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Abstract

We briefly review the remarkable connections between light-front QCD, gravity in

AdS space, and conformal quantum mechanics. We discuss, in particular, the group

theoretical and geometrical aspects of the underlying one-dimensional quantum field

theory. The resulting effective theory leads to a phenomenologically successful confining

interaction potential in the relativistic light-front wave equation which incorporates

relevant non-perturbative dynamical aspects of hadron physics.
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1 Introduction

The title of this contribution, Modified Anti-de-Sitter metric, Light-Front

Quantized QCD, and Conformal Quantum mechanics fits nicely into the general

theme of this Geometry and Physics conference; however, it contains no highbrow math-

ematics and is very phenomenological. It is mainly based on a recent publication in Physics

Letters [1]. The talk is organized into three sections:

1) Some crucial problems in the treatment of strong interactions.

2) A very superficial sketch of an astonishing relation between classical gravity and a quan-

tum field theory which appears to be relevant for strong interactions, and,

3) Some results obtained by combining elements from these different worlds.

2 Nonperturbative QCD

It is generally believed that we know the underlying theory of the strong interactions,

that is of protons, neutrons, pions, etc. It is a quantum field theory which is invariant

under the gauged SU(3) symmetry group, called Quantum Chromodynamics (QCD). The

fundamental fermion fields are the quark fields, which carry color quantum numbers, referring

to the SU(3) group. They interact via the gauge bosons of the theory, the gluons. In many

respects, the theory is similar to Quantum Electrodynamics (QED), the theory of electrons

and photons, the gauge theory of U(1). In contrast to electrons and photons, however, quarks

and gluons do not appear in the Fock space of observable particles; they are permanently

confined within the hadrons.

A problem, common to all realistic relativistic quantum field theories, is especially fla-

grant in QCD: the only known analytically tractable treatment is perturbation theory, which

obviously is not the most practical tool for a strongly interacting theory with permanently

bound constituents. But even in weakly interacting theories, such as QED, there is a need

for semiclassical equations in order to treat bound states. Atomic physics without the Dirac

or Schrödinger equation would be in a rather desolate state. Therefore there is a formidable

task in QCD: Find and justify a semiclassical approach! This task is not completely hopeless

for several reasons:

i) The quark model, based mainly on a Schrödinger equation with relativistic corrections

is qualitatively astonishingly successful (See e.g. [2], Sec. 14).
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ii) There are striking regularities in the hadronic spectra, notably Regge trajectories, which

show a linear relation between the squared mass and the intrinsic angular momentum

of hadrons (See e.g. [3]).

iii) If one implements light-front (LF) quantization, one obtains a Hamiltonian framework

for treating bound states in relativistic theories based on front-form dynamics [4, 5].

It is based not on initial conditions at equal times, x0 = 0, but on the light-cone null

plane x+ = x0 + x3 = 0. In this framework one obtains an effective frame-independent

eigenvalue equation for the Fock state of a meson consisting of two massless quarks [6]:

(

− d2

dζ2
+

4L2 − 1

4ζ2
+ U(ζ)

)

ψ(ζ) =M2ψ(ζ), (1)

where ζ2 = b2⊥x(1 − x) is the invariant separation of the quark and antiquark in the

transverse (1-2) light-front plane, x = k+

P+ = k0+k3

P 0+P 3 is the quark light-front momentum

fraction, and L = L3 is the eigenvalue of the relative orbital angular momentum. The

eigenvalues of this equation are the squared hadron masses P 2
µ =M2.

3 AdS/CFT Correspondence and Light-Front

Holographic QCD

The search for semiclassical equations obtained a strong advance some 15 years ago by the

so called Maldacena Conjecture [7, 8, 9] . Roughly speaking, it states that a quantum gauge

field theory in 4 dimensions corresponds to a classical gravitational theory in 5 dimensions.

The generating functional of the quantum gauge field theory is given by the minimum of the

classical action of the gravitational theory at a 4-dimensional border of the 5-dimensional

space. The gravitational theory is determined by the anti-de Sitter (AdS) metric in a 5-

dimensional space, AdS5. In Poincaré coordinates x0, x1, . . . z = x5, where the border to the

physical space is given by z = 0, the line element is

ds2 =
R2

z2

(

3
∑

i=0

dxi dx
i − dz2

)

, (2)

where R is the AdS radius.

