Towards a Fully Integrated Accelerator on a Chip: Dielectric Laser Acceleration (DLA) From the Source to Relativistic Electrons

Kent P. Wootton – SLAC National Accelerator Laboratory 8th International Particle Accelerator Conference 17th May 2017 Copenhagen, Denmark

Work supported by the U.S. Department of Energy under Contract no. DE-AC02-76SF00515, and the Gordon and Betty Moore Foundation under grant GBMF4744.

Accelerator on a Chip International Program (ACHIP) ACHIP SLAC

GORDON AND BETTY

Pls: R. L. Byer (Stanford)

& P. Hommelhoff (FAU Erlangen) 5 year programme (2015-2020)

- Stanford
 - FPFI
- FAU ΤU • Erlangen Darmstadt
- Purdue

- Hamburg ٠
- UCLA Tech-X

In-kind contributions:

SLAC • DESY • PSI

https://sites.stanford.edu/achip/

Motivating compact electron accelerators

- ACHIP SLAC
- High gradients enable compact linear accelerators
 1947
 2013

Applications:

- Radiotherapy
- Industrial/security
- Attosecond science

~GeV m⁻¹

SLAC National Accelerator Laboratory

Wootton – 8th Int. Part. Accel. Conf. – WEYB1 – 17th May 2017

Laser driven accelerators

"Is there any point in considering the far infrared ...?

Only if the breakdown conditions there are different, yielding spectacular values of E_0 ."

J. D. Lawson, *Laser Accelerators?*, Tech. Rep. RL-75-043, Rutherford Laboratory (Chilton, Oxon, UK, 1975).

Material damage fluence and accelerating gradient

Wootton – 8th Int. Part. Accel. Conf. – WEYB1 – 17th May 2017

SLAC

Lasers for accelerators

 fs-duration lasers commercially available

- Tabletop-scale fibre, regenerative amplifiers
- Pulse energy 0.1–5 mJ

Dielectric laser accelerator structures

 Dielectricvacuum structures

 UV and electron beam lithography

Peralta, et al., <u>Nature,</u> 503, p. 91 (2013)

Noble, et al., *PRSTAB*, 14, 121303 (2011)

Noble, et al., *PRSTAB*, 14, 121303 (2011)

3-D

Cowan, PRSTAB, 11, 011301 (2008)

Wu, et al., <u>IEEE JSTQE, 22,</u> <u>4400909 (2016)</u>

- Plane wave
- No acceleration

SLAC National Accelerator Laboratory https://youtu.be/V89qvy8whxY

 $\rightarrow E_z$

No acceleration

SLAC National Accelerator Laboratory https://youtu.be/V89qvy8whxY

 $\rightarrow E_z$

- No acceleration
- Refractive index modifies phase
- Acceleration

SLAC National Accelerator Laboratory https://youtu.be/V89qvy8whxY

Plane wave

 $\Rightarrow E_z$

- No acceleration
- Refractive index modifies phase
- Acceleration

SLAC National Accelerator Laboratory https://youtu.be/V89qvy8whxY

Recent DLA Acceleration Experiments

	SiO ₂ Single grating	SiO ₂ Dual grating	Si Single Grating	Si Dual Pillars	
	20µm		5µm —		
Electron Energy	30 keV	8 MeV	96.3 keV	86.5keV	
Relativistic ^β	0.33	0.998	0.54	0.52	
Laser Energy	160 nJ	150 μJ	5.2 nJ	3.0 nJ	
Pulse Length	110 fs	40 fs	130 fs	130 fs	
Interaction Length	11 um	~20 um	5.6 um	5.6 um	
Peak Laser Field	2.85 GV/m	3.5 GV/m	1.65 GV/m	~1.1 GV/m	
Max Energy Gain	0.275 keV	20 keV	1.22 keV	2.05 keV	
Max Acc Gradient	25 MeV/m	0.85 GV/m *	220 MeV/m	370 MeV/m	
G _{max} /E _p	~0.01	~0.18	~0.13	~0.4	
Preliminary Woot	ton – 8 th Int. Part. Ac	ccel. Conf. – WEY	′B1 – 17 th May 2017		

Fundamental accelerator properties

- Structure period $\Lambda = h\beta\lambda$, $\beta = \frac{v}{c}$, h = 1, 2, 3, ...
- $\lambda = 800 \text{ nm}$, optical cycle $\rightarrow 2.7 \text{ fs}$
- $\lambda = 2 \ \mu m$, optical cycle \rightarrow 6.7 fs
- Bunches occupying a few degrees of laser phase would be sub-femtosecond duration
- What is needed for a tabletop source of relativistic (~1 MeV) attosecond bunches?

