
Draft version May 31, 2017
Preprint typeset using LATEX style emulateapj v. 12/16/11

EMPIRICISN: RE-SAMPLING OBSERVED SUPERNOVA/HOST GALAXY POPULATIONS USING AN XD
GAUSSIAN MIXTURE MODEL

Thomas W.-S. Holoien1,2,3,4, Philip J. Marshall3,4, Risa H. Wechsler3,4

Draft version May 31, 2017

ABSTRACT

We describe two new open-source tools written in Python for performing extreme deconvolution
Gaussian mixture modeling (XDGMM) and using a conditioned model to re-sample observed super-
nova and host galaxy populations. XDGMM is new program for using Gaussian mixtures to do
density estimation of noisy data using extreme deconvolution (XD) algorithms that has functionality
not available in other XD tools. It allows the user to select between the AstroML (Vanderplas et al.
2012; Ivezic et al. 2015) and Bovy et al. (2011) fitting methods and is compatible with scikit-learn
machine learning algorithms (Pedregosa et al. 2011). Most crucially, it allows the user to condition a
model based on the known values of a subset of parameters. This gives the user the ability to produce
a tool that can predict unknown parameters based on a model conditioned on known values of other
parameters. empiriciSN is an example application of this functionality that can be used for fitting
an XDGMM model to observed supernova/host datasets and predicting likely supernova parameters
using on a model conditioned on observed host properties. It is primarily intended for simulating
realistic supernovae for LSST data simulations based on empirical galaxy properties.
Subject headings: supernovae: general — density estimation — Bayesian inference

1. INTRODUCTION

The problem of inferring a distribution function given
a set of samples from that distribution function and
the problem of finding overdensities in this distribution
function are common issues in many areas of science,
particularly astronomy (e.g., Skuljan et al. 1999; Hogg
et al. 2005; Bovy et al. 2012). Gaussian mixture models
(GMMs), which model an underlying density probability
distribution function (pdf) using a sum of Gaussian com-
ponents, are a commonly used tool for solving density
estimation problems such as these (Ivezić et al. 2014).
However, traditional GMMs do not have the ability to
incorporate measurement noise into the density calcu-
lation, and often in astronomy we must deal with ob-
servations that have multiple sources of noise with very
different properties. For problems such as this, the “ex-
treme deconvolution” GMM (XDGMM) technique must
be used.

XD was originally outlined by Bovy et al. (2011), and
provides a way to perform Bayesian estimation of mul-
tivariate densities modeled as Gaussian mixtures (Ivezić
et al. 2014). XDGMMs have already proven useful for
modeling underlying distributions using noisy observa-
tions for multiple areas of astronomy, from velocity dis-
tributions of nearby stars (Bovy et al. 2009; Bovy & Hogg
2010) to photometric redshifts and quasar probabilities
of SDSS sources (Bovy et al. 2012) to 3-D kinematics
of stars in the Sagittarius stream (Koposov et al. 2013).
However, the potential of XD models to be used as pre-

1 Department of Astronomy, The Ohio State University, 140
West 18th Avenue, Columbus, OH 43210, USA

2 Center for Cosmology and AstroParticle Physics (CCAPP),
The Ohio State University, 191 W. Woodruff Ave., Columbus,
OH 43210, USA

3 Kavli Institute for Particle Astrophysics and Cosmology, De-
partment of Physics, Stanford University, Stanford, CA, 94305

4 SLAC National Accelerator Laboratory, Menlo Park, CA,
94025

dictive tools has yet to be explored. An XDGMM is
able to model the complicated correlations between var-
ious parameters in a many-dimensional dataset. If this
model could be conditioned on the known values of some
of these parameters, it could be used to predict likely val-
ues for the remaining parameters, allowing the sampling
of realistic properties without knowledge of how the var-
ious parameters are correlated. This is an XD extension
of the predictive approach known as Gaussian Mixture
Regression, with the added functionality of being able to
handle noisy or missing data. While there are multiple
existing implementations of the XDGMM algorithm, no
existing tool has this functionality.

One potential use of an XDGMM prediction tool is to
sample likely parameters for a supernova (SN) given the
parameters of a host galaxy. The problem of supernova
simulation is a common one for large-scale sky surveys,
as it is useful both for planting fake supernovae (SNe) in
existing data to test detection efficiency for calculating
SN rate (Melinder et al. 2008; Graur et al. 2014) and for
creating realistic simulated data to test data processing
pipelines of upcoming surveys, such as the Large Syn-
optic Survey Telescope (LSST; Ivezic et al. 2008). For
various applications it can also be useful to place real-
istic simulated SN within a realistic galaxy distribution
in a cosmological context, for example to understand the
connection between observational biases in host detec-
tion and cosmological observables. In each of these cases,
having realistic SN properties is essential for avoiding
the introduction of further uncertainty or biasing detec-
tion of new sources. Further, many known correlations
between host and SN properties are based on physical
quantities, such as host mass, metallicity, and star for-
mation rate, that must be inferred from observations us-
ing theoretical models, introducing further uncertainty
(e.g., Sullivan et al. 2010; Childress et al. 2013; Graur
et al. 2016a,b). An XDGMM model trained only on a

SLAC-PUB-16990

This material is based upon work supported by the U.S. Department of Energy,
Office of Science, under Contract No. DE-AC02-76SF00515.

2

wide range of empirical, observed host properties could
be used to sample realistic supernova properties without
the need for theoretical models, removing this as a source
of uncertainty. However, in order to build such a tool,
a new implementation of XDGMM that allows for the
conditioning of the model is needed.

The rest of this paper is laid out as follows. In §2 we
describe the XDGMM class5 (Holoien et al. 2016a) and
the new functionality that differentiates it from existing
XDGMM fitting tools. In §3 we describe the empiri-
ciSN supernova prediction tool6 (Holoien et al. 2016b)
and demonstrate its functionality. Finally in §4 we sum-
marize the capabilities of our software and describe some
of the preliminary results obtained using empiriciSN.

