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Abstract: Dielectric microstructures have generated much interest in recent years as a means of
accelerating charged particles when powered by solid state lasers. The acceleration gradient (or
particle energy gain per unit length) is an important figure of merit. To design structures with
high acceleration gradients, we explore the adjoint variable method, a highly efficient technique
used to compute the sensitivity of an objective with respect to a large number of parameters.
With this formalism, the sensitivity of the acceleration gradient of a dielectric structure with
respect to its entire spatial permittivity distribution is calculated by the use of only two full-field
electromagnetic simulations, the original and ‘adjoint’. The adjoint simulation corresponds
physically to the reciprocal situation of a point charge moving through the accelerator gap and
radiating. Using this formalism, we perform numerical optimizations aimed at maximizing
acceleration gradients, which generate fabricable structures of greatly improved performance in
comparison to previously examined geometries.
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1. Introduction

Dielectric laser accelerators (DLAs) are periodic dielectric structures that, when illuminated by
laser light, create a near-field that may accelerate electrically charged particles such as electrons
[1]. A principal figure of merit for these DLA structures is the acceleration gradient, which
signifies the amount of energy gain per unit length achieved by a particle that is phased correctly
with the driving field. DLAs may sustain acceleration gradients on the order of ∼GV m−1

when operating using the high peak electric fields supplied by ultrafast (femtosecond) lasers.
These acceleration gradients are several orders of magnitude higher than conventional particle
accelerators. As a result, the development of DLA can lead to compact particle accelerators that
enable new applications.

In previous works, candidate DLA geometries were optimized for maximum acceleration
gradient by scanning through parameters of a specified structure geometry [2–9]. However, this
strategy has limited potential to produce higher acceleration gradient structures because it only
searches a small portion of the total design space.

In this paper, we derive an analytical form for the sensitivity of the acceleration gradient of
a DLA structure with respect to its permittivity distribution using the adjoint-variable method
(AVM). We may calculate this by use of only two full-field simulations. The first corresponds to
the typical accelerator setup, where the structure is illuminated with externally incident laser light.
The second corresponds to the inverse process, where the same physical structure is simulated but
now with a charged particle traversing the structure as the source. Thus, this formalism explicitly
makes use of the reciprocal relationship between accelerators and radiators [10, 11]. We use this
sensitivity information to perform optimizations, which generate DLA structures of much higher
gradients than previously explored geometries.



This work is the first application of the AVM technique to the design of DLA structures and
gives examples of fabricable structures that may improve the energy gain achievable with current
DLA technology. In addition, the optimized structures give insight into general design principles
for DLAs, meaning that one may use the principle findings of this paper to design DLAs without
having to run optimizations directly. As an example, it was found that high gradient structures
often include dielectric mirrors surrounding the particle gap, leading to higher field enhancement.

This paper is organized as follows: We first outline the status of DLAs and basic design
requirements in section 2. We introduce AVM in section 3, where we derive the sensitivity
of the acceleration gradient of a DLA with respect to its permittivity distribution. In section
4, we show that the ‘adjoint’ solution corresponds to that of a radiating charge. In section 5,
we describe and demonstrate algorithms for using the sensitivity information to design DLA
structures numerically.

2. A Brief Review of Dielectric Laser Accelerators

DLAs take advantage of the fact that dielectric materials have high damage thresholds at short
pulse durations and infrared wavelengths [1,4,12] when compared to metal surfaces at microwave
frequencies. This allows DLAs to sustain peak electromagnetic fields, and therefore acceleration
gradients, that are 1 to 2 orders of magnitude higher than those found in conventional radio
frequency (RF) accelerators. Experimental demonstrations of these acceleration gradients have
been made practical in recent years by the availability of robust nanofabrication techniques
combined with modern solid state laser systems [13]. By providing the potential for generating
relativistic electron beams in relatively short length scales, DLA technology is projected to have
numerous applications where tabletop accelerators may be useful, including medical imaging,
radiation therapy, and X-ray generation [1, 14]. To achieve high energy gain in a compact size, it
is of principle interest to design structures that may produce the largest acceleration gradients
possible without exceeding their respective damage thresholds.

Several recently demonstrated candidate DLA structures consist of a planar dielectric structure
that is periodic along the particle axis with either an semi-open geometry or a narrow (micron
to sub-micron) vacuum gap in which the particles travel [2–9]. These structures are then side-
illuminated by laser pulses. Fig. 1 shows a schematic of the setup, with a laser pulse incident
from the bottom.