Accelerator 'in-a-shoebox'

- Electron source
- Buncher
- Transverse
 focussing

- Accelerating
 structures
- Laser delivery
- Diagnostics/control

Electron source emittance requirements

- Admittance of structure between two focussing elements
- Assuming $\lambda = 2 \ \mu m$
 - Gap $g \approx \lambda/2$

A. Ody, et al., NIMA, (2016, in press)

Parameter	Value	
L	1 mm	
g	1 µm	
Admittance	1 nm rad	

Low emittance electron sources

Flat RF photocathode a) S-band Gun 72° Virtual Cathode CCD ~8x18 µm z=0 m $\varepsilon_n = 5 \text{ nm rad}$ $\varepsilon = 0.3 \text{ nm rad}$ J. Maxson, et al., Phys. Rev. Lett., 118, p. 154802 (2017)

Tungsten nanotip

M. Krüger, <u>PhD thesis</u>, <u>LMU-München (2013)</u> $\varepsilon_n = 1 \text{ nm rad}$ $\varepsilon = 0.08 \text{ nm rad}$ J. McNeur, et al., <u>J. Phys. B:</u> <u>At. Mol. Opt. Phys., 49</u>, 034006 (2016)

Diamond nanotip Silicon nanotip 20 nm 10.0KV X3.00K 10.00m H. Ye, et al., Ultrafast E. Simakov, et al., AIP Conf. Phenomena, 09.Wed.P3.37 Proc., 1812, 060010 (2017) (2014)H. Ye, et al., ibid, (2014)

DC photocathode electron gun

- Photo-assisted field-emission source
- Cathode geometry may be flat or nanotip
- UV and IR laser pulses produced from same source
- Few nm rad transverse
 emittance
- Electron bunch length $\tau \approx 100 300 \text{ fs}$
 - Needs microbunching

Buncher – Velocity microbunching

Buncher – optical phase-controlled acceleration

- Synchronicity condition between electron and accelerating mode $\Lambda = h\beta\lambda$
 - $\beta \ll 1?$
- Accelerate low energy electrons using high-order mode h = 3, 4, 5, ...
 - J. Breuer and P. Hommelhoff, <u>Phys. Rev.</u> Lett, 111, 134803 (2013)

20

Acceleration – sub-relativistic structures

Sub-relativistic structures

Increasing chirp to velocity match accelerating electrons

J. McNeur, et al., <u>arXiv:</u> <u>1604.07684 (2016)</u>.

Velocity buncher

500

U. Niedermayer, WEPVA003 (this afternoon)

Focussing requirements for demonstration

$$B' = T^2 \frac{\beta \gamma m_e c}{q_e}$$

- PMQs may be viable for low emittance beams without space charge
- Long term, require MT m⁻¹ transverse gradients for transport of high peak charge microbunches
 - Laser driven focussing structures

Focussing structures – magnetic

Micro electromagnetic quads

200 T m⁻¹

Permanent magnet quads (PMQ)

Focussing structures – laser-driven

Time (fs)

Time (fs)

Diagnostics/control

diode

M. Kozák, et al., Opt. Lett., 41, 3435 (2016)

TDC

Beam transverse position

Femtosecond laser pulse

Electron steering

Pulse-front tilt

- Dispersive elements produce pulse-front tilt
 - Input pulse x Diffraction grating
 - S. Akturk, et al., <u>Opt. Express, 11, 491</u> (2003)