2. XDGMM

As described in §1, XDGMM fitting methods are use-
ful tools for performing density estimation of noisy data,
a situation that occurs often in astronomy. When we
began our research into building a tool to predict the
properties of supernovae based on observed host galaxy
properties, XDGMM modeling seemed to be a natural
way to use machine learning to fit the underlying dis-
tributions of the numerous host and supernova proper-
ties in our dataset. Furthermore, by conditioning such a
model on known host properties, we can create a model
based solely on the supernova properties of interest, and
sample from this conditioned model to predict super-
nova properties for a given host. However, existing tools,
such as AstroML7 (Vanderplas et al. 2012; Ivezic et al.
2015) and the Extreme-Deconvolution tool8 from
Bovy et al. (2011), provided XD fitting methods but did
not have the ability to condition the model that we re-
quired. In addition, though the AstroML implementa-
tion of XDGMM utilizes some of the functionality of the
scikit-learn GMM class (Pedregosa et al. 2011), nei-
ther tool implements the scikit-learn algorithms that
could be used to perform cross-validation (CV) tests to
optimize model parameters. Because the ability to con-
dition and perform cross-validation on XDGMM models
could be useful for other astronomical studies, we decided
to first build our own implementation of XDGMM that
provides access to both the AstroML and Extreme-
Deconvolution fitting methods and implements the
functionality we needed to build a supernova fitting tool
and make it available to the public.

2.1. Fitting Methods

Both the AstroML and Bovy et al. (2011) fitting al-
gorithms are able to successfully fit a Gaussian Mixture
Model using extreme deconvolution, and improving or
editing their methods was not one of our goals with this
project. However, as the two tools use slightly different
algorithms to perform fits, we provided the ability for
the user to select between the two when using XDGMM.
Brief descriptions of each method are provided here.

5 The version of XDGMM used in this paper is available
at https://github.com/tholoien/XDGMM/tree/v1.1 and has DOI
https://doi.org/10.5281/zenodo.268532

6 The version of empiriciSN used in this paper is available at
https://github.com/tholoien/empiriciSN/tree/v1.0 and has DOI
https://doi.org/10.5281/zenodo.163859

7 http://www.astroml.org/index.html
8 https://github.com/jobovy/extreme-deconvolution

AstroML is an open-source Python module for ma-
chine learning and data mining and provides a wide range
of statistical and machine learning tools for analyzing as-
tronomical datasets (Vanderplas et al. 2012; Ivezic et al.
2015). One of the provided tools is an implementation of
XD Gaussian Mixture Modeling, and is based on the al-
gorithms described in Bovy et al. (2011). Though slower
than the Bovy et al. (2011) Extreme-deconvolution
tool, which makes use of OpenMP for parallelizing the
model fitting process, the AstroML implementation of
XDGMM provides a clean user interface similar to that of
the GMM implementation of scikit-learn (Pedregosa
et al. 2011), and we based our interface for XDGMM on
that of the AstroML tool. We also use the AstroML
implementation of several of the methods used to score
datasets under an existing model.

The utility of extreme deconvolution for density esti-
mation of astronomical datasets was first described in
Bovy et al. (2011), and the Extreme-Deconvolution
tool provided by the authors of that manuscript was one
of the first tools to implement XDGMM fitting meth-
ods. Though Python, R, and IDL wrappers are avail-
able, Extreme-Deconvolution is built in C and uses
OpenMP to parallelize the fitting method. As such,
it provides a significantly faster fit than the AstroML
XDGMM tool.

Though the Extreme-Deconvolution provides
faster performance, we elected to make the AstroML
fitting method the default fitting method of XDGMM
for two reasons. First, the AstroML implementation
provides more stable fit results, and is less prone to is-
sues resulting from outlying data than the Bovy et al.
(2011) tool. Second, as a Python module, AstroML
is easily installable on most systems, while Extreme-
Deconvolution requires a more detailed installation,
as C compilers and the availability of OpenMP vary
from system to system. Because of this, while As-
troML is required for installing XDGMM, Extreme-
Deconvolution is not, and is only imported if the user
attempts to perform a fit using the Bovy et al. (2011)
method.

Listing 1 shows an example of how to create a new
XDGMM object, fit a model to a dataset, and sample
data from the model. The fitting and the sampling in-
terface was purposefully built to mimic the AstroML
XDGMM interface so that our XDGMM class could be
substituted for theirs in existing code.

Listing 1—An example of the fitting interface for XDGMM.
We purposefully built this to use the same interface as the
AstroML XDGMM tool.

from xdgmm import XDGMM
xd = XDGMM()
X, Xerr = (data, errors)
xd.fit(X, Xerr)
xd.sample(2000)

2.2. Component Selection

When fitting a Gaussian Mixture Model to a dataset,
it is necessary to choose the number of Gaussian compo-
nents to use in the model. If the number of components
in the model is too small, the model will be too simplis-
tic, and will underfit the data, but if the number of com-

3

ponents is too large, the model will be too flexible and
will overfit the data. In either case, a subsequent sam-
ple drawn from the model will not accurately represent
the dataset used to train the model. In addition, with
large datasets and large numbers of parameters being fit,
the computation costs will rapidly become expensive, re-
sulting in very long fit times. Thus, it is important to
choose a number of components that can fit the data well
without overfitting and which doesn’t place unnecessary
stress on computational resources.

2.2.1. Bayesian Information Criterion

One method for choosing the correct number of com-
ponents for the model is to use the Bayesian Information
Criterion (BIC; Schwarz 1978). The formula for the BIC
is given in Equation 1 below.

