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Abstract

A conventional final focus system in particle accelerators is systematically analyzed. We find

simple relations between the parameters of two focus modules in the final telescope. Using the

relations, we derive the chromatic Courant-Synder parameters for the telescope. The parameters

are scaled approximately according to (L∗/β∗y)δ, where L∗ is the distance from the interaction point

to the first quadrupole, β∗y the vertical beta function at the interaction point, and δ the relative

momentum deviation. Most importantly, we show how to compensate its chromaticity order-by-

order in δ by a traditional correction module flanked by an asymmetric pair of harmonic multipoles.

The method enables a circular Higgs collider with 2% momentum aperture and illuminates a path

forward to 4% in the future.
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I. INTRODUCTION

In e+e− colliders, it has been always challenging to focus the beam to extremely small

size at the collision point while maintaining an adequate momentum bandwidth. In the

B-factories [1, 2], 1% of their momentum aperture was sufficient to accommodate the energy

spread of the beam due to synchrotron radiation. For a Circular Higgs Factory (CHF) [3, 4]

at 120 GeV beam energy, the required momentum acceptance has to be larger than 2% to

accommodate the beamstrahlung [5]. Moreover, the beam has to be focused even more to

achieve the factory-level luminosity since the beam current is limited by the synchrotron

radiation power [6]. The combination of extreme focus at the interaction point (IP) and

large momentum aperture in the collider presents a grand challenge in the development of

a CHF. In this paper, we will systematically investigate the chromatic effects in the final

focus system and lay the ground work for the design of such colliders.

II. PARAXIAL OPTICS

The locations of the focusing point relative to its principle plane illustrated in Fig. 1

characterize a conventional optical system. Here, we will apply these well-known properties

to the optics of charged particles in the transverse dimensions, namely the horizontal or

vertical plane.
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FIG. 1. Focusing points and geometrical parameters in a conventional optical system.
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Given a 2-by-2 R-matrix of the optical system, we can show,

p =
R22

R21

,

q = −R11

R21

,

f = − 1

R21

, (1)

where R11, R21, and R22 are the elements of the R-matrix. The derivation requires the

symplecticity of the R-matrix and validity of the paraxial approximation, tan θ ≈ θ, where

θ is the angle of optical ray.

Inversely, given these geometrical parameters in the optical system, we can rewrite its

R-matrix as,

R =

 q
f

1
f
(pq + f 2)

− 1
f

− p
f

 . (2)

III. DOUBLET
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FIG. 2. A schematic layout of a doublet.

As an example, we consider a doublet drawn schematically in Fig. 2. Its R-matrix can

be obtained by multiplying the three R-matrices of the elements. Then applying Eq. (1),

we have its geometrical parameters,

p = − fI(fII + dI)

dI − fI + fII
,

q =
fII(fI − dI)
dI − fI + fII

,

f =
fIfII

dI − fI + fII
. (3)
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Here we have to use the thin lens calculation for the quadrupoles. Sometimes it is useful

to have its inverse,

fI =
f 2 + pq

f − q
,

fII = −f
2 + pq

f + q
,

dI =
f 2 + pq

f
. (4)

To focus the charged particles in both transverse planes simultaneously, a doublet is often

required because a magnetic quadrupole focuses in one plane while defocuses in the other.

We tabulate the parameters of a final focus doublet used in this paper in Table I. The

negative sign of p1 means that the first focus point is on the left side of the in plane.

TABLE I. Parameters of the final focus doublet.

Physical Parameters Optical Parameters

fI : 1.36174 m p1: -1.97756 m

fII : 2.51748 m q1: -0.41273 m

dI : 1.85541 m f1: 1.13848 m

IV. TELESCOPE

With focusing modules such as doublets, we consider how to use them to construct

a telescope, which is a point-to-point and parallel-to-parallel imaging system and can be

defined by its R-matrix,

R =

 −M 0

0 −1/M

 . (5)

Here, M is the demagnification factor. It was first introduced to particle accelerators by

Karl Brown [7] when he designed the final focus system in the Stanford Linear Collider.

