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Abstract

We design a circular Higgs factory with a center-of-mass energy of 240 GeV resid-

ing in a 50-km tunnel. Aside from two strong focusing systems and a low-emittance

lattice in arcs that are required to achieve a factory luminosity of 1.0 × 1034cm−2s−1,

a large momentum aperture of 2% is absolutely necessary to mitigate the effect of

beamstrahlung and retain an adequate beam lifetime. This turns out to be the most

challenging aspect in the design. We comprehensively study the single-particle dynam-

ics and identity many nonlinear aberrations that limit the performance of the optics.
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Abstract
We design a circular Higgs factory with a center-of-mass

energy of 240 GeV residing in a 50-km tunnel. Aside from
two strong focusing systems and a low-emittance lattice in
arcs that are required to achieve a factory luminosity of
1.0 × 1034cm−2s−1, a large momentum aperture of 2% is
absolutely necessary to mitigate the effect of beamstrahlung
and retain an adequate beam lifetime. This turns out to be
the most challenging aspect in the design. We comprehen-
sively study the single-particle dynamics and identity many
nonlinear aberrations that limit the performance of the op-
tics.

INTRODUCTION
Since the discovery of the Higgs particle at LHC, the re-

cent results for ATLAS and CMS have shown that the dis-
covered particle resembles the Higgs boson in the standard
model of elementary particles. Because of this remarkable
discovery, it becomes increasingly important to precisely
measure the property of the particle that gives the mass to all
and to study the nature of the spontaneous symmetry break-
ing in the standard model.

The relatively low mass of the Higgs boson provides an
opportunity to build an e+ and e− collider to efficiently and
precisely measure its properties. In the production channel
of e+e− → H Z , the beam energy required for such a col-
lider is about 120 GeV, which is only 15% higher than the
energy reached about two decades ago at LEP2. Can we
design and build a circular Higgs factory (CHF) within a
decade? What are the major challenges in the design? In
this paper, we will address these questions.

LUMINOSITY
In a collider, aside from its energy, its luminosity is the

most important design parameter. For Gaussian beams, we
can write the bunch luminosity as

Lb = f0
N2
b

4πσxσy

Rh , (1)

where f0 is the revolution frequency, Nb the bunch popu-
lation, σx ,y transverse beam sizes, and Rh is a factor of
geometrical reduction due to a finite bunch length σz and
is given by

Rh =

√
2
π

aea
2
K0(a2), (2)

a = β∗y/(
√

2σz ), β∗y is the vertical beta function at the in-
teraction point (IP), and K0 the modified Bessel function.
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In order to avoid Rh becoming too small, we shall require
σz ≈ β∗y . Obviously, for a number of nb bunches, the total
luminosity is L = nbLb .

In general, the beam sizes in the luminosity formula are
not static variables. They are subject to the influence of the
electromagnetic interaction during the collision. Typically,
for flat beams, the vertical beam size will be blown up by
the beam-beam force. To take this effect into account, we
introduce the beam-beam parameter as [1]

ξy =
reNb β

∗
y

2πγσy (σx + σy )
, (3)

where γ is the Lorentz factor and re the classical electron
radius. Using this formula for ξy , we can rewrite the lumi-
nosity as [2]

L =
cIγξy

2r2
e IA β∗y

Rh , (4)

where I is the beam current and IA = ec/re ≈ 17045 A,
the Alfven current. Since ξy is limited below 0.1 in most
colliders, this formula is often used for estimating an upper
bound of the luminosity.

Table 1: Main parameters of a circular Higgs factory.

Parameter LEP2 CHF
Beam energy, E0 [GeV] 104.5 120.0
Circumference, C [km] 26.7 47.5
Beam current, I [mA] 4 14.4
SR power, PSR [MW] 11 50
Beta function at IP, β∗y [mm] 50 2
Bunch length, σz [mm] 16.1 1.5
Hourglass factor, Rh 0.98 0.76
Beam-beam parameter, ξy 0.07 0.07
Luminosity/IR, L [1034cm−2s−1] 0.0125 1.01

In Table 1, we tabulated a set of consistent parameters for
a CHF. In contrast to the B-factories [3,4], the beam current
is severely limited by the power of synchrotron radiation
at very high energy. To reach the factory luminosity, we
need to have very strong final focusing systems and a very
low emittance lattice. This combination makes the design
of optics much more difficult compared with that of the B-
factories.