In practice, there are several undesirable features in this correspondence, notably the

4-dimensional quantum field theory is heavily over-symmetric: it is a conformal super-

symmetric gauge theory. Therefore, for phenomenological purpose it is more promising
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to follow a bottom-up approach, that is to start from a realistic 4-dimensional quantum

field theory and look for a corresponding higher dimensional classical non-Euclidean theory

of which the realistic theory is the holographic picture. In this talk we shall concentrate

on an approach called Light-Front Holographic QCD, which was developed by two of the

authors [6, 10].

Consider a scalar field in AdS5. The invariant action is given by the invariant integration

over the 5-dimensional scalar expression of the Lagrangian L = gMN∂MΦ(x, z)∂NΦ(x, z) −
µ2Φ2(x, z)

S =

∫

d4x dz
√

|g|
(

gMN∂MΦ(x, z)∂NΦ(x, z)− µ2Φ2(x, z)
)

, (3)

where µ is the AdS mass, which is a priory an arbitrary parameter.

We are looking for a field, which at the border z = 0 describes a free hadron with

momentum P , that is Φ(x, z) = eiP ·xΦ(z). In this case, the Euler-Lagrange equation from

the action (3) can be brought into the form
(

− d2

dz2
+

4(µR)2 + 16− 1

4z2

)

φ(z) =M2φ(z). (4)

Comparing this equation of motion with the semiclassical equation (1) one observes the

same structure if one identifies the AdS variable z with the LF variable ζ and (µR)2 + 4

with L2. The critical value L = 0 corresponds to the lowest possible stable solution for

P 2 ≥ 0, the ground state of the LF Hamiltonian, in agreement with the AdS stability bound

(µR)2 ≥ −4 [11]. There is, however, no interaction term in (4), that is U(ζ) = 0. This

is not surprising: AdS5 is a maximally symmetric space with 15 isometries which induce

in the border Minkowski space the symmetry under the conformal group Conf (R1,3) with

15 generators: 10 Poincaré transformations, 4 inversions, and 1 dilatation. This conformal

symmetry implies that there can be no scale in the theory and therefore also no discrete

spectrum. The only way out is to distort the maximal symmetry present in the action. This

can be done most easily by inserting a so called dilaton term into the action, that is by the

modification (3) to

S =

∫

d4x dz
√

|g|eφ(z)
(

gMN∂MΦ(x, z)∂NΦ(x, z)− µ2Φ2(x, z)
)

. (5)

The equation of motion derived from this action yields a non-vanishing potential:

U(z) =
1

4
(ϕ′(z))2 − 3

z
ϕ′(z) +

1

2
ϕ′′(z). (6)

A phenomenologically successful choice is the “soft-wall” model [12], in which φ(z) = λ z2.

It leads to the potential [13, 14]

U(z) = λ2z2 − 2λ. (7)
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The description of higher-spin states is a more complex task since the covariant deriva-

tives in the action includes the affine connection and, in principle, one has also to take into

account all possible permutations in the tensor indices for arbitrary spin J . Here again, one

can take advantage of the mapping of the higher-dimensional equations to the LF Hamil-

tonian equation (1). This procedure allows a clear distinction between the kinematical and

dynamical aspects of the problem. Accordingly, the non-trivial geometry of pure AdS space

encodes the kinematics, and the additional deformations of AdS encode the dynamics, in-

cluding confinement [14], as well as determining the form of the LF effective potential. One

finds [14, 15]

U(ζ, J) =
1

2
ϕ′′(ζ) +

1

4
ϕ′(ζ)2 +

2J − 3

2ζ
ϕ′(ζ), (8)

provided that the product of the AdS mass µ and the AdS curvature radius R are related

to the total and orbital light-front angular momentum, J and L. The specific form of the

dilaton profile ϕ(z) = λz2 leads through (8) to the effective LF potential

U(ζ, J) = λ2ζ2 + 2λ(J − 1), (9)

with eigenvalues

M2
n,J,L = 4λ

(

n +
J + L

2

)

, (10)

where n is the radial excitation quantum number, leading to daughter trajectories. To

describe baryons, one considers the propagation of Dirac fields for arbitrary half-integer spin

(Rarita-Schwinger fields) in AdS space and the corresponding mapping to light-front physics

in physical space-time [14, 16].