He found many good chromatic properties in the system. In particular, he also provided a

one-dimensional analysis, which unfortunately defocused the beam in the other plane and

therefore cannot be used for charged particles. Here we will extend his work to a general
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FIG. 3. A schematic layout of a telescope system that consists of two focusing modules.

telescope system, shown in Fig. 3, that can provide focus to the charged particles in both

planes.

Given the optical parameterizations of R-matrices in the form of Eq. (2) for the two

focusing modules, we can show that the parameters for the second module satisfy,

p2 = q1 − L,

q2 = L2 +M2(L1 + p1),

f2 = Mf1, (6)

in order to make a telescope. The first condition has a geometrical interpretation as illus-

trated in Fig. 3. This simple picture has provided us the intuition to introduce the optical

parameters in the final telescope. Moreover, it makes the system from the entry of the

first module to the exit of the second one a parallel-to-parallel imaging system. Two drifts

on flanks restricted by the second condition then makes the whole system a point-to-point

imaging system as well. The third condition is merely a by-product of this two-step proce-

dure.

Since we did not use the doublets in the derivation, the focus module does not have to be

a doublet as shown in Fig. 3. For the telescopes in particle accelerators, the conditions in

Eq. (6) should be satisfied both horizontally and vertically with a different demagnification

factor. If the thin-lens doublets are used, we can derive the focus lengths and the distance

between the lens of the second doublet in terms of the first ones by applying Eqs. (3), (6),

and (4).
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V. CHROMATIC OPTICS

It is well known [8] that the dynamics of a charged-particle in accelerators can be described

by tracking its canonical coordinates z = (x, px, y, py, δ, `), where δ is the relative momentum

deviation and ` = vt; v is the velocity of the particle, and t is the time of flight. For a

magnetic element schematically illustrated in Fig. 4, its transfer map M can be obtained

by solving the Hamilton’s equations.

s
1
 

s
2
 

Μ

FIG. 4. An element in the beamline represented by its transfer map of the canonical coordinates

z = (x, px, y, py, δ, `) from position s1 to s2.

Under the paraxial approximation, the transfer map of a drift can be written as,

M3 = y +
LD

1 + δ
py,

M4 = py, (7)

where LD is the length for the drift. Its δ dependence introduces the chromatic effects

into the charged particle optics in the formulation of the canonical system. How to use the

transfer maps to compute the chromatic optics order-by-order in δ has been studied [9]. It

is worth noting that Eq. (7) is known as “chromatic drift” and often used in the beam-beam

simulations [10, 11].

Given the explicit matrices in Eq. (2) of the two focus modules and the transfer maps

of the draft, a transfer map of the telescope can be obtained by concatenation of the maps,

starting from the identity map. Up to the second order, we have

M3 = −My +
ML(L1 + p1)

f 2
1

yδ +
f 2
1 (L2 +M2L1) +M2L(L1 + p1)

2

Mf 2
1

pyδ,

M4 = − 1

M
py −

L

Mf 2
1

yδ − L(L1 + p1)

Mf 2
1

pyδ. (8)
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A similar expression is applicable in the horizontal plane. Here we write out the vertical

components because its demagnification factor is much larger than the horizontal one in

electron accelerators. Its linear part simply confirms the validity of Eq. (6). The map can

be simplified to,

M3 = −My +ML∗pyδ,

M4 = − 1

M
py, (9)

if we assume, M >> 1 and L1 + p1 ≈ 0, which implies that the first focus point of the first

module is extremely close to the interaction point in the vertical plane. Moreover, we have

used L∗ = L1 to be consistent with the standard notation for the parameters near the IP.

In our numerical example shown in Fig. 5, using the value of p1 in Table I, it easy to see

that this approximation is excellent.
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FIG. 5. The Courant-Synder parameters in a final telescope with demagnification factors M : 10

and 25 in the horizontal and vertical planes respectively. The parameters are L∗ = 2 m, L = 40

m, L2 = 1 m, β∗x = 0.1 m, and β∗y = 1 mm.