SYNCHROTRON RADIATION
When an electron is in circular motion with a bending

radius ρ, its energy loss per turn to synchrotron radiation is
given by

U0 =
4πremc2γ4

3ρ
. (5)



This loss has to be compensated by an RF system. The re-
quired RF power per ring is

PSR = U0I/e. (6)

For the beam parameters in Table 1 and ρ = 5.2 km, we
have U0 = 3.6 GeV, which means that electron loses about
2.5% of its energy every turn. Assuming PSR has to be
less than 50 MW, the beam current is limited to 14.4mA in
the ring. Applying the expression of PSR to the luminosity
formula, we obtain

L =
3cξy ρPSR

8πr3
eγ3 β∗y PA

Rh , (7)

where PA = mc2IA/e ≈ 8.7 GW. This scaling property of
luminosity in e+e− colliders at extremely high energy was
first given by Richter [5].

For a CHF with beam energy larger than 120 GeV, its
beam current will be severely capped by the electrical power
consumed by the RF system and therefore a smaller β∗y
seems the only option to reach the required factory lumi-
nosity.

BEAMSTRAHLUNG
Another important aspect of very high energy collid-

ing beams is the emission of photons during collision. In
general, this phenomenon is well known and called beam-
strahlung. Recently, Telnov found [6] that the most limiting
effects to a CHF is an event when a high-energy photon is
emitted by an electron in the beamstrahlung process. The
electron energy loss can be so large that it falls outside of
the momentum aperture η in the colliding ring. For a typical
CHF, is was suggested that the following,

Nb

σxσz
<

0.1ηα
3γr2

e

, (8)

has to be satisfied to achieve 30 minutes of beam lifetime.
Here α ≈ 1/137 is the fine structure constant. If we intro-
duce aspect ratios of beta functions at the IP and emittances
in the ring, namely κβ = β∗y/β∗x and κe = ϵ y/ϵ x , this crite-
ria can be rewritten as

Nb√
ϵ x
<

0.1ηασz
3γr2

e

√
β∗y
κβ

(9)

.
On the other hand, to achieve the beam-beam parameter
ξy , we need

Nb

ϵ x
=

2πγξy
re

√
κe
κβ
. (10)

Combining this equation with Eq. (9), we have

ϵ x <
β∗y
κe

(
0.1ηασz
6πγ2ξyre

)2
. (11)

Since the quantities like ξy , β∗y , and σz are largely deter-
mined by the required luminosity and γ by the particle to

be studied, this inequality specifies a low-emittance lattice
that is required to achieve 30 minutes of beam lifetime. Nor-
mally, the natural emittance scales as γ2. Here it requires a
scaling of γ−4, indicating another difficulty in designing a
factory with much higher energy beyond 120 GeV.

Table 2: Additional parameters selected to mitigate the
beamstrahlung effects and reach 30 minutes in beam-
strahlung beam lifetime.

Parameter LEP2 CHF
Beam energy, E0 [GeV] 104.5 120.0
Circumference, C [km] 26.7 47.5
Horizontal emittance, ϵ x [nm] 48 1.7
Vertical emittance, ϵ y [nm] 0.25 0.0043
Momentum acceptance, η [%] 1.0 2.0
Momentum compaction, αp [10−5] 18.5 1.43

As shown in Table 2, we need to design a lattice with
much smaller emittance than the one in LEP2 to mitigate
the beamstrahlung effect. Typically, a low emittance lattice
requires smaller dispersion and stronger focusing. Both will
lead to an increase in the strength of the sextupole there-
fore dramatically reduce the dynamic aperture of the storage
ring.

In the choice of the main design parameters, we want a
factor of 100 increase in luminosity from LEP2. Because
of the limit of the electric power, the increase of luminos-
ity is largely achieved by a combination of very small beta
functions at the IP and low emittance lattice. In summary,
the lattice of a CHF has following main challenges:

• Low emittance lattice at high energy
• High packing factor of magnets
• Strong final focusing
• Large momentum acceptance
• Short bunches

A high packing factor is required to reduce synchrotron ra-
diation in the bending magnets and not increase the circum-
ference of the ring. We will proceed to a specific design to
assess how difficult it is to meet these challenges.

ARC
For an electron ring, the horizontal emittnace is given by

ϵ x = F
Cqγ

2

Jxd
θ3 , (12)

where Cq is a constant,

Cq =
55

32
√

3
~

mc
, (13)

and θ is the bending angle of the dipole. Here Jxd is the
damping partition number and typically equals one. F is a
factor that depends on the type of cell. For FODO cells, it



is at an order of one. In general, the stronger focusing of a
cell, the smaller its F. Clearly, as seen in Eq. (12), the most
effective way to reduce the emittance is to make the bending
angle in a cell small. That implies that we use more cells.

In the arcs, we choose FODO cells because of their high
packing factor and use many cells to reach the required emit-
tance. the 600 phase advance is selected due to its property
of resonance cancellation that we will explain later. The op-
tics of the cell is illustrated in Fig. 1. Every six cells makes
a unit transformation of betatron oscillation. In our design,
each arc consists of 32 units and ends with dispersion sup-
pressors. Similar to LEP2, we have eight arcs and eight
straight sections to complete a ring with parameters shown
in Table 2.
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Figure 1: Lattice functions in a 600 FODO cell.