The laser field may also be treated with a pulse front tilt [15, 16] to enable group velocity
matching over a distance greater than the laser’s pulse length. For acceleration to occur, the
dielectric structure must be designed such that the particle feels an electric field that is largely
parallel to its trajectory over many optical periods. In the following calculations, the geometry
of the dielectric structure is represented by a spatially varying dielectric constant ε (x , y). We
assume invariance in one coordinate (ẑ) in keeping with the planar symmetry of most current
designs. However the methodology we present can be extended to include a third dimension. In
addition, our work approximates the incident laser pulse as a monochromatic plane wave at the
central frequency, which is a valid approximation as long as the pulse duration is large compared
to the optical period.

3. Adjoint Variable Method

In a general DLA system, we may define the acceleration gradient ‘G’ over a time period ‘T’
mathematically as follows:

G =
1
T

∫ T

0
E| | (~r (t), t) dt , (1)
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Fig. 1. Diagram outlining the system setup for side-coupled DLA with an arbitrary dielectric
structure ε (x , y) (green). A charged particle moves through the vacuum gap with speed βc0.
The periodicity is set at βλ where λ is the central wavelength of the laser pulse.

where ~r (t) is the position of the electron and E| | signifies the (real) electric field component
parallel to the electron trajectory at a given time.

To maximize this quantity, we employ AVM [17, 18], which is a technique common to a wide
range of fields, including seismology [19], aircraft design [20], and, recently, photonic device
design [21–23]. Many engineering systems can be described by a linear system of equations
A(γ)z = b, where γ is a set of parameters describing the system. For a given set of parameters
γ, solving this equation results in the solution ‘z’, from which an objective J = J (z), which
is a function of the solution, can be constructed. The optimization of the engineering system
corresponds to maximizing or minimizing J with respect to the parameters γ. For this purpose,
AVM allows one to calculate the gradient of the objective function ∇γ J for an arbitrary number
of parameters γi with the only added computational cost of solving one additional linear system
ÂT z̄ = − dJ

dz

T
, which is often called the ‘adjoint’ problem. For a more comprehensive overview

of the method, we refer the reader to [17].
Here we provide the derivation of AVM specifically for the optimization of the accelerator

structures. Since the structure is invariant in the ẑ direction, we work in two dimensions, examin-
ing only the Hz , Ex and Ey field components. For an approximately monochromatic input laser
source with angular frequency ω, the electric fields are, in general, of the form

~E(~r , t) = Re
{
~E(~r)eiωt

}
, (2)

where now ~E is complex.



Let us assume the particle we wish to accelerate is moving on the line y = 0 with velocity
~v = βc0 x̂, where c0 is the speed of light in vacuum and β ≤ 1. The x position of the particle
as a function of time is given by x(t) = x0 + βc0t, where x0 represents an arbitrary choice of
initial starting position. For normal incidence of the laser (laser propagating in the +ŷ direction),
phase velocity matching between the particle and the electromagnetic fields is established by
introducing a spatial periodicity in our structure of period βλ along x̂ , where λ is the laser
wavelength. In the limit of an infinitely long structure (or equivalently, T → ∞) we may rewrite
our expression for the gradient in Eq. (1) as an integral over one spatial period, given by

G =
1
βλ

Re
{

e−iφ0

∫ βλ

0
dx Ex (x , 0)ei

2π
βλ x

}
. (3)

Here the quantity φ0 =
2πx0
βλ is representative of the phase of the particle as it enters the

spatial period. In further calculations, we set φ0 = 0, only examining the acceleration gradients
experienced by particles entering the accelerator with this specific phase. Since we have arbitrarily
control over our input laser phase, this does not impose any constraint on the acceleration gradient
attainable.