BIC = −2 log L̂+ k log n (1)

Here, L̂ is equal to the maximized likelihood function
of the model being scored, k is the number of free param-
eters being estimated (e.g., the number of components in
a GMM), and n is the number of observations used to
fit the model. If the BIC is calculated for a number of
different models that each use a different number of free
parameters, the one with the lowest BIC is the preferred
model. Since it incorporates both a likelihood score and
a component that incorporates the number of free pa-
rameters, it penalizes models with too many degrees of
freedom, which can help avoid overfitting.

Our XDGMM class computes the BIC score for the
current model using a specific dataset in the same way
that the scikit-learn GMM class computes the BIC,
except that our class can also account for uncertainty on
the input data when computing the BIC. (If the user in-
puts a covariance matrix with a dataset, the XDGMM
class will incorporate these uncertainties into the model
covariance matrix before calculating the BIC.) We have
also provided a function that can compute the BIC for
a given dataset for a range of numbers of components,
allowing the user to compare different models and se-
lect the ideal one. This functionality is demonstrated in
Listing 2.

Listing 2—A demonstration of the BIC test function, which
allows the user to compare different XDGMM models with
different numbers of components.

param range = np.array([1,2,3,4,5,6,7,8,9,10])
bic, optimal n comp , lowest bic =

xd.bic test(X, Xerr, param range)

In the example code of Listing 2, the XDGMM object
computes the BIC score for the data and uncertainties
contained in the X and Xerr arrays for a number of
components ranging from 1 to 10. It then returns the
bic array, which contains the score for each model, the
optimal number of components (defined as the number of
components in the model with the lowest BIC score), and
the lowest BIC score. These results can be used for direct
comparison, or can be plotted to see the results visually.
In Figure 1, we show the BIC results for the AstroML
XDGMM demo dataset (Vanderplas et al. 2012). The
minimum BIC value occurs with 5 Gaussian components
in the model, indicating that models with higher numbers
of components overfit the data.

1 2 3 4 5 6 7 8 9 10

Number of components

15800

16000

16200

16400

16600

16800

17000

17200

B
IC

sc
or

e

*

Fig. 1.—BIC scores computed by XDGMM using the As-
troML XDGMM demo dataset (Vanderplas et al. 2012) for
different models with the number of components ranging from
1 to 10. The optimal number of model components based on
the BIC is 5.

2.2.2. Machine Learning

An alternative way to determine the number of com-
ponents is to perform a cross-validation test with a range
of numbers of components. In order to allow the user to
perform such a test, we have made the XDGMM class
a subclass of the scikit-learn BaseEstimator class
and implemented all the scikit-learn functions nec-
essary for the standard scikit-learn cross-validation
tools. We use the mean log-likelihood of a dataset under
the given model as the score for cross-validation. Because
XDGMM extends BaseEstimator, a cross-validation
test can be performed by simply passing a XDGMM ob-
ject and a dataset into the scikit-learn cross-validation
functions. A demonstration of computing a validation
curve using the same AstroML demo dataset for 1 to
10 components is given in Listing 3.

Listing 3—A demonstration of a cross-validation test per-
formed using the scikit-learn validation curve function.

param range = np.array([1,2,3,4,5,6,7,8,9,10])
shuffle split = ShuffleSplit(3, test size=0.3)
train scores ,test scores =

validation curve(xd, X=X, y=Xerr,
param name=

"n components",
param range=param range ,
n jobs=3,
cv=shuffle split)

It is important to note the trick used to pass errors to
the scikit-learn methods. Normally for unsupervised
learning you would only pass an X “design matrix” array,
and not a “target” y array, to the validation curve
method. However, an error array must be passed to the
XDGMM fit method, and validation curve simply
uses its y input as the second argument for the fit func-
tion. Thus, by passing in the error array as the “target”
array, we can pass it to our fit function so that it can
be used in fitting the data.

Figure 2 shows the results of the cross-validation test
above. The cross-validation test prefers the maximum
number of components (10) that we allowed for the model

4

Fig. 2.—Results of the cross-validation test performed in
Listing 3 on the AstroML demo dataset (Vanderplas et al.
2012). The red line shows the mean training scores for each
number of components in the test, and the green line shows
the mean scores for the test sample. The shaded regions indi-
cate the standard deviation for each. The cross-validation test
prefers a maximum number of components for this dataset.

(and in fact, the score continues to rise as more compo-
nents are added beyond 10). This is a result of the par-
ticular dataset being fit: the likelihood of the data being
fit increases with more components, and there is enough
structure to the data that even with a large number of
Gaussians, the trained model continues to be a good pre-
dictor of new data. However, increasing the number of
components in the model rapidly causes the fit algorithm
to become computationally expensive, especially for the
astroML algorithm. While a model with a large number
of components may be mathematically superior, in most
cases the BIC seems to provide a way to find a model
that is “good enough” to fit the data well, while also
keeping the number of components at a value that keeps
the computation of new fits reasonable. We recommend
trying both tests with a given dataset to see if the re-
sults differ substantially before settling on a choice for
the number of components to use when fitting a model.

Once we know the optimal number of components to
use, it is straightforward to fit a model to the data
(see Listing 1). Figure 2 replicates the results of the
AstroML Extreme Deconvolution example (Vanderplas
et al. 2012) using our XDGMM code. We first create a
“true” distribution and a “noisy” distribution using the
Vanderplas et al. (2012) demo code, then we fit a model
to the noisy distribution using 5 Gaussian components
and sample 2000 data points from the model. We can
see that even with only 5 components, the distribution
sampled from the XDGMM model is able to replicate the
true data sample despite being fit using the “measured”
noisy distribution. This demonstrates why extreme de-
convolution is such a powerful tool for modeling datasets
such as this.