The simplified map in Eq. (9) can be used to propagate [9] the Courant-Synder parame-
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ters [12] through the final telescope. We find,

βy(δ) = M2β∗y [1 + (
L∗

β∗y
δ)2],

αy(δ) =
L∗

β∗y
δ,

ψy(δ) = π − tan−1(
L∗

β∗y
δ). (10)

Here we have assumed α∗y = 0 at the IP. It is worth noting that the chromatic effects

are scaled according to (L∗/β∗y)δ for the final telescope with a very large demagnification

factor. For future e+e− colliders, the parameter (L∗/β∗y) is very large and on order of a few

thousands. Unfortunately, it is mostly determined by particle physicists and there is not

much that can be done by accelerator experts.

Using the example shown in Fig. 5, the vertical phase advance in units of 2π is computed

numerically and plotted at the left in Fig. 6. In a comparison the last expression in Eq. (10).

νy(δ) varies in a large range of tune space: 0.5± 0.25. The tune change must be reduced to

nearly zero within a reasonable bandwidth of δ if it is to be used in circular colliders.
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FIG. 6. (Left) the vertical phase advance in unit of 2π, namely νy = ψy/2π and (right) the Sands’

mismatch parameter Υ as a function of δ.

Aside from the tune change, we need to have a good measure of the chromatic matching.

We first consider a well-known parameter called Bmag [13] that is commonly used to measure

the mismatch between the beam distribution and the machine optics. Here we introduce it

to describe the mismatch between chromatic optics to the machine optics designed for the
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on-momentum particle. Naturally, we have

Bmag(δ) =
1

2
[γ0β(δ)− 2α0α(δ) + β0γ(δ)], (11)

where α0, β0, and γ0 are the lattice functions with δ = 0. There is a slightly different

mismatch parameter introduced by Sands,

Υ(δ) = Bmag(δ) +
√
B2

mag(δ)− 1. (12)

In this paper, we choose to use the Sands’ one because of its geometrical interpretation [14].

Furthermore, we find Υ′ = W , where W is the amplitude of the Montague functions [15]. As

a result, Υ(δ) could be considered as an extension for describing the high-order chromaticity.

It is plotted at the right in Fig. 6 for the example with a comparison between the numerical

computation and analytical formula derived from Eq. (10). The huge quadratic chromaticity

wall is clearly seen in the figure. It severely limits the bandwidth of the focus system and

has to be corrected. It is worth noting that the importance of this quadratic term was

first emphasized by Bogomyagkov and Levichev [16] from the view point of the conventional

perturbation theory.

VI. CHROMATIC CORRECTION

If there are dispersions, the chromaticity can be corrected locally be placing sextupoles

near the quadrupoles. For the linear colliders, such a scheme was proposed [17], achieving a

large bandwidth in the momentum deviation. In order to generate the dispersions at the final

doublets, it required a none-zero dispersion slope at the interaction point. Unfortunately,

this kind of configuration enhances the synchro-betatron resonances through the beam-beam

interaction and therefore would severely degrade the performance of circular colliders. To

avoid this issue, we will consider a more traditional correction system, as illustrated in Fig. 7,

right next to the final telescope.

This kind of scheme was successfully demonstrated in a final focus test beam [18] as a

single-pass system, achieving 73 nm beam size in the vertical plane. The chromatic correction

section shown in Fig. 7 consists of four 900/900 cells, which makes a unit transformation.

Four identical dipoles are introduced to generate dispersions at the positions of the sextupoles

and they are paired with 1800 phase difference to cancel the dispersion at the end of the
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FIG. 7. A schematic layout of a chromatic correction module in the vertical plane. The focusing

length f = Lc/2
√

2 for 900 cells.

module. The sextupoles with strength κ are paired also in “-I” so that their geometric

aberrations are canceled. This pair of sextupoles are placed in 1800 phase difference relative

to the final doublet for the first-order chromaticity correction.
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FIG. 8. Lattice functions in a final focusing system with local chromatic compensation section. The

parameters in the chromatic correction module are Lc = 30 m and φ = π/500.

Using the transfer maps of the elements, νy(δ) can be computed analytically [9]. At the

first-order of δ, we find,

ν ′y = −Lc[16(2 +
√

2) + (5 + 3
√

2)L2
cκφ] + 4M2L∗

8πM2β∗y
, (13)
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where φ is the bending angle of the dipole and Lc the cell length. For simplicity, we have

used the simplified map in Eq. (9) for the final telescope. Setting ν ′y = 0, we derive the

strength of the sextupoles,

κ = −16(2 +
√

2)Lc + 4M2L∗

(5 + 3
√

2)L3
cφ

. (14)

Similarly, the linear chromatic compensation can be carried out numerically for the final

focus system shown in Fig. 8. It consists of the final telescope we introduced earlier in Fig. 5

and the chromatic correction illustrated in Fig. 7. Here we show the W functions after the

first-order correction in Fig. 9.
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FIG. 9. W function and the second order dispersion in the final focusing system with the local

chromatic compensation.