To simplify the following derivations, we define the following inner product operation involv-
ing the integral over two vector quantities ~a and ~b over a single period volume V ′

〈~a, ~b〉 = 〈~b, ~a〉 =

∫
V ′

dv
(
~a · ~b

)
=

∫ βλ

0
dx

∫ ∞

−∞

dy
(
~a · ~b

)
. (4)

With this definition, we then have the gradient

G = Re{〈 ~E , ~η〉}, (5)

where

~η = ~η(x , y) =
1
βλ

ei
2π
βλ xδ(y) x̂. (6)

Now, we wish to examine the sensitivity of G with respect to an arbitrary parameter, γ, which
may represent a shifting of material boundary, changing of dielectric constant at a point, or any
other change to the system. Differentiating Eq. (5) gives

dG
dγ

= Re
〈

d ~E
dγ

, ~η

〉 . (7)

Here we have made use of the fact that ~η does not depend on γ.
From Maxwell’s equations in the frequency domain, we may express our electromagnetic

problem in terms of a linear operator Â as

∇ × ∇ × ~E(~r) − k2
0 ε r (~r) ~E(~r) ≡ Â~E(~r) = −iµ0ω ~J (~r). (8)

Here, k0 = ω/c0, ε r is the relative permittivity, ~J represents a current density source, and a
non-magnetic material is assumed (µ = µ0). Differentiating Eq. (8) with respect to γ, and
assuming that the current source ( ~J) does not depend on γ, we see that

d ~E
dγ

= − Â−1 d Â
dγ

~E. (9)



Â is self-adjoint under our inner product, 〈Â~a, ~b〉 = 〈~a, Â~b〉, and the same is true for Â−1 and
d Â
dγ . Using these facts and combining Eq. (7) with Eq. (9), we find that

dG
dγ

= Re
{〈
− Â−1 d Â

dγ
~E , ~η

〉}
= Re

{〈
~E , −

d Â
dγ

Â−1~η

〉}
. (10)

Thus, if we define a second simulation with a source of −~η and fields ~Ea j ,

Â~Ea j = −iµ0ω ~Ja j = −~η, (11)

then the field solution, ~Ea j = − Â−1~η, can be easily identified in Eq. (10). The sensitivity of the
acceleration gradient can finally be expressed as

dG
dγ

= Re
{〈
~E ,

d Â
dγ

~Ea j

〉}
. (12)

The only quantity in this expression that depends on the parameter γ is d Â
dγ . As we will

soon discuss, this quantity will generally be trivial to compute. On the other hand, the full field
calculations of ~E and ~Ea j are computationally expensive, but may be computed once and used
for an arbitrarily large set of parameters γi . This gives the AVM approach a significant scaling
advantage with respect to traditional direct sensitivity methods, which require a separate full-field
calculation for each parameter being investigated. It is this fact that we leverage with AVM to do
efficient optimizations over a large design space.

To confirm that this derivation matches the results obtained by direct sensitivity analysis, we
examine a simple accelerator geometry composed of two opposing dielectric squares each of
relative permittivity ε . We take a single γ parameter to be the relative permittivity of the entire
square region. Because we only change the region inside the dielectric square, we may identify
the d Â

dγ operator for this parameter by examining Eq. (8), giving

d Â
dε

(~r) =

{
−k2

0 if ~r in square
0 otherwise . (13)

Thus, given the form of the acceleration gradient sensitivity given in Eq. (12), combined
with Eq. (13), the change in acceleration gradient with respect to changing the entire square
permittivity is simply given by the integral of the two field solutions over the square region,
labeled ‘sq’

dG
dε sq

= −k2
0 Re

{∫
sq

d2~r ~E(~r) · ~Ea j (~r)
}
. (14)

In Fig. 2 we compare this result with the direct sensitivity calculation where the system is
manually changed and simulated again. The two methods agree with excellent precision.

Extending this example to the general case of perturbing the permittivity at an arbitrary
position ~r′, we see that

dG
dε

(~r′) = −k2
0 Re

{∫
d2~r ~E(~r) · ~Ea j (~r) δ(~r − ~r′)

}
(15)

= −k2
0 Re

{
~E(~r′) · ~Ea j (~r′)

}
. (16)
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Fig. 2. Demonstration of AVM in calculating sensitivities. a) The acceleration gradient (G)
of a square accelerator structure (inset) as a function of the square’s relative permittivity.
The particle traverses along the dotted line and a plane wave is incident from the bottom
of the structure. b) The sensitivity dG

dε of the gradient with respect to changing the square

relative permittivity for direct central difference (solid line) dG
dε =

G(ε+∆ε )−G(ε−∆ε )
2∆ε and

using AVM (circles). The two calculations agree with excellent precision. The dotted line at
dG
dε = 0, corresponds to local minima and maxima of G(ε ) above.