2.3. Conditioning the Model

A primary motivation behind this implementation of
extreme deconvolution was to develop a tool that can be
used to predict model parameters based on known values
of other parameters. To do this, the model must be con-
ditioned on the known parameter values, after which we
can then sample values of the non-conditioned parame-

Fig. 3.—Replication of the results of the AstroML Extreme
Deconvolution example (Vanderplas et al. 2012). Top Left:
the “true” distribution of the demo dataset. Top right: the
“noisy” distribution of the demo dataset, meant to simulate
observed data points. Bottom right: The 5 Gaussian com-
ponents from the XDGMM model after fitting the model to
the data. Bottom left: 2000 data points sampled from the
XDGMM model. The resampled dataset closely matches the
true distribution, despite being fit using the noisy distribu-
tion.

ters from the conditioned model. Neither the AstroML
nor the Bovy et al. (2011) implementations of XDGMM
contain this functionality, and we have implemented it in
our software.

First, we briefly discuss the mathematics of a condi-
tional Gaussian mixture model. The probability distri-
bution for a Gaussian mixture with K components is
given by (Bishop 2006; Rasmussen & Williams 2006):

p (x) =

K∑
k=1

πkN (x | µk,Σk) (2)

Here, πk, µk, and Σk are the mixing coefficient
(weight), means, and covariances of the k-th Gaussian
component. Given the jointly Gaussian vectors xA and
xB and the above Gaussian mixture, we have:

x =

(
xA

xB

)
, µk =

(
µkA

µkB

)
,

Σk =

(
ΣkAA ΣkAB

ΣkBA ΣkBB

)
, Λk = Σ−1k

The conditional distribution of xA given xB for the
k-th Gaussian component is given by (Bishop 2006):

pk (xA | xB) =
pk (xA,xB)

pk (xB)

= N
(
xA | µkA|B ,Λ

−1
kAA

) (3)

The conditional mean vector of the k-th Gaussian com-
ponent is given by:

µkA|B = µkA −Λ−1kAAΛkAB (xB − µkB) (4)

5

Finally, the k-th conditional mixing coefficient is given
by:

π′k =
πkN (xB | µkB ,ΣkBB)∑

kN (xB | µkB ,ΣkBB)
(5)

Thus, the conditional probability distribution for the
whole GMM is given by:

p (xA | xB) =

K∑
k=1

π′kpk (xA | xB) (6)

The resulting conditioned GMM has the same number
of Gaussian components as the original GMM, but has
fewer dimensions, given by the number of dimensions in
xA. We can then use this conditioned model to sample
values for the parameters in xA given the known quanti-
ties in xB .

When using XDGMM as a prediction tool for astro-
nomical quantities, it may often be the case that the
user wants to condition the model on parameter measure-
ments that have measurement uncertainties. Condition-
ing a model on a particular value of xB=xB,0 is equiv-
alent to marginalizing out xB assuming a delta function
PDF for it. If we include uncertainties on the measure-
ment of xB in the form of a covariance matrix CB , we can
incorporate these uncertainties into the conditioning by
adding CB to the covariance array of the unconditioned
GMM prior to conditioning the model. The result will
still be a GMM, but its components will be i) broader,
since the extra covariance CB will end up being added to
the component covariance matrix Λ−1kAA, and ii) weighted
differently, since the weights in Equation 5 are themselves
functions of xB .

We have built two different but equally straightforward
interfaces for conditioning the model. In order to con-
dition the model, the XDGMM object needs to be in-
formed which of the parameters of the model (e.g., x
and y in the sample dataset) have values on which to
condition the model. The XDGMM object stores the
parameters in a specific order based on their order in the
dataset that was used to fit the model—for example, x is
stored first and y second for the demo dataset used here,
since the data was passed to the model as (x, y) pairs.
In some cases, such as this simple demo, it may be easy
for the user to remember the order of the parameters,
and we have built one conditioning interface to take ad-
vantage of such cases. Listing 4 demonstrates this first
interface. In this conditioning method, the user passes
one or two arrays to the condition function: one array
containing values for each parameter (either a value for
conditioning or NaN if the parameter is not being used
for conditioning), and an optional second array contain-
ing uncertainties on the parameter values.

However, we recognize that in many cases, the user
may be fitting large datasets with many parameters, and
maintaining the proper order for conditioning may be
difficult. For this reason, the XDGMM object also al-
lows the user to label the parameters in the model. This
can be done manually, by setting the XDGMM object’s
labels array, or by fitting data stored in a Pandas
DataFrame object. If the data being fit are stored in a
Pandas DataFrame and the columns are labeled, the

Fig. 4.—Probability distribution of x from the demo model
conditioned on y = 1.5 ± 0.05. The gray ellipses show the
5 components of the original XDGMM model (the bottom-
right panel of Figure 3), the blue line shows the value of y used
to condition the model, and the red line shows the resulting
distribution of x (right scale). Note how conditioning the
model changes the weights and means of the components of
the model, and how the measured value of y essentially rules
out several model components.

labels will be automatically stored in the XDGMM ob-
ject when the data are fit.

Listing 4—A demonstration of the first interface for model
conditioning the model using the demo dataset and the known
value y = 1.5 ± 0.05. In this method, the user knows the in-
dices of the parameters to use for conditioning and passes
arrays for the parameter values and uncertainties to the con-
dition function.

fixed X = np.array([np.nan, 1.5])
unc = np.array([0.0,0.05])
new xd = xd.condition(X input=fixed X ,

Xerr input=unc)

If the labels have been set, the user can then use a
dictionary object which links the labels for parameters
to condition the model on with (value, uncertainty) pairs
to condition the model. In Listing 5 we demonstrate this
functionality. Here we label the parameters ‘x’ and ‘y’
and then pass a dictionary containing only a value for
y to the condition function. The conditioned model
that results will be the same regardless of the method
used for conditioning; the different interfaces are simply
supplied so that the user can choose whichever method
they prefer.