Table 3: The nonlinear chromaticities and tune shifts due to
betatron amplitudes in the lattice that consists of arcs and
simple straight sections.

Derivatives of tunes Values
∂νx ,y/∂δ 0, 0
∂2νx ,y/∂δ

2 −102, +128
∂3νx ,y/∂δ

3 +666, +557
∂νx/∂Jx [m−1] −3.08 × 105

∂νx ,y/∂Jy ,x [m−1] −1.02 × 106

∂νy/∂Jy [m−1] −2.70 × 105

In this study, we set two families of sextupoles to make
the linear chromaticity zero in the ring. For the third-order
resonances, the contribution of sextupoles to all driving
terms along the storage ring are computed [7] using the Lie
method and plotted in Fig. 2. As one can see from the fig-
ure, they are all canceled out within one betatron unit (made
with six cells), as predicted by theorem [8].

For the fourth-order resonances, we find similar cance-
lations [7] as shown in Fig. 3 except for one resonance:
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Figure 2: All third-order resonances driven by sextupoles.
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Figure 3: Fourth-order resonances driven by sextupoles.

2νx − 2νy = 0. Since this resonance overlaps the same
the line as the linear coupling resonance in the betatron tune
space, we can ignore it because the ring cannot operate near
the linear resonance anyway.

0 1 2 3 4 5

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5
x 10

6

s(m)

A
m

pl
itu

de
: [

m
−

1 ] 2
ν x−

2ν
y(J

xJ y)

0 1 2 3 4 5

x 10
4

−2

0

2

4

6

8

10
x 10

5

s(m)

C
oe

ffi
ci

en
t o

f (
J x2 ) 

[m
−

1 ]

0 1 2 3 4 5

x 10
4

−2

0

2

4

6

8
x 10

6

s(m)

C
oe

ffi
ci

en
t o

f (
J xJ y) 

[m
−

1 ]

0 1 2 3 4 5

x 10
4

−2

0

2

4

6

8

10
x 10

5

s(m)

C
oe

ffi
ci

en
t o

f (
J y2 ) 

[m
−

1 ]

Figure 4: The four residual 4th-order terms in the Lie oper-
ator: f4.



It is also worth noting that there are three more terms of
geometric aberrations in f4. They do not drive any reso-
nances but shifts of betatron tunes. All four residual geo-
metric terms in f4 are shown in Fig. 4 as they are accumu-
lated along in the ring. As we can see, they are continually
increasing and reach very large values. To quantify their ef-
fects on the beam, we compute the tune shifts along with
the high-order chromaticities using the normal form analy-
sis [9] and tabulate the result in Table 3. Comparing with
the existing storage rings, these tune shifts are too large at
least by an order of two in magnitude.

FINAL FOCUSING SYSTEM
Note that the beam lifetime condition in Eq. (11) does

not depend on κβ . Therefore, according to Eq. (10), κβ
(or β∗x ) can be used to adjust the bunch population Nb or
equivalently the number of bunches nb when the total cur-
rent is limited by the electrical power. Here we would like
to choose a large β∗x , leading to a smaller nb . Our choice
of the parameters in the interaction region are tabulated in
Table 4.

Table 4: Other parameters determined by a specific design
of final focusing system.

Parameter LEP2 CHF
Beam energy, E0 [GeV] 104.5 120.0
Circumference, C [km] 26.7 47.5
β∗x [mm] 1500 200
β∗y [mm] 50 2
Bunch population, Nb [1010] 57.5 32.0
Number of bunches, nb 4 25

It is always challenging to design a final focusing system
(FFS) in a circular collider. In the CHF, it becomes even
more so because of a smaller β∗y (2 mm) and a longer dis-
tance L∗ (2 meter) which is the distance between the IP and
the first focusing quadrupole.

Here we adopt an optics similar to the design of a linear
collider. The optics of the FFS is shown in Fig. 5. The FFS
starts with a final transformer (FT), continues with a chro-
matic correction in the vertical (CCY) and then the hori-
zontal plane (CCX), and ends with a matching section. The
entire FFS has three imaging points and fits in a 175-meter
long straight section.

The FT contains only two quadrupoles which serve as
the final focusing doublet. The betatron phase advances
are nearly 1800 in both planes. At the end of the FT, we
have the first imaging point where the beta functions re-
main very small. In our study, we have reduced the number
of quadrupoles in this section to maximize the momentum
aperture in the FFS. A drawback of this approach is that the
beta functions at the end of the FT cannot be adjusted.