Setting the sextupole to the value in Eq. (14), we compute the phase advance up to the

next order of δ and indeed indeed that the first-order chromaticity has vanished and the

second-order,

ν ′′y =
10(146 + 103

√
2)Lc − (17 + 13

√
2)M2L∗ − (43 + 30

√
2)q0(M

2L∗)2

2π(43 + 30
√

2)M2β∗y
. (15)

For a vanishing second-oder chromaticity, ν ′′y = 0, we need,

q0 =
10(146 + 103

√
2)Lc − (17 + 13

√
2)M2L∗

(43 + 30
√

2)(M2L∗)2
. (16)
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Note that the quadrupole strength is very small if M >> 1. For thick quadrupoles, this

scheme can be implemented simply by shortening the half quadrupole at the beginning while

lengthening the another half at the end. Since the unit transformation is retained, there is

no need to rematch the lattice.

Continuing this procedure to the third order, we have,

ν ′′′y =− 1

4π(3649 + 2580
√

2)LcM4L∗β∗y
{400(21267 + 15038

√
2)L3

c

+ 8(43023 + 30424
√

2)L2
cM

2L∗ − 8(859 + 605
√

2)Lc(M
2L∗)2

+ [12458 + 8809
√

2 + 2(3649 + 2580
√

2)q1Lc](M
2L∗)3}. (17)

To correct this term, we simply set,

q1 =− 1

2(3649 + 2580
√

2)Lc(M2L∗)3
[400(21267 + 15038

√
2)L3

c

+ 8(43023 + 30424
√

2)L2
cM

2L∗ − 8(859 + 605
√

2)Lc(M
2L∗)2

+ (12458 + 8809
√

2)(M2L∗)3]. (18)

In practice, this term can by generated by a sextupole along with a dipole in the final

telescope. This kind of sextupole is commonly called the Brinkmann sextupole [19].

Note that these long expressions of the nonlinear chromaticity are obtained with help

of Mathematica [20]. This procedure can be continued to higher orders but becomes quite

messy. For higher order chromaticity, the result can be summarized by a simple pattern,

ν ′′y = A0q0 +B0,

ν ′′′y = A0q1 +B1,

= ...,

ν(n)y = A0qn−2 +Bn−2, (19)

where

A0 = − L2
c

32πM2β∗y
[512(3 +

√
2) + 32(16 + 11

√
2)L2

cκφ+ (43 + 30
√

2)L4
cκ

2φ2],

B0 =
Lc

8πM2β∗y
[80 + 56

√
2 + (1 + 2

√
2)L2

cκφ]. (20)

And most importantly, Bi does not have dependence on qj for j ≤ i so that the high

chromaticity can be zeroed out order-by-order by solving the linear equations in Eq. (19).
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It is worth noting that the quadratic term of the sextupole strength κ in the expression of

A0 is rather large. As a result, qi tends to be small and therefore they are very efficient

correctors.

It is well known that the second-order chromaticity can be corrected by a small phase

trombone between the final doublet and the sextupole pair. Here we simply use a thin-lens

quadrupole at the imaging point to achieve the same effect. The high-order pattern naturally

follows in the Lie algebra approach.
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FIG. 10. Chromatic bandwidth of the final focus system with different order of corrections shown

on (left) the vertical phase advance in unit of 2π and (right) the Sands’ mismatch parameter Υ.

Similarly, the order-by-order procedure of chromatic compensation can be carried out

numerically. The results up to the third-order chromaticity correction are shown in Fig. 10.

Clearly, the bandwidth becomes large as the correcting order increases.

For ±2% of the momentum bandwidth, it is sufficient to correct up to the third order of

δ. The figure shows that the third-order compensation is essential for a large bandwidth.