4. Reciprocity

With the AVM form derived, we now wish to re-examine the adjoint source term from Eq. (11)
in another interpretation. Let us now consider the fields radiated by a point particle of charge
q flowing through our domain at y = 0 with velocity ~v = βc0 x̂. In the time domain, we can
represent the current density of this particle as

~Jrad (x , y; t) = qβc0δ(x − x0 − c0 βt)δ(y) x̂. (17)

We may take the Fourier transform of ~Jrad with respect to time to examine the current density
in the frequency domain, giving



~Jrad (x , y;ω) = qβc0δ(y) x̂
∫ ∞

−∞

dt e−iωt δ(x − x0 − c0 βt) (18)

= qei
ω (x−x0 )

c0β δ(y) x̂ (19)

= qei
2π
βλ xe−iφ0δ(y) x̂. (20)

Comparing with the source of our adjoint problem, ~Ja j = −i
ωµ0

~η, we can see that

~Ja j =
−ieiφ0

2πqβc0µ0
~Jrad . (21)

This finding shows that the adjoint field solution ( ~Ea j ) corresponds (up to a complex constant)
to the field radiating from a test particle flowing through the accelerator structure. To put this
another way, in order to calculate the acceleration gradient sensitivity with AVM, we must
simulate the same structure operating both as an accelerator (Â~E = −iωµ0 ~Jacc ) and as a radiator
(Â~Ea j = −iωµ0 ~Ja j ).

It is understood that one way to create acceleration is to run a radiative process in reverse.
Indeed, this is the working principle behind accelerator schemes such as inverse free electron
lasers [24, 25], inverse Cherenkov accelerators [26, 27], and inverse Smith-Purcell accelerators
[28, 29]. Here, we see that this relationship can be expressed in an elegant fashion using AVM.

5. Applications

5.1. Finite-Difference Frequency Domain Modeling

Now that we have shown how to use AVM to compute the sensitivity of the acceleration gradient
with respect to the permittivity distribution, we will show practical applications of these results.
First, for computational modeling, the problem must be transitioned from a continuous space
to a discrete space. Here we make the transition using a finite-difference frequency domain
(FDFD) formalism [30, 31]. The electromagnetic fields now exist on a Yee lattice and the linear
operator Â becomes a sparse, complex symmetric matrix, A, relating the vector of electric field
components, e, to the input current source components b as

Ae = b. (22)

To solve for the field components, this system must be solved numerically for e. In two-
dimensions, this is usually done directly by use of “lower-upper” (LU) decomposition methods
for sparse matrices. Only the right hand side of Eq. (22) is different between the original and
adjoint simulations. Therefore after the A matrix is factored to solve the original simulation,
its factored form may be saved and reused for the adjoint calculation, which cuts the total
computational running time roughly in half.

Written in terms of this discrete system, the acceleration gradient is

G = Re{eTη}, (23)

where η is now a discretized version of ~η. Similarly, the sensitivity of the gradient with respect
to changing the permittivity at pixel ‘i’ is given by

dG
dε i

= −k2
0 Re{ei ēi }, (24)



where, as before, ē is the solution of the adjoint problem

Aē = −η. (25)

For all simulations, we use an FDFD program developed specifically for this work, although a
commercial package would also be sufficient. We have chosen a grid spacing that corresponds
to 200 grid points per free space wavelength in each dimension. Perfectly matched layers are
implemented as absorbing regions on the edges parallel to the electron trajectory, with periodic
boundary conditions employed on boundaries perpendicular to the electron trajectory. A total-
field scattered-field [31] formalism is used to create a perfect plane wave input for the acceleration
mode.

5.2. Gradient Maximization

Since we now have a highly efficient method to calculate dG
dεi

, we proceed to use this information
to maximize the acceleration gradient with respect to the permittivity distribution. We use an
iterative algorithm based on batch gradient ascent. During each iteration, we first calculate dG

dεi
for all pixels ‘i’ within some specified design region. Then, we update each ε i grid as follows

ε i := ε i + α
dG
dε i

. (26)

Here, α is a step parameter that we can tune. We need α to be small enough to find local maxima,
but large enough to have the optimization run in reasonable amount of time. This process is then
iterated until convergence on G. During the course of optimization, the permittivity distribution
is considered as a continuous variable, which is not realistic in physical devices. To address this
issue, we employ a permittivity capping scheme during optimization. We define a maximum
permittivity ‘εm’ corresponding to a material of interest. During the iterative process, if the
relative permittivity of any cell becomes either less than 1 (vacuum) or greater than εm , that cell is
pushed back into the acceptable range. It was found that with this capping scheme, the structures
converged to binary (each pixel being either vacuum or material with a permittivity of εm) after
a number of iterations without specifying this choice of binary materials as a requirement of the
optimization. Therefore, only minimal post-processing of the structures was required.

