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Abstract 

 

    The genetic algorithm (GA) has been a popular technique in optimizing the design of particle 

accelerators. As a population based algorithm, GA requires a large number of evaluations of the 

objective functions, which can be time consuming. One can benefit from parallel computing with 

significantly reduced computing time when fulfilling the function evaluation by a numerical 

machine model in simulation codes. Indeed, this is the most common approach in GA 

applications. In this paper, instead of applying GA in the conventional numerical calculations as 

described above, we present a successful experimental demonstration of implementing GA in 

real machine-based optimization. We conduct the minimization of the average vertical beam size 

of the SPEAR3 storage ring using GA. Beam loss rate is chosen as the sole objective function 

because it is inversely proportional to the vertical beam size and can be measured 

instantaneously in SPEAR3. The decision variables are the strengths of SPEAR3 skew 

quadrupoles, by varying which we can change both the betatron coupling and the vertical 

dispersion while searching for the minimum beam size. The results in this paper can shed light 

on new applications of GAs in the particle accelerator community, for example, optimizing the 

luminosity of a high energy collider or the injection efficiency of a diffraction limited storage 

ring in real time. 
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I Introduction 

The interest in optimizing the operation and design of particle accelerators has long been 

driven by various beam requirements for different scientific applications. Since modern 

accelerators are always complex, optimization typically deals with multi interrelated variables 

and physical quantities, and a global solution sometimes cannot be reached using classical 

techniques such as exhaustive search or gradient based search methods.  The concept of 

population-based search allows evolutionary algorithms (EAs) to be used as very attractive tools 

for global optimization. Consequently, there are growing interests in applying EAs, especially 

Genetic Algorithms, for accelerator design and optimization in recent years.  

Genetic Algorithm (GA) is one of three major independent implementation instances of EAs 

along with evolution strategies [1] and evolutionary programming [2]. These algorithms are 

broadly similar and all based on the concept of solving complex problems by mimicking the 

processes of Darwinian evolution. Individual solutions compete with each other continuously to 

discover the optimum in the whole search space. However, significant differences between 

genetic operators and population selections [3] make them suitable for different applications.  

Ever since GAs were developed by Holland in 1970s [4], they have become popular and their 

applications have been extended from the classical single-objective optimization to multi-

objective optimization [5]. GAs were originally introduced to particle accelerator related 

research for a wiggler design in early 1990s [6]. Thereafter, they have been successfully applied 

in more areas such as designing injector systems [7], diagnosing and designing accelerating 

cavities [8-12], and optimizing beam optics design in storage rings [13-15]. Some of these 

applications of GAs in the particle accelerator community are well summarized in Ref [16]. One 

core process of the GA is to evaluate objective functions from a given set of decision variables, 
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i.e. knobs, to be adjusted for optimum search. In spite of various approaches used in previous 

efforts, all of them evaluate the objective functions based on numerical simulations using particle 

tracking codes such as ELEGANT [17], which has been used for optimizing the lattice of the 

SPEAR3 storage ring [18], or analytical models, such as an equivalent circuit of accelerating 

cavities [12].   

In principle, when the optimization targets or their correlating parameters are measurable 

experimentally, it is possible to use the real machine as the function evaluator to directly measure 

the objective functions, rather than using a computer model. Compared to the simulation based 

optimization, the machine based optimization has the most accurate representation of the 

machine condition that includes all lattice errors. Moreover, when the physics quantities of 

interest can be measured quickly in experiment but cost long time to be calculated in simulations, 

machine based optimization will excel in speed too. One example of such quantity is the 

luminosity of the high energy colliders. It can take hours to calculate the luminosity in a particle 

accelerator even using parallel computing. However, its measured value can normally be 

obtained in real time during the machine operation. In SPEAR3, we have identified a similar 

parameter of interest that can be measured nearly instantaneously, which in turn enables us to 

carry out machine based GA optimization. In this paper, we report an innovative application of 

GA to minimize the average vertical beam size of the SPEAR3 storage ring in real time. Smaller 

vertical beam sizes in a storage ring can produce higher photon brilliance. Therefore, there have 

been several results reported for achieving ultra-low vertical beam size or emittance recently 