This model yields linear Regge trajectories with the same slope in the radial quantum

number n and orbital angular momentum L as found experimentally. A comparison with

data is displayed in Fig. 1 for light unflavored mesons and nucleon families. More details are

given, for example, in Ref. [17]. The predictions can also be extended to other light hadron

families, as for example the strange vector meson K∗ family which are also included in Fig.

1. Good agreement prevails also, for example, in the model predictions for electromagnetic

elastic and transition form factors [13].

An unsatisfactory aspect, however, is that the specific choice ϕ(z) = λ z2 is motivated

only by phenomenology. One would like to derive it from some general principle. This is

indeed possible as will be shown in Sect. 4 and 5.
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Figure 1: Experimental values and theoretical predictions for mesons and nucleons. For the

non-strange mesons with isospin I = 1 and with internal spin S = 0, i.e., C = (−1)L, the

optimal value is
√
λ = 0.59 GeV. For mesons with I = 0, 1 and S = 1 and natural parity

(non-strange and strange)
√
λ = 0.54 GeV, and for nucleons

√
λ = 0.49 GeV. Data are from

[2]. Theoretical results from [13, 17].

4 Conformal Symmetry and its Consequences

We now take a closer look at the implications of conformal symmetry. In QCD this sym-

metry plays a somewhat hidden role: The classical QCD-Lagrangian with massless quarks is

conformally invariant, but this symmetry is broken due to quantum corrections. Indeed, the

need for renormalization of the theory introduces a scale ΛQCD which leads to the “running
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coupling” αs(Q
2), (See e.g. [2], Sec. 9.1.1.)

Q2 dαs(Q
2)

dQ2
= −

∑

i=0

bi α
2+i
s , (11)

with the solution

αs(Q
2) =

1

b0

1

log(Q2/Λ2
QCD)

+ · · · . (12)

The constants bi can be calculated in perturbation theory ¶, but the so obtained values

are only reliable in the region where αs is small, αs ≪ 1, that is, for large values of Q2,

Q2 ≫ Λ2
QCD. There are, however, indications that at large distances, that is for small Q

values, Q2 < Λ2
QCD, the coupling becomes constant again (See [18] and literature quoted

there). This indicates a restoration of conformal symmetry in the non-perturbative regime

in which we are interested.

Therefore we have a new aspect of conformal symmetry in QCD. In our approach es-

sential nonperturbative aspects of a quantum field theory are described by a semiclassical

equation, that is in a quantum mechanical description; thus, we are motivated to investigate

conformal quantum mechanics, a quantum field theory in one dimension, the time. It has

been investigated thoroughly by V. de Alfaro, S. Fubini and G. Furlan [19] some 37 years

ago.

V. de Alfaro et al., start with the conformally invariant action

Sconf =
1
2

∫

dt

(

Q̇(t)2 − g

Q(t)2

)

, (13)

where g is a dimensionless constant. The field momentum operator is P = δS

δQ̇
= Q̇, therefore

quantization implies [Q, Q̇] = i and the Hamiltonian is

H = 1
2

(

Q̇2 +
g

Q2

)

. (14)

We now go to the Schrödinger picture in the state space of square integrable functions

in the single variable ψ(r) ∈ L2(R
1). We can represent Q(0) by the multiplication operator

r, and Q̇(0) by the differentiation operator −i d
dr
. This leads to the form of the Hamiltonian:

Hψ(r) = 1
2

(

− d2

dr2
+
g

r2

)

ψ(r), (15)

and we are back again at the free case, (1) with U(ζ) = 0, which also corresponds to the

equation of motion (4) derived unmodified AdS5. As mentioned above, this is not astonishing

¶The bi depend on the number of active flavours, for our case b0 = 27/(12π).
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for a conformal theory. The dimensionless constant g in action (13) is now related to the

Casimir operator of rotations in the light front equation equation (1).

However, as stressed by de Alfaro, Fubini and Furlan [19], there are besides H , which

is the generator of translations in time t, two more constants of motion, namely the two

Noether currents of the conformal action Sconf : D for dilatations, t → t(1 + ǫ) and K

for special conformal transformation t → t
1−ǫt

. This allows us to construct a generalized

Hamiltonian:

G = H + wK + v D, (16)

which describes a translation in a new “time” variable τ with

dτ =
dt

1 + vt+ wt2
. (17)

In the Schrödinger picture G reads:

G ψ(r) =
1

2

(

− d2

dr2
+
g

r2
+
i v

2

(

r
d

dr
+

d

dr
r

)

+ w r2
)

ψ(r). (18)

Identifying r = ζ/
√
2 and g = L2 − 1/4, we see that we get agreement with the light front

Hamiltonian (1) if we put v = 0. In that case, the light front potential U(ζ) is uniquely fixed

to U(ζ) = w ζ2. The confining Hamiltonian,

G = H + wK, (19)

is, like H , a translation operator, but not in the variable t = x0, but in the variable τ =
1√
w
arctan(

√
w t), which has a finite range. Comparison with the equation of motion, derived

from the distorted action (5), fixes the dilaton profile to be quadratic in z, ϕ(z) = w z2.