The results of this optimization scheme are shown in Fig. 3(b-d) for three different εm values
corresponding to commonly explored DLA materials. The design region was taken to be a
rectangle fully surrounding but not including the particle gap. The design region was made
smaller for higher index materials, since making it too large led to divergence during the iteration.
We found that a totally vacuum initial structure worked well for these optimizations. However,
initially random values between 1 and εm for each pixel within the design region also gave
reasonable results.

This optimization scheme seems to favor geometries consisting of a staggered array of field-
reversing pillars surrounding the vacuum gap, which is already a popular geometry for DLA.
However, these optimal designs also include reflective mirrors on either side of the pillar array,
which suggests that for strictly higher acceleration gradients, it is useful to use dielectric mirrors
to resonantly enhance the fields in the gap.

It was observed that for random initial starting permittivity distributions, the same structures as
shown in Fig. 3 are generated every time. Furthermore, these geometries are remarkably similar
to those recently proposed [32], although these designs do not include the reflective front mirror.
These findings together suggest that the proposed structures may be close to the globally optimal
structure for maximizing G.

It was further found that convergence could be achieved faster by a factor of about ten by
including a ‘momentum’ term in the update equation. This term corresponds to the sensitivity
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calculated at the last iteration multiplied by a constant, α′ < 1. Explicitly, for iteration number
‘ j’ and pixel ‘i’

ε
( j+1)
i

:= ε
( j )
i

+ α

[
dG
dε i

( j )
+ α′

dG
dε i

( j−1)]
. (27)

5.3. Acceleration Factor Maximization

DLAs are often driven with the highest input field possible before damage occurs. Therefore,
another highly relevant quantity to maximize is the ‘acceleration factor’ given by the acceleration
gradient divided by the maximum electric field amplitude in the structure. This quantity will
ultimately limit the amount of acceleration gradient we can achieve when running at damage
threshold. Explicitly, the acceleration factor is given by

f A =
G

max{| ~E |}
. (28)



Here, | ~E | is a vector of electric field magnitudes in our structure, and the max{} function is
designed to pick out the highest value of this vector in either our optimization or material region,
depending on the context. We would like to use the same basic formalism to maximize f A.
However, since the max{} function is not differentiable, this is not possible directly. Instead we
may use a ‘smooth-max’ function to approximate max{} as a weighted sum of vector components

max{| ~E |} ≈
∑

i |
~Ei |ea |

~Ei |∑
i ea | ~Ei |

. (29)

Here, the parameter a ≥ 0 controls the relative strength of the exponential sum terms, for
a = 0, this function simply gives the average value of the field amplitudes. By sweeping a and
examining the acceleration factors of the resulting optimized structures, we determined that
a = 3 gave the best improvement in f A. If a is too large, the calculation may induce floating
point overflow or rounding error issues.

Using this smooth-max function, one may calculate dfA
dεi

analytically and perform structure
optimizations in the same way that was discussed previously. The derivation of the adjoint source
term is especially complicated and omitted for brevity, although the end result is expressed solely
in terms of the original fields, the adjoint fields, and the d Â

dγ operator, as before. Two structures
with identical parameters but optimized, respectively, for maximum G and f A are shown in Fig.
4. On the left, we see that the G maximized structure shows the characteristic dielectric mirrors,
giving resonant field enhancement. On the right is the structure optimized for f A, which has
eliminated most of its dielectric mirrors and also introduces interesting pillar shapes. In Table 1
the main DLA performance quantities of interest are compared between these two structures.
Whereas the acceleration gradient is greatly reduced when maximizing for f A, the f A value itself
is improved by about 25% or 23% depending on whether one measures the maximum field in
the design region or the material-only region, respectively. These findings suggest that the AVM
strategy is effective in designing not only resonant, high acceleration gradient structures, but also
non-resonant structures that are more damage resistant. In the future, when more components of
DLA are moved on-chip (such as the optical power delivery), it will be important to have control
over the resonance characteristics of the DLA structures to prevent damage breakdown at the
input facet. Our technique may be invaluable in designing structures with tailor-made quality
factors for this application.