[19].To construct the GA, we use 13 skew quadrupoles in the SPEAR3 storage ring as decision 

variables and the average vertical beam size as the objective function. The results can serve as a 

proof of principle for using GA in machine based optimization. However, the average beam size 



  4/19 

cannot be directly measured in SPEAR3; instead, we optimize the beam loss rates due to their 

negative correlation. Thus, to minimize the vertical beam size, we need find the maximum beam 

loss rate.  In SPEAR3, the lattice with magnetic errors can be derived from a computer code 

called LOCO (Linear Optics from Close Orbits) [20] by minimizing the deviation between the 

model and measured orbit response matrix data. It has been proven that LOCO can give accurate 

predictions of parameters such as emittances, dispersions, and beta functions. Using LOCO data, 

optics correction can also be made, although typically several iterations are required. Since the 

ideal model lattice is free of transverse coupling and vertical dispersion, LOCO correction has 

been the regular method to minimize vertical beam size in SPEAR3. We have reduced the 

emittance ratio to 0.05% in the past [21]. In this paper, we will compare the results using LOCO 

correction with those from the GA method. 

The structure of this paper is as follows. In Sec. II, we derive the relationship between beam 

loss rate, emittance ratio and the average vertical beam size in SPEAR3. In Sec. III, we briefly 

describe the algorithm details. The optimization results using GA are presented in Sec IV. 

Finally, in Sec. V, we discuss the work presented in the paper and the direction of future 

research. 

II. Minimize the Vertical Beam Size in SPEAR3 

SPEAR3 is a 3
rd

-generation, double-bend achromat electron storage ring with a 

circumference of 234.1m. With the present low emittance lattice, the nominal horizontal 

emittance is 10 nm-rad at 3 GeV with a typical emittance ratio of 0.1%. The transverse beam 

sizes vary along the ring due to the effect of local coupling and dispersion. By optimizing the 

strength of the 13 skew quadrupoles distributed around the ring, we can minimize the coupling 

and vertical dispersion and hence reduce the average vertical beam size. Beam size reduction 
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leads to the shrinkage of the beam volume, which increases the Touschek beam loss in SPEAR3. 

In the following, we briefly describe the relationship of Touschek beam loss rates, vertical beam 

sizes, and emittance ratio.  

In a storage ring, circulating electrons are lost due to collisions with gas molecules and 

electron-electron scattering inside the bunch, where the latter is known as the Touschek effect.  

As with most modern electron storage rings, the loss of stored beam current in SPEAR3 is 

mainly due to the Touschek scattering [22]. In the Touschek effect, the collisions of particles 

with transverse oscillations can lead to the loss of particles by transferring transverse momenta to 

longitudinal momenta. The Touschek life time,   , can be used to characterize the electron loss 

rate due to Touschek scattering [23]: 
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where N is the number of electrons in the bunch and is proportional to the beam current I; r0 

is the classical electron radius; γ is the Lorentz factor,  ̅x,y,z represents average sizes around the 

ring for all directions;   ̂ represents the rf bucket height;         ̂      ̅  
  with a typical 

range from 0.001 to 1in a storage ring;   ̃    is the Touschek integral, a slowly varying function. 

Normally  ̅   ̅  , so when varying the skew quadrupoles of the storage ring, the vertical 

beam size changes much faster than the horizontal beam size. Neglecting the beam lengthening 

effect with small change in stored beam current,  ̅  can be treated as a constant as well. 

Furthermore, assuming a fixed momentum aperture and a nearly constant  ̃   , one can derive 

the simple scaling law between beam loss rates dI/dt and vertical beam size as shown below: 
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In the literature, emittance ratio is also used to characterize vertical beam size in storage ring. 