- High field <100 fs laser pulse
- Extended interaction distance

T. Plettner, et al., PRSTAB, 9, 111301 (2006)

On-chip laser management

A. Piggott, et al., <u>Nat. Photonics, 9, p. 374 (2015)</u>

 $30 \,\mu \text{m}$

Future – 3D printed DLAs

- Nanoscribe feature size <100 nm
- Enable fabrication of exotic structures, waveguides
- Material damage tests underway

Summary

Tabletop demonstration

- DC photocathodes produce few nm emittance required
- Phase-controlled acceleration suggests velocity bunching feasible
- Integrate with chirped structures, demonstrated
- PMQs may provide necessary focussing for tabletop demonstration

Longer-term integrated accelerator

- Laser-driven focussing structures
- Laser delivery and control on-chip
- 3D printing of photonic crystal structures

Acknowledgments

Stanford Univ.

Bob Byer James Harris **Olav Solgaard** Shanhui Fan Jelena Vuckovik Ken Leedle Andrew Ceballos Huiyang Deng **Stephen Wolf** Si Tan Yu Miao Dylan Black **Peyton Broaddus** Logan Su Alex Piggott Jiahui Wang **Tyler Hughes**

blue = students

Stanford (contd.)

Zhexin Zhao Neil Sapra Levi Ofer Mike Hennessy Jim Perales **FAU Erlangen** Peter Hommelhoff Josh McNeur Martin Kozák Ang Li Johannes Illmer Alexander Tafel Peyman Yousefi Norbert Schonenberger Anna Mittelbach Univ. Hamburg Franz Kärtner

TU Darmstadt

Oliver Boine-Frankenheim Uwe Niedermayer Thilo Egenholf

Tel-Aviv Univ.

Jacob Scheuer Doron Bar-Lev Avi Gover

Purdue Univ.

Minghao Qi Yun Jo Lee **Technion** Levi Schachter Adi Hanuka

Tech-X Corp. Ben Cowan

UCLA

Pietro Musumeci James Rosenzweig David Cesar

Jared Maxson Xinglai Shen Alexander Ody

Paul Scherrer Inst.

Rasmus Ischebeck Franziska Frei Eduard Prat Marco Calvi Dominique Zehnder Simona Bettoni Nicole Hiller Micha Dehler

SLAC

Joel England Kent Wootton

DESY

Ralph Assmann Ingmar Hartl Axel Ruehl Willi Kuropka Frank Mayet

LANL

Evgenya Simakov Dmitry Shchegolkov

LLNL

Paul Pax Mike Messerly

ACHIP SLAC

Monday, ABISKO

MOPVA012 U. Dorda, et al., The Dedicated Accelerator R&D Facility "Sinbad" at DESY

Tuesday, ABISKO

TUPAB040 B. Marchetti, et al., Status Update of the SINBAD-ARES Linac Under Construction at DESY

Wednesday, VALHALL

WEPVA002 T. Egenolf, et al., Simulations of DLA Grating Structures in the Frequency Domain
WEPVA003 U. Niedermayer, et al., Designing a Dielectric Laser Accelerator on a Chip
WEPVA005 W. Kuropka, et al., Simulation of Many Period Grating-Based Dielectric Laser Accelerators for Electrons
WEPVA006 F. Mayet, et al., A Concept for Phase-Synchronous Acceleration of Microbunch Trains in DLA ...
WEPVA007 F. Mayet, et al., Simulations and Plans for a Dielectric Laser Acceleration Experiment at SINBAD
WEPVA011 K. Koyama, et al., Development of a Laser Driven Dielectric Accelerator for Radiobiology Research
WEPVA016 J. Oegren, et al., Dielectric Laser Accelerator Investigation, Setup Substrate Manufacturing ...
WEPVA020 Y. Wei, et al., Dielectric Accelerators Driven by Pulse-Front-Tilted Lasers

Thursday, ABISKO

THPAB013 F. Mayet, et al., A Fast Particle Tracking Tool for the Simulation of Dielectric Laser Accelerators Wootton – 8th Int. Part. Accel. Conf. – WEYB1 – 17th May 2017