To double the bandwidth to ±4%, we have to correct up to the fifth order of the mo-

mentum deviation δ as shown in Fig. 11. In implementation, we need to use octupole and

decapole magnets at the imaging points.

The horizontal chromaticity can be corrected by a similar scheme. Its chromatic correc-

tion module can be constructed by changing the sign of f and φ in Fig. 7. If we add it

right after the vertical correction section, then there will be another set of linear equations

similar to Eqs. (13) and (19). In general, there are small cross talks between the horizontal

and vertical planes. So we need to solve for two unknowns for two linear equations at each

order of δ.
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FIG. 11. Improved chromatic bandwidth of the final focus system with higher order of corrections

shown on (left) the vertical phase advance in unit of 2π and (right) the Sands’ mismatch parameter

Υ.

VII. FINAL FOCUS SYSTEM

It is always challenging to design a final focus system (FFS) in a circular collider. In the

CHF, it becomes even more so because of a smaller β∗y (1 mm) and a longer distance L∗ (2

meter) required to achieve a factory-level luminosity of 1034 cm−2s−1.
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FIG. 12. Lattice functions in a final focusing system with local chromatic compensation section.

Using the principles outlined in the previous sections, we have designed a practical optics

of the FFS shown in Fig. 12. The FFS starts with a final transformer (FT), continues with a
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chromatic correction in the vertical (CCY) and then the horizontal plane (CCX), and ends

with a simple matching section. The FFS has two secondary imaging points and fits in a

321-meter section.

The FT contains four quadrupoles, including the final focusing doublet. The betatron

phase advances are 1800 in both planes. A dipole is added to the section to generate the

dispersion at the end, where the sextupole can be used to correct the third-order chromaticity

in the vertical plane. As a result, the dipoles in the other regions are rearranged slightly to

retain the dispersion within the FFS as shown in Fig. 12.

The CCY consists of four 900 FODO cells and makes a unit of betatron transformer. The

module starts at the middle of the defocusing quadrupole to enhance the peak of the vertical

beta function at the positions of a pair of sextupoles separated by “-I” transformation. Five

dipoles with an equal bending angle provide dispersions at the locations of the sextupoles.

At the end of the CCY, we have the second imaging point at which the lattice functions are

identical to those at the first one.

Similarly, we construct the CCX, but starting at the middle of the focusing quadrupole.

There are five dipoles that generate the dispersion with negative bending angles. The

amplitude of the angles are chosen to be the same as those in the CCY so that there is

no net bending from the FFS. At the end of the CCX, we have a section matching to the

optics of the dispersion suppressor.

The nonlinear chromatic effects can be characterized by the high order derivatives of

the lattice functions. These derivatives can be computed [9] using the technique of the

differential algebra [21]. For the FFS, we start with the initial condition: βx = 0.1 m and

βy = 1 mm and calculate the lattice functions and their derivatives element-by-element down

to the end.

TABLE II. The chromatic tune shifts from the FFS after the correction.

Derivatives of tunes Values

∂νx,y/∂δ −0.6,−0.7

∂2νx,y/∂δ
2 +5,+11

∂3νx,y/∂δ
3 −1494,+514
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FIG. 13. W function and the second order dispersion in the final focusing system with the local

chromatic compensation.

The first order chromaticity is compensated by two pairs of sextupoles in the CCY and

CCX respectively in the horizontal and vertical planes; the second order ones by slight

changes of betatron phases between the final doublet and the sextupole pairs; and finally

the third order ones by the two sextupoles at the two secondary imaging points where the

beta functions are at the minimum. We compensate the chromacities locally up to the end of

CCX. As we have mentioned previously, at every order, we simply solve two coupled linear

equations. The results of the chromatic compensation is summarized in Table II. Small

values in the table are due to the matching section. In addition, we plot the W functions

and the second order dispersion in Fig. 13. It is worth noting that there is a leak of the

second-order dispersion out of the region but it is very small.

To show how the higher order chromaticity is compensated, we plot the second derivative

of the mismatch parameter Υ as a function of the distance away from the IP in Fig. 14.

It shows where the large corrections occur, namely at the vertical steps, and also that the

system is quite orthogonal between the horizontal and vertical planes.
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FIG. 14. The second derivative of the Sands’ mismatch parameter Υ as a function of s in the

horizontal (left) and vertical (right) planes.