However, depending on the definition, transverse emittance and beam size could refer to 

different quantities.  The RMS apparent emittance   is the observable quantity that varies around 

the ring and can be directly derived from beam size σ, dispersion D, energy spread  , and beta 

function  : 

        
    

                

       
                                                  (3)      

However, in the presence of transverse betatron coupling, the RMS apparent emittance is 

different from the RMS projected emittance   (the second-order statistical moment represent the 

beam phase space) and the eigenemittance   (the invariant characterizing the lattice). The 

influence of betatron coupling on these three transverse emittances has been described using the 

resonance driving term formalism in Ref [19]. For a coupling free lattice, these three quantities 

coincide,      . When coupling sources exist, the apparent emittance oscillates around the 

ring and its amplitude generally increases with the coupling. This effect is especially important 

for the vertical emittance. The projected emittance stays constant in coupling free regions and 

exhibits abrupt jumps at locations of coupling sources. However, with enough observation points, 

the mean projected emittance is equal to the mean apparent emittance. Therefore, the emittance 

ratio can be calculated from both of them, i.e.   ̅   ̅  〈  〉 〈  〉. When the average vertical 

beam size is minimized in a storage ring, the vertical dispersion is also small. Hence, one can 

claim that minimizing vertical beam size is equivalent to minimizing the emittance ratio. As a 

matter of fact, emittance ratio has been widely used interchangeably with vertical beam size in 

the literature on reducing vertical beam size in storage rings. 

In SPEAR3, direct validation of Eq. (2) can be demonstrated by experimentally measured 

data. During the experiment, 100 mA is filled in SPEAR3 with the normal filling pattern of 280 
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bunches. We achieve 20 conditions in the ring by varying all skew quads in a fixed step size.  

The current decay during the experiment is about 4%, hence is negligible. For each condition, we 

measure the vertical beam size at 1Hz with an x-ray pinhole camera [21]. The beam loss rate is 

recorded at 1Hz by a beam loss monitor (BLM), a 2-inch NaI scintillator and photomultiplier 

tube [24], installed downstream of the SPEAR3 horizontal beam scraper, which is inserted to 

make it the minimum physical aperture in the ring. Both beam size and beam loss data are 

averaged for 2 minutes to reduce noise. The global beam loss is also acquired by recording the 

current decay during this 2-minute period using a DC current transformer (DCCT). The current 

droop during the entire period of the experiment is less than 4%, thus, the stored current can be 

considered as a constant for the analysis in Eq. (2). Touschek scattered electrons tend to be lost 

at locations with large dispersion area or smaller horizontal aperture.  In SPEAR3, the horizontal 

scraper is parked beyond -33 mm during operation so that it does not interfere with the stored 

beam. A large amount of the Touschek beam loss during operation occurs at a high dispersion 

section that is designed intentionally as a beam loss point. Another BLM was installed there to 

monitor the beam loss rate.  By inserting the horizontal scraper closer to the beam, more and 

more electrons are lost at the scraper. As shown in Figure 1, at -15mm, the scraper replaces the 

high dispersion section as the dominant place for the Touschek beam loss. In order to capture as 

much loss as possible, we insert the scraper to -6mm for a loss rate above 16,000 counts/second.  

We believe that this insures that we have most of the Touschek beam loss captured at the scraper 

and recorded by the scraper BLM.  
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Figure 1: Loss rates at the high dispersion section and the scraper for different horizontal scraper 

location. 

Considering the demagnification of the beam from the optics setup and pixel resolution of the 

CCD sensor in the digital camera, the effective resolution for imaging the beam with the pinhole 

camera is about 6 µm/pixel. This resolution is fine for the beam with relatively larger vertical 

beam size, but can be less accurate for vertical beam size measurement when the beam size is 

small. In addition, the measurement of beam size at one location of the ring is not enough to 

determine the Touschek life time. Therefore it can only be used as verification to the change of 

the lifetime. The measured results are shown in Fig. 2. Agreeing with the scaling law in Eq. (2), 

the beam loss rate is inversely proportional to the vertical beam size. The global beam loss, 

measured from the stored current DCCT, has more pronounced noise, but it still serves as a 

reasonable crosscheck to our assumption that the BLM near the scraper captures most of the 

beam loss. As the data shows, the vertical beam size measured at the x-ray pinhole camera tends 

to overestimate the average beam size in SPEAR3. 
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Figure 2: Experimental results showing the monotonic relationship of beam loss rates (BLM) vs. 

vertical beam size, scaled global loss rate, and emittance ratio.  