Table 1. Acceleration factor ( fA) before and after maximization.
Quantity Value (max G) Value (max f A) Change
Gradient (E0) 0.1774 0.0970 -45.32%
max{| ~E |} in design region 4.1263 1.7940 -56.52%
max{| ~E |} in material region 2.7923 1.2385 -55.84%
f A in design region 0.0430 0.0541 +25.81%
f A in material region 0.0635 0.0783 +23.31%

6. Discussion

We found that AVM is a reliable method for optimizing DLA structures for both maximum
acceleration gradient and also acceleration factor. The optimization algorithm discussed shows
good convergence and rarely requires further post-processing of structures to create binary
permittivity distributions. Therefore, it is a simple and effective method for designing DLAs.
Whereas most structure optimization in this field uses parameter sweeps to search the design
space, the efficiency of our method allows us to more intelligently find optimal geometries without
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Fig. 4. Demonstration of the final structures after optimization for a) maximizing gradient
only, b) maximizing the acceleration factor. β = 0.5, laser wavelength λ = 2 µm, gap size
of 400 nm. εm = 2.1, corresponding to SiO2. In a), the high gradients are achieved using
reflective dielectric mirrors to confine and enhance the fields in the center region. In b), these
dielectric mirrors are removed and the pillar structures are augmented. The structure in b)
shows a 23% increase in the acceleration factor in the material region when compared to a).

shape parameterization. Furthermore, the structures that we design are fabricable. Although no
DLA structures have been tested at the proposed wavelength of 2 µm, both simulations [2] and
experimental results from other wavelengths [5] show gradients far below those presented here.
We had limited success designing DLA structures in the relativistic (β ≈ 1) regime, especially
for higher index materials, such as Si. We believe this is largely due to the stronger couping
between electron beam and incident plane wave at this energy. The characteristics of the adjoint
source change dramatically at the β = 1 point. Whereas in the sub-relativistic regime, the adjoint
source generates an evanescent near-field extending from the gap particle position, at β ≥ 1,
the adjoint fields become propagating by process of Cherenkov radiation. Upon using the above
described algorithm, the gradients diverge before returning to low values, no matter the step size
α. The only way to mitigate this problem is to choose prohibitively small design regions or low
index materials, such as SiO2.

The AVM formalism presented in this work may also be extended to calculate higher order
derivatives of G. For each higher order, the form of the derivative of G can be derived in a
fashion very similar to the one outlined for first order. Given the full Hessian Hi , j = d2G

dεidε j
, as

calculated by AVM, one could use Newton’s method to do optimization. However, to perform
exactly, this calculation would require as many additional simulations as there are grid points
within the design region. Therefore, these higher order methods are inconvenient for our purposes
where there are generally tens of thousands of design pixels. This limitation may be averted by
using approximate methods for finding the inverse Hessian [33], which may provide substantial
improvement to optimization results and convergence speeds in certain cases. However, in our
case there was no need to explore beyond first order due to the relative success and speed of the
algorithm presented.

As future works, our goal is to fabricate and test these structures experimentally, as well as



include further metrics into the optimization if necessary, such as favoring larger feature sizes
and incorporating focusing effects. Furthermore, this method is of great interest in designing
waveguide-coupled accelerator structures, where typical designs optimized for plane wave input
are likely suboptimal. This will be of critical importance when moving the optical power delivery
source on-chip.

In addition to the side-incident geometry explored, this technique is applicable to designing
other dielectric-based accelerator structures. This includes particle-laser co-propagating schemes
[34] and perhaps dielectric wakefield acceleration [35], among others. Therefore, we expect that
our results may find use in the larger advanced accelerator community.

7. Conclusion

We have introduced the adjoint variable method as a powerful tool for designing dielectric laser
accelerators for high gradient acceleration and high acceleration factor. We have further shown
that the adjoint simulation is sourced by a point charge flowing through the accelerator, which
quantifies the reciprocal relationship between an accelerator and a radiator.

Optimization algorithms built on this approach allow us to search a substantially larger design
space and generate structures that give gradients far above those normally used for each material.
Furthermore, the structures designed by AVM are fundamentally not constrained by shape
parameterization, allowing never-before-seen geometries to be generated and tested.
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