VIII. COLLIDER

Using 600 FODO cells in the arc, we build a collider lattice with two interaction regions.

Since the lattice has a two-fold symmetry, half of the betatron tunes are slightly above the

half integer, which enhances the dynamic focusing from the beam-beam interaction.

The main parameters of the collider are summarized in Table III. The beam energy and

luminosity are essentially determined or required by the high-energy physics for the study

of Higgs. The circumference was chosen to be close to the value in CEPC [22] so that the

design can be useful. Since the loss of synchrotron radiation is so large at this high energy,

the beam current is limited by the RF power, nearly 200 MW for both beams. Finally, the

lattice functions at the interaction point are mostly determined by the required luminosity.

In addition, the parameters of the FFS in the collider are the same as these in the final focus

system sections, in particular L∗ = 2 meter and β∗x = 0.1 meter.

The global linear chromaticities are corrected by the two families of sextupoles in the

arcs without tweaking the sextupoles in the interaction regions. The results of chromatic

corrections are tabulated in Table IV. The third-order terms become rather large largely

due to the nonlinear mismatch of the chromatic optics between the interaction region and

the arcs. Further improvement is possible with numerical optimizations [23, 24] but is not

investigated given the analytical nature of this paper.

Aside from the chromatic compensation, we need to mitigate the geometric-chromatic
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TABLE III. Main parameters of a Circular Higgs Factory.

Parameter Value

Energy, E0 [GeV] 125

Luminosity/IR, L [1034cm−2s−1] 2.55

Circumference, C [km] 52.7

Beam curent, I [mA] 13

SR power, PSR [MW] 50

Beta function at IP, β∗y [mm] 1

Beam-beam parameter, ξy 0.1

Natural emittance, εx [nm] 4.5

Bunch length, σz [mm] 1.85

Energy loss per turn, U0 [GeV] 3.85

RF voltage, VRF [GV] 8.45

RF frequency, fRF [MHz] 650.0

Tune, νx, νy, νz 225.04, 227.14, 0.165

Damping time, τx, τy, τz [ms] 11.4, 11.4, 5.7

TABLE IV. The chromatic tune shifts in the collider that contains two interaction regions.

Derivatives of tunes Values

∂νx,y/∂δ 0, 0

∂2νx,y/∂δ
2 −167,+790

∂3νx,y/∂δ
3 +27978,−19146

aberrations in the FFS to achieve a good momentum aperture in the collider. We find that

the largest aberration is generated by the pairs of the sextupoles at the peaks of the beta

functions because of the chromatic error in “-I” between two sextupoles. Fortunately, the

aberration can be corrected by a pair of decapoles at the same places as the sextupole pairs.

Finally, we evaluate the dynamic aperture of the collider by tracking the particles with
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various momentums. The tracking is carried out with synchrotron oscillation and radiation

damping. The orbit and optics errors due to the saw-tooth energy profile are corrected by

tapering the settings for all magnetic elements. As shown in Fig. 15, though the degradation

of the off-momentum aperture is large, there is sufficient momentum acceptance to retain

the particles in the long tail distribution of energy due to beamstrahlung. Most importantly,

there is large enough dynamic aperture in the vertical plane to accommodate the large tail

generated by the beam-beam interaction.
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FIG. 15. Dynamic aperture of the collider with various momentum deviations.

Here, we have developed an analytical method to effectively compensate nonlinear chro-

maticity in the final focusing system. We have achieved 2% momentum acceptance in a

lattice with an ultra-low beta interaction region. Six families of sextupoles are sufficient in

the chromatic correction. As shown in this paper, such optics in a collider with a consis-

tent set of accelerator parameters, especially with a large momentum aperture, has been

demonstrated in design.

IX. DISCUSSION

We have developed an analytical method to compensate the chromaticity order-by-order

in momentum deviation δ in the conventional FFS. The variables for the correction are

nearly orthogonal and their impacts are clearly identified. Moreover, the formulas of their

settings lead to many insights of how to optimize the system. These settings could also be

a good starting point for further numerical optimization [25] with more variables, especially

in the arcs, similar to a more elaborate numerical optimization [26].
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