Listing 5—A demonstration of the second interface for
model conditioning. Labels for the different parameters in
the model are first set by the user, and then a dictionary
object is used for conditioning.

xd.labels = np.array([’x’,’y’])
fixed = {’y’:(1.5,0.05)}
new xd2 = xd.condition(X dict=fixed)

Once the model has been conditioned, the resulting
model will have the same number of components as the
original model but will have fewer dimensions, as it is
now a model only for the parameters that were not con-
ditioned out. In the code above, we have conditioned the

6

Fig. 5.—Top: Distribution of “observed” (x, y) pairs sam-
pled from the demo XDGMM model (red) compared with
(x, y) pairs that predict an x value for each observed y value
(blue). Though a predicted x value for a given y value may
not exactly match the true x value, the overall distribution is
the same, which indicates that the XDGMM model functions
properly as a prediction tool. Bottom: The same plot with
the x values predicted by a random forest method. Since the
random forest model was trained on the noisy demo data and
does not incorporate data uncertainty, the x values it predicts
have significantly more scatter than the x values predicted by
XDGMM.

demo model based using y = 1.5 ± 0.05, and the result-
ing model is a 5 component GMM for the x parameter.
Figure 4 shows the resulting probability distribution of
x. Conditioning the model changes the weights, means,
and covariances of the components of the model. The
constraint on y essentially rules out several components
of the original model, significantly reducing their weight
in the conditioned model.

As stated before, one potential use of a conditioned
model is to create a “prediction engine” that can predict
some parameters using an XDGMM model conditioned
on known values of other parameters. To demonstrate
this, we sampled 1000 data points from our original, un-
conditioned model to create a dataset to be compared
with our predictions. This represents a new “observed”
dataset for the x and y parameters. Now if we had only
observed the y values from this dataset and wanted to
predict a likely x value for each y value, we can con-
dition the model on each of these y values in turn and
draw a predicted x value from the conditioned model.
In reality, XDGMM would likely be used to predict val-
ues for parameters that have not been measured, so this
provides a good way to test whether the tool is function-
ing properly—these predicted x values should follow the
same distribution of the observed x values—and Figure 5
shows that this is the case. Though the predicted x for a
single given y value may not match the observed x value,

the fact that the overall distributions match indicates
that XDGMM provides an accurate prediction tool.

Figure 5 also compares the performance of our
XDGMM model with a standard random forest pre-
dictive method. We fit a random forest model to the
same noisy dataset used for the demo, and then used this
model to predict x values for the same y values used for
the XDGMM test. Since the random forest model was
fit on the noisy data and does not handle data uncertain-
ties, it is unable to replicate the tight “true” distribution
of our test dataset. While this is a simple example and
there are other predictive machine learning methods that
could potentially model the data, this demonstrates that
XDGMM has capabilities, such as accounting for corre-
lations in predicted values and handling noisy or missing
data, that other methods do not.

Throughout this Section we have used the AstroML
Extreme Deconvolution example dataset (Vanderplas
et al. 2012) because it is a simple two-dimensional dataset
that makes the capabilities of XDGMM (e.g., fitting a
model to a dataset, sampling from a model, and condi-
tioning a model) easy to visualize. Using this dataset also
allows us to compare our XDGMM class directly with
the AstroML implementation. However, this dataset is
very simplistic, and could likely be modeled equally well
with a number of different modeling techniques. In or-
der to provide an example of a more realistic use case for
an XDGMM model, Figure 6 shows the results of fitting
a 12-component XDGMM model to stellar data from
SDSS Stripe 82 (Ivezić et al. 2007).

This dataset, which is also used in the AstroML
Extreme Deconvolution examples, is a five-dimensional
dataset consisting of the g-band magnitude and u − g,
g − r, r − i, and i − z colors of roughly 13,000 stars
from the SDSS Stripe 82 Standard Star Catalog (Ivezić
et al. 2007). Magnitudes derived from single epoch ob-
servations are used as a low signal-to-noise input sample
for our XDGMM model, and magnitudes derived from
multiple observations (and thus with smaller scatter) are
used as a comparison sample. Figure 6 shows two dimen-
sions, the g − r and r − i colors, of the five dimensions
that were fit. The high signal-to-noise data is shown in
the top-left panel and the low signal-to-noise input data
is shown in the top-right panel. The XDGMM model
was fit using a 12 Gaussian components and the Bovy et
al. fitting method, with the resulting Gaussian compo-
nents shown in the bottom-right panel. The bottom-left
panel shows the distribution of an equal number of points
sampled from the fit model, and as the figure shows, the
points sampled from the resulting distribution have scat-
ter comparable to the Standard Star Catalog data despite
being fit to more noisy input data. This example shows
that XDGMM can be a powerful tool for modeling the
underlying distributions of noisy, observed astronomical
datasets, and our XDGMM model could then be con-
ditioned to, for example, sample likely star colors given
only a g-band magnitude.

3. EMPIRICISN

It is well established that supernova properties, such
as light curve color and shape, have a dependence on
their host environments (e.g., Modjaz et al. 2008; Sul-
livan et al. 2010; Childress et al. 2013; Galbany et al.
2014; Graur et al. 2016a,b). Planting simulated super-

7

Fig. 6.—Replication of the results of the AstroML Ex-
treme Deconvolution of Stellar Data example (Vanderplas
et al. 2012), using an XDGMM object to model stellar mag-
nitudes and colors using data from the SDSS Stripe 82 Stan-
dard Star Catalog (Ivezić et al. 2007). The figure shows two
dimensions, the g− r and r− i colors, of the five-dimensional
dataset. Top Left: high signal-to-noise magnitudes calcu-
lated from multiple epochs of observation. Top right: low
signal-to-noise magnitudes taken from single epoch observa-
tions. Bottom right: The 12 Gaussian components from the
XDGMM model after fitting the model to the data. Bot-
tom left: an equal number of data points sampled from the
XDGMM model. The resampled dataset has a tight scatter
similar to that of the multi epoch data, despite being fit using
the single epoch observations.

novae in real or simulated imaging data has a variety of
uses—for instance, fake supernovae can be used to test
the detection efficiency of supernova searches, which is
a necessary quantity to know for calculating supernova
rates, and simulated data including supernovae can be
used to train data processing and automated source de-
tection pipelines for future surveys like LSST. Modeling
the distribution of supernovae within a cosmologically
motivated galaxy distribution can also be used to test
how the connection between their properties and the un-
derlying structure can impact various observables.