As previously discussed, the emittance ratio and vertical beam size can be calculated from 

LOCO analysis. Sampling 5 out of the 20 different cases, we measured the response matrix of 

the ring for each, and then fit the model to the measured data using LOCO. Emittance ratio and 

average vertical beam size then can be calculated from the fitted model. The results are shown in 

Figure 2, where the quadratic like relationship between the emittance ratio and beam loss rates 

agrees with Eq. (2) and (3). In addition to reduction of the average vertical beam size, decreased 

off energy dynamic aperture through resonance excitation could also be the cause for increasing 

beam loss rate while adjusting the skew quadrupoles. In such a case, we could fail to minimize 

the vertical beam size by maximizing the beam loss rate. However, the monotonic relationship of 

the measured beam loss monitor data, the vertical beam size, and the emittance ratio in Figure 2 
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helps to ease this concern. Furthermore, the small beam size we achieved by maximizing the 

measured beam loss further eliminates concerns about resonant effects. One can also verify the 

absence of resonance excitation by repeating the measurement with smaller RF acceptance by 

reducing RF cavity gap voltage. But as it has been well proved that the resonance excitation is 

not present while varying the skew quadrupoles in SPEAR3, this is not necessary in our study. 

Therefore, based on the above discussion, we can conclude that, by setting the horizontal scraper 

to -6 mm, finding the maximum of the beam loss rates measured by the BLM near the horizontal 

scraper is equivalent to minimizing the vertical beam size or the emittance ratio.  

III Algorithm Description 

  GAs start an optimization process by initializing a random population. Each individual in the 

population is a chromosome, which at least contains a vector in the hyper dimensional space of 

decision variables that represent a solution to the problem and the values of corresponding 

objective functions. Additional information including the rank of the objective functions, fitness, 

and crowding distance is usually encoded into a chromosome depending on specific problems. 

Under some selection strategies, some of the chromosomes are chosen as parents to generate the 

offspring via genetic operations. Values of objective functions are provided by the function 

evaluator after each offspring is generated.  Depending on algorithms, the population size of each 

generation can be fixed or varied. The parents can be used to form the new generation with 

offspring, the elitist approach, or always be discarded, the non-elitist approach. After a new 

generation is created, it repeats the same process for generating next generation and will not stop 

until meeting the stopping criterion. In this section, we will detail the formation of a GA based 

technique for maximizing the beam loss rate of SPEAR3 in real time. 

Objective functions and decision variables 
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As discussed in the previous section, the normalized beam loss rate measured by the BLM 

next to the scraper is the single objective function in our GA formation. The currents, which 

represent the strengths of the skew quadrupoles in SPEAR3, are the independent decision 

variables. After varying the currents of the 13 skew quadrupoles, the objective function is 

evaluated from the direct measurement of the BLM.  Distinct from most other applications of 

GA, the accelerator serves as the function evaluator, instead of a numerical or analytical model. 

This approach has the obvious advantage of providing the exact evaluation without any 

approximation, but it is usually difficult for two reasons. First, the experimental evaluation is 

usually subject to noise, and thus can be inconsistent. Secondly, it can be too slow to implement 

a machine based GA. As a global optimizing algorithm, a large number of evaluations are 

required before reaching the vicinity of the optimum in the solution space. Unlike parallel 

computing capability in many simulation codes, the machine normally can only evaluate one 

variable set at a time.  Additional time has to be spent if magnet ramping or standardization is 

involved when changing the decision variables.  However, with proper diagnostics in SPEAR3, 

we can overcome these problems due to the following facts. The SPEAR3 skew quadrupoles are 

powered by high precision MCOR power supplies featured with fast switching and the field 

variations of the skew quadrupoles are small enough to neglect the hysteresis effects when 

searching with GA. The data acquisition from the BLM is also nearly instantaneous. When 

inserting the horizontal scraper closer to the beam, the signal reading is very high in the BLM, 

which provides a decent SNR.  

