript
“o” to indicate its origin from the oscillation terms and “d” for the damped
ones.
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Figure 5: Bunch wake as a function of the dimensionless position ẑ for a)
χ = 0.0625 b) χ = 0.5 when a single mode is dominant. Note that there is a
factor of 20 reduction resulting in from the larger shielding parameter.

The bunch wake of two different shielding parameters χ = 0.0625 and
χ = 0.5 are plotted to show the effect of shielding from the square chamber.
These two particular values are chosen to compare with the steady wakes
computed by Stupakov and Kotelnikov [19] using the mode expansion method
under the paraxial approximation. Our results agree perfectly with theirs as
shown in a) and c) plots of Fig.4 in their paper. Moreover, our results
agree with the steady wake computed numerically by solving the parabolic
equation [17].

In reality, the bunch will be dynamically deformed away from a Gaus-
sian by the wakefield. We continue to investigate the longitudinal collective
instability driven by the point-charge wake.

7 Vlasov-Fokker-Planck Equation

Without any collective force, the beam distribution reaches a Gaussian equi-
librium characterized by its length σz and relative energy spread σδ in several
damping times τd in electron storage rings. The energy spread σδ is largely
determined by the ring geometry and the beam energy and the bunch length
σz is given by [23]

σz = αcσδ/ωs, (7.1)

where α is the momentum compaction factor and ωs the angular synchrotron
frequency.
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With collective force, it is convenient to introduce a normalized coordinate
system: q̂ = z/σz, where z is the longitudinal position with the positive z axis
pointing to the front; p̂ = −δ/σδ, where δ is the relative energy deviation.
When there is a collective force induced by the bunch distribution λ(q̂, θ̂)
through the wakefield W (q̂), the evolution of the beam density distribution
ψ(q̂, p̂; θ̂) is governed by the Vlasov-Fokker-Planck (VFP) equation, [24]

∂ψ

∂θ̂
− {H,ψ} = 2β̂

∂

∂p̂
(p̂ψ +

∂ψ

∂p̂
), (7.2)

where the Poisson bracket is defined by {f, g} = ∂f
∂q̂

∂g
∂p̂

− ∂g
∂q̂

∂f
∂p̂
. The Hamilto-

nian

H(q̂, p̂; θ̂) =
1

2
(q̂2 + p̂2)− Î

∫ q̂

−∞
dq̂′′

∫ ∞

−∞
dq̂′λ(q̂′, θ̂)W (q̂′′ − q̂′), (7.3)

with λ(q̂, θ̂) =
∫∞
−∞ ψ(q̂, p̂; θ̂)dp̂ and normalizes to

∫∞
−∞ λ(q̂, θ̂)dq̂ = 1. The

independent variable θ̂ = ωst with t the time and β̂ = 1/ωsτd. We define
normalized current as [25]

Î =
reNb

2πνsγσδ
, (7.4)

with re is the classical electron radius, γ the Lorentz factor, νs the syn-
chrotron tune, Nb the bunch population. In practice, it is useful to rewrite Î
in terms of the bunch current Ib using Eq. (7.1),

Î =
σzIb

αγσ2
δIA

, (7.5)

where IA = mc3/e = 17045 A is the Alfven current. Î has dimension of
length, which cancels the dimension of the wakefield

W (q̂) =
R

h2

∑
j

k̂j
Rs

Q
(k̂j)[Θ(−q̂) cos(k̂jχq̂)−

sgn(q̂)

2
e−k̂jχ|q̂|]. (7.6)

Here we have used Eq. (5.13) for the point-charge wake and ẑ = χq̂. It
is more convenient to absorb the dimension in the wake to a dimensionless
current,

ξ =
ÎR1/3

σ
4/3
z

. (7.7)
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along with the dimensionless wake

Wξ(q̂) = χ4/3
∑
j

k̂j
Rs

Q
(k̂j)[Θ(−q̂) cos(k̂jχq̂)−

sgn(q̂)

2
e−k̂jχ|q̂|]. (7.8)

It is worth noting that this wake depends only on the shielding parameter χ
and the aspect ratio A. The Hamiltonian becomes

H(q̂, p̂; θ̂) =
1

2
(q̂2 + p̂2)− ξ

∫ q̂

−∞
dq̂′′

∫ ∞

−∞
dq̂′λ(q̂′, θ̂)Wξ(q̂

′′ − q̂′). (7.9)

If there is a threshold of collective instability that is described by the VFP
equation, then it is obvious that the threshold should be given by

ξ = ξth(χ,A, β̂), (7.10)

where ξth is a function we shall determine. For the parallel plates, we have
found [15, 16]

ξth(χ,∞, 0) = 0.5 + 0.34χ. (7.11)

Note that the coefficient 0.34, seemingly differing from 0.12 in [15], is due
to a different definition of the height. Aside from a dip at χ = 0.25, the
instability grows sufficiently fast so that the dependence of threshold on the
damping rate β̂ is negligible.