It is important to ensure that supernovae simulated
for these purposes have properties that accurately match
their environments and are consistent with each other,
otherwise the results of these studies wouldn’t be appli-
cable to real-world conditions. However, many of the
known supernova-host correlations are based on phys-
ical parameters of the host—e.g., star formation rate,
mass, metallicity—which must be inferred using theoret-
ical models from observations (e.g., Sullivan et al. 2010;
Childress et al. 2013; Graur et al. 2016a,b). Though
many of these theories are fairly well-established, this
introduces additional uncertainty into the selection of su-
pernova properties.

In this section we outline empiriciSN, a tool for pre-
dicting realistic Type Ia supernova (SN Ia) properties
based only on observed host galaxy properties. Our goal
in creating empiriciSN was to provide a model trained
on observed empirical host and supernova properties,
thus eliminating the need for using theoretical models
to infer the host galaxy’s physical properties. As this re-

quires calculating correlations between many supernova
and host properties and the subsequent conditioning of
the model, it provides a real-world use for our XDGMM
class. Our default model is trained using supernova and
galaxy properties that can be generated by SNCosmo
(Barbary 2014) and CatSim (Connolly et al. 2014) so
that it can be used for generating realistic supernovae
for LSST Twinkles9 simulations (LSST DESC, in prep.).
These include the SALT2 Type Ia light curve parame-
ters (x0, x1, and c; Guy et al. 2007), the host redshift,
the 10 rest-frame host colors obtainable with ugriz mag-
nitudes, the separation of the supernova from the host
nucleus in units of the host effective radius, and the lo-
cal surface brightness at the location of the supernova
in all 5 ugriz filters. These host properties were chosen
because they are all observable properties that do not
require theoretical modeling, and are known to correlate
with physical properties of the host environment that can
affect supernova parameters.

3.1. Input Catalogs

In order to model the 20 host and supernova properties
listed above, we require a large dataset with consistent
measurements of the SALT2 parameters and consistent
host photometry. We decided to use a sample of super-
novae taken from the Supernova Legacy Survey (SNLS;
Astier et al. 2006; Sullivan et al. 2011) and the Sloan
Digital Sky Survey (SDSS; York et al. 2000) Supernova
Survey to build a model for our data.

All SALT2 light curve parameters for the SNLS su-
pernovae and a portion of the parameters for our SDSS
supernovae are taken from the Joint Light-curve Analy-
sis (JLA; Betoule et al. 2014), a project to analyze light
curves of supernovae discovered by SNLS, SDSS, and
other sources. This includes 242 spectroscopically con-
firmed Type Ia supernovae from SNLS and 374 spectro-
scopically confirmed Type Ia supernovae from the SDSS
SN survey. Because the JLA catalog provides a peak
magnitude rather than the x0 SALT2 parameter, we used
SNCosmo to fit the JLA light curves ourselves assuming
the redshifts, x1, and c parameters provided, and calcu-
lated x0 in this way. In order to increase the size of our
sample to be large enough to model, we also include the
remaining spectroscopically confirmed SNe Ia from the
SDSS SN search as well as the photometric SNe Ia with
a spectroscopic host redshift from (Sako et al. 2014). We
include the photometric SNe Ia because doing so provides
us with an additional 906 SNe, though we acknowledge
that some of these may not actually be Type Ia. Sako
et al. (2014) provide the x0 SALT2 parameter, but since
they use a slightly different model than the JLA model,
we correct the Sako et al. (2014) X0 values by a fac-
tor of 10(0.108) to make them consistent with the values
measured from the JLA light curves.

We then searched the coordinates of all host galax-
ies from our SN samples in the SDSS Data Release 12
(DR12; Alam et al. 2015) and obtained model magni-
tudes, model fluxes, effective radii, and morphology for
all galaxies that were detected in DR12 data. This re-
duced our sample to 159 supernovae from SNLS and 1273
supernovae from SDSS. For the purposes of calculating

9 https://github.com/LSSTDESC/Twinkles

8

local surface brightness, all galaxies in the sample are
considered to have either an exponential or a de Vau-
couleurs surface brightness profile, and we use whichever
model is considered more likely by the SDSS pipeline in
the r-band as the model for each galaxy. The r-band
effective radius of the best-fit surface brightness profile
was used to convert the separation from the host nucleus
measured in Betoule et al. (2014) and Sako et al. (2014)
from arcseconds to units of R/Re.

The host galaxy model magnitudes are magnitudes
generated for each filter assuming the same best-fit sur-
face brightness profile and incorporate a convolution with
the image PSF to account for PSF effects. The magni-
tudes have been corrected for Galactic extinction and
corrected to rest-frame using kcorrect (Blanton &
Roweis 2007) before being used to calculate host col-
ors. The model magnitudes are ideal for unbiased galaxy
color measurements, and while other datasets may not
measure galaxy magnitudes and colors in the same way,
we believe they should still be able to obtain reasonable
results from our default model.