Using the objective function, i.e. the beam loss rate normalized to the square of stored 

current, decision variables, and the rank of the objective function in the current generation, we 

form each individual in the population, i.e. the chromosomes. A pool of parents is selected in 
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each generation from these individuals to create children through the process of genetic 

operations.  

Genetic operations 

Except the first generation, all sequential generations are generated via the process of genetic 

operations. We use two of the most popular genetic operators: real-coded Simulated Binary 

Crossover (SBX) [16, 25] and polynomial mutation [16, 26]. In each genetic operation, one of 

the two operators is chosen randomly but conforms to a predefined ratio. During a crossover, two 

parents are picked to create two children, while one child is generated from one parent in the 

case of mutation. Once a child is created, its corresponding objective function is evaluated. 

Eventually, an offspring population is generated. Crossover and mutation are governed by the 

user-configurable nonnegative tuning parameters ηc and ηm respectively. A more detailed 

discussion of these two parameters can be found in the literature such as reference [16]. In short, 

these tuning parameters control the probability density function of the likeness between parents 

and children. For mutation, a smaller ηm represents less probability of having a similar child, 

which in turn provides a global search to the optimum regardless the parent solution. On the 

other hand, with a bigger ηm, it is very likely that the child only varies slightly from the parent 

and the operation is conducting a local search of optimum around the parent. The behavior of ηc 

is quite similar to ηm: the children tend to be close to one of the parents with large ηc or be 

randomly generated with small ηc.   

Replacement, Reevaluation, and Stopping Criteria 

To ensure an elitist approach, the current population is replaced by the best solutions chosen 

from both the offspring and the older generation. To maintain a fixed population size, the 

remaining solutions are discarded. As the objective functions are measured directly from the 
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SPEAR3 machine, the results may change over time due to variation of machine condition. 

Therefore, we reevaluate the surviving solutions from all previous generations every 10 

generations. Limited by the machine time available for the experiment, we run the algorithm as 

long as possible, so normally we stop the program manually after a certain amount of time. 

IV Results 

   We choose the population size of 120 in each generation for reasonably big sample size and 

relatively short time for generating the whole population during the experiment. As a result, it 

takes less than 3 minutes to generate one generation. Fig. 3 shows the results with 211 

generations of GA optimization.  To reduce the effect of stored beam current decay, we refilled 

SPEAR3 twice during this experiment as shown by the normalized stored beam current in Fig. 

3(a) (scaled stored current shown as red curve). The optimization was paused during the refill 

and restarted by loading the dumped data after the fill. The total running time of the algorithm is 

a bit over 9 hours.  

Overall, the algorithm behaved well. The normalized beam loss rates in Fig. 3(a) grow steadily 

for the first 150 generations, and then start to converge. In Fig. 3(b), we also plot the decision 

variables of select generations with 120 individuals apiece for better understanding of the 

progress of optimum search. Starting from the first generation (in red), the decision variables or 

the individuals are generated randomly with a nearly uniform distribution within the boundaries 

of the hyperspace.  The solutions start to cluster at several regions rather than spread out in the 

whole hyperspace in the 6th and 11th generation. It appears that the final region of the solution is 

found in the 156
th

 generation. Thereafter, new solutions stop drifting away from this area. This is 

consistent with the results of beam loss rate shown in Fig. 3(a).  The skew quadrupoles currents 

of the best solutions in these select generations are shown in Fig. 3(c). In Fig.3 (d), we compare 
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the skew quadrupoles currents of the GA solution and the LOCO solution. The beam loss rates 

for the best solution found using GA are compared with the solution found using LOCO in Table 

I. Average vertical beam size and emittance ratio of the ring with these two solutions are also 

calculated from the fitted model using LOCO. 