This is exactly the form which leads to satisfactory agreement with the data. The constant

term of the potential (9), which is a kinematical consequence of the AdS5 action [14], cannot

be derived by these symmetry considerations.

5 Geometrical Aspects

The conformal group Conf (R1) is isomorphic to the Lorentz group SO(2, 1) and therefore

also isomorphic to the isometries of AdS2. This is best seen by embedding AdS2 as an

hyperboloid into a 3-dimensional Euclidean space with Cartesian coordinates X−1, X0, X1.

In this case AdS2 is the surface described by

X2
−1 +X2

0 −X2
1 = R2. (20)
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The Poincaré coordinates are related to the embedding coordinates by:

z =
R2

X−1 −X1
, x0 =

X0(X−1 −X1)

R
= X0

z

R
. (21)

Figure 2: The hyperboloid (20), representing the non-Euclidean space AdS2, and the plane

X1 = X−1, which separates AdS2 into two patches. The red lines represent the infinitesimal

transformation of the boost J−10 and the rotation J01, the blue line of the Hamiltonian H

and the green line of the confining “Hamiltonian” G.

In Fig. 2 the embedded rotation hyperboloid, representing the space AdS2 and the plane

X1 = X−1, which separates AdS2 into two patches at z = ±∞ are displayed. The border

z = 0 is the intersection with the plane X−1 − X1 → ∞. The elements of SO(2, 1) are

transformations on the hyperboloid. The generators of SO(2, 1) are the two boosts J01 and

J−11 in the X1 direction, and the rotation J−10 in the (X−1, X0) plane: they transform

the hyperboloid into itself and are the isometries of AdS2. Due to the local isomorphism

between SO(2, 1) and the conformal group Conf (R1) we can relate the generators of the two

groups. For the time translation operator H (14), the special conformal generator K and
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the dilatation generator D one obtains ‖:

aH = J−10 − J01, (22)
1

a
K = J−10 + J01,

D = J−1,1.

The free Hamiltonian H and the generator of the special conformal transformation K

are both linear combinations of the boost J01 in X1-direction and the rotation J−10 in the

(X−1, X0) plane (22) (The infinitesimal action of the generator H is depicted as the blue

line in Fig. 2). Therefore, the confining Hamiltonian, G (24), can also be expressed as linear

combinations of these generators.

1 + θ

2
aG = J−10 − θ J01. (23)

In the Schrödinger picture it has thus the form

G = 1
2

(

− d2

dr2
+
g

r2
+

1

a2
1− θ

1 + θ
r2
)

. (24)

This shows that, apart from a general scaling factor, the confining Hamiltonian G can be

viewed as a transformation in which the rotation and the boost are out of tune (Green line in

Fig. 2). The dimensionless coefficient θ, which has to be θ = 1 for the free Hamiltonian, can

take any value −1 < θ < 1 for the confining Hamiltonian. Its numerical value is determined

by ΛQCD.

It is interesting to note that a translation operator G with v 6= 0, which is excluded in

light front holographic QCD, cannot be obtained in this way, since it contains the boost J−11

which does not contribute to the free Hamiltonian H (See (22)). Therefore the modification

from the free Hamiltonian H (14) to the confining Hamiltonian G (24) is a sort of minimal

modification.

6 Conclusions

To summarize: The combination of light-front quantized holographic QCD with sym-

metry considerations in conformal quantum mechanics yields a remarkably consistent and

phenomenologically successful basis for establishing a semiclassical bound-state equation for

light hadrons in non-perturbative QCD. The form of the interaction is uniquely fixed by the

requirement of a minimal modification of the free Hamiltonian leaving the action invariant.

‖Since the generators of the conformal group have dimensions, a constant a with dimension dim[a] = -

dim[t] occurs in these relations.
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