The CCY consists of four 900 FODO cells and make a
unit of betatron transformer. The module starts at the mid-
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Figure 5: Lattice functions in a final focusing system with
local chromatic compensation section.

dle of the defocusing quadrupole to enhance the peak of the
vertical beta function at the positions of a pair of sextupoles
separated by “-I” transformation. Two pairs of dipoles cre-
ate two dispersion bumps, providing the dispersions at the
location of the sextupole. At the end of the CCY, we have
the second imaging point at which the lattice functions are
identical to those at the first one.

Similarly, we construct the CCX, but starting at the mid-
dle of the focusing quadrupole. And at the end of the CCX,
we have the third image point. Here, we have essentially
compensated the local chromaticity as shown in Fig. 6 and
transport the very small beta functions at the IP to the end
of the CCX. In the matching module, we can place the
quadrupoles near the third imaging point without the worry
of L∗ and match easily the FFS to the dispersion suppressor.
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Figure 6: W function in the final focusing system with the
local chromatic compensation.

Finally, we use the longitudinal cyclical symmetry in the
CCY and CCX to adjust the betatron phase between the final



doublet and the sextupole pairs to optimize the second order
chromaticity in the FFS. We should note that the second
order dispersion leaks out of the FFS as shown in Fig. 6.

Aside from those chromatic aberrations, there are many
large geometric and chromatic aberrations in the FFS. As
shown in Fig. 7, a fifth-order aberration, pxp2

yδ
2, increases

in large steps at the position of the sextupoles in the FFS.
It was pointed out by Oide [10] that this aberration can be
compensated by a proper setting of asymmetric dispersions
at the positions of the pair of sextupoles.
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Figure 7: A fifth order aberration in the single-Lie operator
in the normalized coordinates.

From the analysis, we find also that the largest aberration
in fifth-order is p4

yδ as shown in Fig. 8. The source of this
aberration is the kinematic term but enhanced by the strong
sextupoles. This huge aberration may well be the bottleneck
of the FFS. It can significantly degrade the off-momentum
aperture of the collider.
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Figure 8: The largest fifth order aberration in the single-Lie
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COLLIDER
Replacing two interaction regions with two simple

straights in the arc lattice, we build a collider lattice shown
in Fig. 9.
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Figure 9: Lattice functions in the CHF that includes two
interaction regions.

We readjust the settings of two families of the sextupoles
in the arcs for a few units of positive chromaticity and obtain
the bandwidth of momentum deviation of ±2% as shown in
Fig. 10.
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Since the strongest quadrupoles and sextupoles are po-
sitioned at the highest beta functions in the FFS, naturally
the IR contains many high-order aberrations. We compute
the third-order and fourth-order driving terms in the collider.
The cancellation of the resonances at third-order remains in-
tact. But the fourth-order resonance driving terms become
much larger as shown in Fig. 11. Clearly, the aberrations
in the IR are dominant in the entire ring. The source of



the fourth-order aberration are the kinematic terms from the
perturbation expansion of the Hamiltonian.
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Figure 11: Fourth-order resonances driving terms in the
lattice with two interaction regions.

To confirm their effects in the collider, we compute the
tune shifts, the high-order chromaticities, and geometric
and chromatic tune shifts using the normal form analysis
and tabulate the result in Table 5. Indeed, the table shows
that the geometric and chromatic tune shifts are much larger
at δ = 0.01 than the geometric tune shifts, which themselves
are already two order of magnitudes too large as mentioned
previously.

Table 5: The nonlinear chromaticities and tune shifts due to
betatron amplitudes in the collider that contains two inter-
action regions.

Derivatives of tunes Values
∂νx ,y/∂δ 0, 0
∂2νx ,y/∂δ

2 +496, +1750
∂3νx ,y/∂δ

3 −74400, −345000
∂νx/∂Jx [m−1] −2.94 × 105

∂νx ,y/∂Jy ,x [m−1] −9.91 × 105

∂νy/∂Jy [m−1] −1.07 × 105

∂2νx/∂δ∂Jx [m−1] −1.11 × 109

∂2νx ,y/∂δ∂Jy ,x [m−1] −1.75 × 109

∂2νy/∂δ∂Jy [m−1] −1.56 × 1010

CONCLUSION
Despite much progress being made since the last Higgs

workshop two years ago, we have not yet solved the prob-
lem of the off-momentum dynamic aperture in the collider.

From our systematic analysis, we find the following design
issues:

• Tune shifts vs. amplitudes are very large due to inter-
laced sextupoles in the arcs

• The second-order dispersion in the interaction region
leads out to the arcs

• Second- and third- order chromaticity are too large in
the collider

• Huge geometric-chromatic aberration seen in 5th-
order Lie operators in the final focusing system

As shown in our study, the CHF requires not only a final
focusing system with an ultra-low beta at the interaction
point but also a very low-emittance lattice at very high en-
ergy. Such optics in a storage ring with a larger momentum
aperture will be the ultimate challenge for our accelerator
community in the next decade.
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