Though we have taken steps to make our SN and host
galaxy sample as consistent as possible, we acknowledge
that both SN datasets were obtained after applying selec-
tion criteria, particularly the JLA sample, and we have
not incorporated any corrections into our model to cor-
rect for these selection effects. Thus the distribution
probability of SN parameters obtained by empiriciSN
combines both the true underlying distribution in na-
ture and the detection efficiencies of each survey, and it
may be necessary for the user to correct for the detec-
tion efficiency when using our default model to simulate
SNe. We also caution that, though the dataset spans a
wide range of SN and host galaxy properties, it is pos-
sible that certain galaxy types (e.g., low-mass galaxies)
are underrepresented and therefore not well-modeled by
the default model. We will be taking steps to quantify
potential shortcomings of the default catalog in a future
release of the software.

However, despite the survey effects present in our de-
fault datasets, when combined they still provide us with
a fairly large dataset with a wide range of SN and host
galaxy properties. Furthermore, we have built empiri-
ciSN to be easily updated with additional or different
catalogs by the user; as long as the data files are format-
ted in a manner similar to our default dataset, an Em-
piricist object can fit a model to any number of super-
nova and host properties. This allows the user to make
adjustments to the provided SDSS/SNLS dataset (such
as using fluxes instead of magnitudes, for their more
Gaussian uncertainties), extend the model to include ad-
ditional catalogs, or even to model different types of su-
pernovae, in the future.

Testing using the BIC test described in §2.2.1 indicated
that the preferred number of Gaussian components for
our dataset was 6, and we have provided a default 6-
component model that is available with the empiriciSN
software. The default model also has built-in labels for
each of the SN and host parameters so that these can be
used for conditioning, as described in §2.3.

3.2. Demo/Results

The empiriciSN class object is called Empiricist,
and here we demonstrate some of its basic functional-

ity. If using the default model fit to our SDSS and SNLS
data sample, or another model that has already been fit
to a dataset, it is straightforward to declare a new Em-
piricist object and read in the existing model, as shown
in Listing 6. A model can be loaded upon creation of
an Empiricist object by passing the model file name to
the model file argument of the constructor. Alterna-
tively, Listing 7 demonstrates how to run a test for the
optimal number of components and fit a new model to a
dataset. The fit model function always saves the newly
fit model to a file, either with a the default name ‘em-
piriciSN model.fit’ or with a file name passed into the
function’s filename argument. After fitting a model,
that model is stored in the Empiricist object and can
be used for SN prediction without the need to load the
model again.

Listing 6—An example of creating a new Empiricist object
and reading in our pre-computed default model. The Em-
piricist object can also be created with the model already
loaded by passing the file name to the model file argument
of the constructor.

from empiriciSN import Empiricist
emp = Empiricist()
emp.read model(’default model.fit’)

Listing 7—A demonstration of the interface for testing for
the optimal number of components to use for a dataset and
fitting a model to that dataset. The component test func-
tion’s third argument is the range of values for the number
of Gaussian components to test using the BIC test built into
the XDGMM model; in this case we use the values 1 − 8.
The newly fit model is automatically saved to a file with the
default name ‘empiriciSN model.fit’, or with a name passed
into the fit model function’s filename argument.

X, Xerr = (data, errors)
comp range = np.array([1,2,3,4,5,6,7,8])
bics, optimal n comp , lowest bic =

emp.component test(X=X, Xerr=Xerr,
component range=

comp range)
emp.fit model(X=X, Xerr=Xerr,

n components=optimal n comp)

If using the default model, the local surface brightness
at the location of the supernova in each filter are 5 of the
host properties necessary for sampling a realistic SN for
a host. However, the separation of the SN from the host
nucleus is one of the properties being fit, and the local
surface brightness cannot be calculated until a location
has been chosen. Because of this, the prediction of a real-
istic SN proceeds in two steps: first, a position is selected
based on a subset of host parameters, and then the local
surface brightness is calculated and the SALT2 parame-
ters of the SN are sampled from a model conditioned on
the full range of host parameters.

In order to select a location for a SN, the user can
condition on any subset of the parameters used to fit
the model. The indices of the parameters to condition
on must be passed as an argument to the get logR
function, as must the index of the logR/Re parameter.
Any indices may be used except the first three, which
are assumed to be the three SALT2 parameters for the
SN. The Empiricist object will condition the XDGMM

9

model using the data passed into the function and then
return a value of logR/Re sampled from the conditioned
model. Uncertainties on the quantities being used for
conditioning the model may be used, but are not re-
quired. Listing 8 demonstrates this functionality, using
the host galaxy redshift and 10 host colors to condition
the model and select a location for the SN.

When using our default model, the get local SB
function can be used to select a local surface brightness
at the location of the SN once a location has been sam-
pled for a given host. The host data passed into this
function must be an array of 21 surface brightness pa-
rameters. The first index should be the host Sersic in-
dex (1 for an exponential profile, 4 for a de Vaucouleurs
profile), and this should be followed by sets of magni-
tude, magnitude uncertainty, effective (half light) radius
in arcseconds, and radius uncertainty for each of the 5
ugriz filters. The function returns two arrays, one with
the local surface brightness in units of magnitudes per
square arcsecond for each filter and the other containing
the uncertainties on the local surface brightnesses. The
magnitudes are assumed to be K-corrected and corrected
for Galactic extinction, as this is what the default model
was trained on. Listing 9 demonstrates this.

Listing 8—A demonstration of selecting a location for a SN
given a subset of host parameters using our default model.
In this case, the indices used for conditioning represent the
redshift and the 10 ugriz colors of the host. The X and Xerr
arrays represent arrays of the host redshift and colors and
uncertainties on these quantities, respectively.

X, Xerr = (data, errors)
cond ind =

np.array([3,5,6,7,8,9,10,11,12,13,14])
logR = emp.get logR(cond indices=cond ind ,

R index=4, X=X, Xerr=Xerr)

Listing 9—A demonstration of calculating the local sur-
face brightness of the host, if using our default model. The
SB params array is assumed to be of the form described in
the text. The logR value is assumed to have been fit using
get logR as demonstrated in Listing 8.