(a)                                                                              (b) 

 

  

(c)                                                                             (d) 

 

Figure 3: (a) normalized beam loss rates at the scraper during the experiment at 1 Hz update rate; 

(b) population for selected generations (red: 1
st
 generation; green: 6

th
 generation; blue: 11

th
 

generation; cyan: 156
th

 generation; black: 211
th

 generation.); (c) the best solutions at selected 

generations; (d) comparison of the GA and LOCO solutions. 
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The normalized beam loss rate measured with the GA solution is increased by 17.9% from that 

with the LOCO solution. According to the scaling law in Eq. (2), this is translated to the 

reduction of vertical beam size by 15.18%. On the other hand, the calculated values of average 

vertical beam size using LOCO fitting show a 10.99% reduction of vertical beam size for the GA 

solution. The discrepancy comes from the accuracy of the fitting in LOCO, loss rates 

measurement, and the assumption of solely Touschek effect when deriving the scaling law in Eq. 

(2).  

Table I:  Comparison of optimized solutions from LOCO and GA  

 LOCO GA 

 ̅  (µm) 7.9617 7.087 

Emittance Ratio 0.0605% 0.0461% 

Normalized Beam Loss rate 2.07 2.44 

  

  With the GA-based optimization, we have found a solution that outperforms the LOCO solution. 

But the LOCO correction only takes about 15 minutes compared to the 9 hours run of the GA 

optimization. We can significantly reduce the time of GA optimization to be within 2 hours by 

including the LOCO solution in the first generation. The performance and speed of genetic 

algorithms highly depends on specific problems and can be adjusted with mutation and crossover 

tuning parameters. Although we have not conducted a thorough study of setting the most 

appropriate tuning parameters for our problem, we have programmed the code to dynamically 

adjust these factors according to the diversity of the population in the new generation. It appears 

that the optimization progresses faster by promoting more global search with relatively small 

mutation tuning parameters in early generations. When the population starts to cluster toward the 

optimum region, it helps to save time by using large mutation tuning parameter or shrink the 

search space. Without setting the tuning parameters properly, we have observed early 
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convergence of the program, which causes the failure of meet our goal within a reasonable 

amount of machine running time.  

V Discussion and Conclusion 

Genetic algorithms are believed to be especially suitable for problems with high complexity 

where traditional gradient-based search methods normally fail to optimize. As the storage ring 

lattice is well designed, the coupling optimization of the ring tends to be a well behaved problem. 

This is evident from the final solution: out of 13 skew quadrupoles, only 3 are required to be set 

above 5A, while most of others are near zero. This fact weakens the advantage of using GA 

based optimization. Thorough simulation study has been carried out in SPEAR3 in parallel to 

compare different algorithms for real time optimization of the beam loss rate [27]. After 

comparing other techniques including Nelder-Mead simplex method, Powell’s conjugate 

direction method, and a modified conjugate direction method, it is found that for this particular 

problem, GA lacks speed for real time optimization and its performance is sensitive to the 

random noise of the measured data.  Nevertheless, with machine based GA, we are able to find 

good solution regardless the time spent. Also, we have more confidence in its global validation. 

In addition, one should note that machine based GA may show advantage in speed over the 

traditional gradient based techniques when optimizing problems with more decision variables. 

As long as the corresponding hardware can be set roughly simultaneously, the time cost by 

machine based GA is independent of the number of decision variables. However, most 

traditional algorithms are scaled with the number of decision variables in high order. Thus, 

machine based GA can be more valuable for large machines. 

Genetic algorithms are also usually considered to be good candidates for multiple objective 

optimizations and not appealing when dealing with single objective optimization such as 
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decision making problems. However, unlike a definite model in simulation, the machine 

condition varies with time, even with a single objective function, for example the luminosity of a 

high energy collider, normally it is impractical to find the exact best solution. Therefore, it is 

required to search for a better solution from time to time with a certain algorithm, where the GA 

technique can be a powerful candidate. Our experimental results illustrate that with proper 

hardware, fast data acquisition capability and solid underlying physics, GA can be successfully 

used for problems of machine based optimization, even beyond the particle accelerator 

community. We believe this is the most important contribution of this work.  

   However, the GA techniques we used are far from being refined. In future study, we will focus 

on the speed and robustness improvement.  One possible approach is to create a hybrid algorithm 

that combines both GA and one of the traditional techniques for fast local search. When blending 

the two algorithms, it is challenging to maintain their original advantage, which requires 

thorough study.   
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