8 Simulation

It is easy to see that the VFP equation has a static solution in form of

ψ(q̂, p̂) =
1

κ
√
2π

exp(−H) = λ(q̂) exp(− p̂
2

2
)/
√
2π, (8.1)

which leads to the well-known Haissinski equation [26]

λ(q̂) =
1

κ
exp[− q̂

2

2
+ ξ

∫ q̂

−∞
dq̂′′

∫ ∞

−∞
dq̂′λ(q̂′)Wξ(q̂

′′ − q̂′)], (8.2)

where the constant κ is necessary for the normalization. In general, this
nonlinear integral equation can be solved numerically using Newton’s iter-
ation starting from a Gaussian distribution. We know that the Haissinski
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distribution is not only a static solution but also the equilibrium distribu-
tion of the VFP equation at sufficiently low current. Above a threshold of
ξ, the Haissinski distribution becomes unstable. The associated instability
is commonly referred to as the microwave instability. In practice, we always
start with Haissinski distribution and then detect the threshold by simply
monitoring any deviation of σp̂ away from 1.
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Figure 6: Simulation results of the threshold as a function of the shielding
parameter for rectangular chambers with various aspect ratios. The solid line
represents ξth = 0.5 + 0.34χ for the parallel plate model.

In numerical simulation, we continue to use a robust algorithm developed
by Warnock and Ellison [27] to solve the VFP equation on grid points on
a rectangular mesh. Reliable results require a mesh size comparable to the
smallest length scale of the longitudinal motion. Given the computing power
of a Linux computer, that limits the shielding parameter χ ≤ 1 for a mesh of
2400×2400 that covers a maximum of 8 sigma of beam size. For a typical run,
we set the damping rate at β̂ = 5×10−4 and use 10240 steps per synchrotron
period running up to 200 periods.

We have performed stability calculations for aspect ratios of A = 1, 2 and
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Figure 7: A sawtooth instability seen at the dimensionless current ξ = 0.38
and the shielding parameter χ = 0.3 in a square vacuum chamber. It has
an approximate period of 80 synchrotron oscillations or 4% of the damping
time.

3. Our results of the threshold function ξth are plotted in Fig. 6. At a higher
end of the shielding parameters, 0.3 < χ ≤ 1, there is at least a factor of two
in reduction of the threshold for a square chamber in comparison to that of
the parallel plates. For a rectangular chamber with sufficiently large aspect
ratio A ≥ 2, there is no too much difference. At the lower end, 0 < χ ≤ 0.3,
all the thresholds are low, similar to the dip [15] seen in the parallel-plate
model. The range of the shielding parameters we have studied here covers
the bunch length σz close to 1 mm which is necessary to generate sufficient
THz radiation in the third-generation light sources.

Obviously, there is much more work that is necessary to obtain the thresh-
old function ξth(χ,A, β̂). Given a highly oscillatory nature of the wake, this
work may require the power of a supercomputer running a parallel code,
especially for large shielding parameter χ.

Beyond the threshold, there are various ways that the instability can
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manifest itself. Among them, the most fascinating one is showed in Fig. 7,
behaving like the sawtooth instability. Zooming in, we see a much faster
oscillation near frequency of 2ωs bounded by the envelope. This periodical
feature resembles the bursting observations [6, 7] from the THz radiation.
Here this kind of phenomena occurs at the region where the weak instability
was observed [15].

9 Conclusion

The simple scaling law of the threshold found in the parallel-plate model
can be extended to the case of a rectangular vacuum chamber. In addition,
the threshold depends on the aspect ratio of the chamber. The validity of
the scaling law is relying on the conditions of σz << R, h << R, and
w << R. Clearly, these conditions are valid for most electron storage rings.
As a result, the scaling law is an excellent approximation to parameterize the
longitudinal instability driven by CSR. Moreover, one should avoid using a
square chamber in an electron storage ring because its side walls seem too
close for CSR. With the same height, a rectangular chamber with aspect
ratio 2:1 should be a better choice.

Given the threshold ξth, the threshold of bunch current Ithb can be written
as [16]

Ithb =
8π2ξthσ

7/3
z Vrffrffrev cosϕs

c2Z0R1/3
, (9.1)

where Vrf and frf are the voltage and frequency of the RF cavities, frev the
revolution frequency, ϕs the synchronous phase, and Z0 = 120π Ω impedance
in free space. It shows that there is a simple but extremely unfavorable
scaling law against the bunch length σz. This scaling behavior was universally
observed in the electron storage rings throughout the world. It is worth
mentioning that a deviation from this scaling should be expected but can be
explained by the dependence of ξth on the shielding parameter χ.

Finally, to finish our paper on a positive note, we shall emphasize that
increasing longitudinal focusing by the RF, namely the quantity of Vrffrf ,
is an effective path to reduce the bunch length while maintaining the beam
current. This scheme requires us to introduce many superconducting RF’s
at a higher frequency in future storage rings.
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