SB params = [params for host]
SB, SB err =

emp.get local SB(SB params=SB params ,
R=logR)

Finally, once we have a location and local surface
brightnesses, it is straightforward to sample a SN for the
host galaxy using the get SN function. In Listing 10 we
demonstrate how to select a single SN for a given host.
The resulting array contains the SALT2 x0, x1, and c
parameters for the sampled SN.

Figure 7 shows a plot of the measured SALT2 param-
eter distributions from our test SN sample in black, the
SALT2 parameters for 482 SNe sampled from our un-
conditioned fitted model in red, and the distribution of
parameters for 1000 SNe that were sampled for a single
host galaxy in our sample in blue, with location and local
surface brightness calculated as described above. As can
be seen in the Figure, the distribution of supernova pa-
rameters sampled from the unconditioned model matches
that of the actual distribution quite well, given the small
numbers involved. Conversely, the distributions for the

Fig. 7.—Distributions of the three SALT2 SN parameters
measured in our full 482-object test dataset (black) compared
to the parameters for 482 SNe sampled from our uncondi-
tioned, fitted model (red) and 1000 SNe drawn using empiri-
ciSN for a single set of host galaxy parameters (blue). The
SN location and local surface brightness were also sampled
using empiriciSN, as described in Listings 8 and 9. The
distributions of the various properties taken from the uncon-
ditioned model match the true distributions well, while they
can be very different for a single position in a single host than
what they are for the full sample.

various properties can be quite different for a single po-
sition in a single host than what they are for the full
sample, which is the behavior we expect.

Listing 10—The supernova selection interface for the Em-
piricist object. Here we combine the radius and the host
properties fit in the previous two Listings with our initial
magnitude and redshift arrays to create an array with all the
host properties needed to condition the model and sample
supernova properties. Here we are using the array index ver-
sion of XDGMM conditioning as opposed to the dictionary
version.

host params =
np.array([np.nan,np.nan,np.nan])

host params = np.append(X[0],logR)
host params = np.append(host params ,X[1:])
host params = np.append(host params ,SB)
host err =

np.append(np.array([0.0,0.0,0.0]),
Xerr[0])

host err = np.append(host err , 0.0)
host err = np.append(host err , Xerr[1:])
host err = np.append(host err , SB err)

predicted SN = emp.get SN(X=host params ,
Xerr=host err ,
n SN=1)

For a more detailed walkthrough of the empiriciSN
software, please see the demo notebook on the empiri-
ciSN github page.

10

4. DISCUSSION

In this paper we have summarized the capabilities
of two new pieces of Python software that implement
Extreme Deconvolution Gaussian Mixture Modeling for
density estimation in astrophysical contexts.
XDGMM is a new implementation of XDGMM that

extends existing XD algorithms and has several new ca-
pabilities that are not present in any previously existing
XDGMM implementation. It allows the user to choose
between either the AstroML (Vanderplas et al. 2012;
Ivezic et al. 2015) or the Extreme-Deconvolution
code of Bovy et al. (2011) for performing XDGMM fits
to data, and uses the AstroML interface for fitting and
sampling so that existing code that uses AstroML does
not need to be modified. It extends the scikit-learn
BaseEstimator class so that cross-validation methods
will work, and also has a function for computing the
Bayesian Information Criterion of a model given a certain
dataset, in order to allow the user to test different model
parameters. Finally, and most crucially, XDGMM mod-
els can be conditioned on a given subset of data, and the
conditioned model can then be used to sample the re-
maining parameters. This allows our XDGMM class
to function as a prediction tool, which will have a wide
variety of astronomical applications. XDGMM is eas-
ily extendible to include additional implementations of
XDGMM methods or even different types of fitting so-
lutions altogether, such as a Dirichlet process GMM.
As long as the basic distribution remains a multivariate
Gaussian, our machine learning and conditioning algo-
rithms should still function as intended.
empiriciSN is an example use of XDGMM as a pre-

diction tool and is designed to predict realistic supernova
parameters for a given set of host galaxy parameters. We
have built an XDGMM model based on 4 Type Ia super-
nova parameters (The SALT2 x0, x1, and color parame-
ters and the location of the supernova in the host galaxy)
and 16 host galaxy parameters (redshift, ugriz colors,
sersic index, and ugriz local surface brightness at the
location of the SN) that is trained on a dataset compris-

ing 159 supernovae from SNLS and 1273 supernovae from
SDSS. Given the redshift, ugriz magnitudes, and surface
brightness profiles for a galaxy, empiriciSN can select a
location of a supernova relative to the effective radius of
the galaxy, compute the local surface brightness in all 5
ugriz filters, and sample realistic SALT2 parameters for
the supernova given the host properties using this default
model. The user can also train a new model based on a
new dataset, if the default dataset is not desired, or to
change the parameters used in the model. This makes it
capable of performing similar predictions for other types
of supernovae, or performing simpler, catalog level sim-
ulations, leaving out the SN position and local surface
brightness information. empiriciSN was primarily built
to be used for planting realistic supernovae in simulated
survey data, and is already being implemented for this
purpose to model LSST supernovae. In the near future
we also intend to combine this tool with realistic large
area galaxy mock catalogs, with potential applications
for various current and future surveys including DES,
DESI, and LSST.

Both XDGMM and empiriciSN are open source
projects. We welcome further contributions and collab-
oration from the community.

ACKNOWLEDGMENTS

We thank Rahul Biswas and Bob Nichol for useful dis-
cussion and feedback, and the three referees (domain re-
viewer, statistics editor and data editor) for their positive
and constructive feedback, which led to improvements to
both the paper and the code. TW-SH was supported by
the DOE Computational Science Graduate Fellowship,
grant number DE-FG02-97ER25308. PJM and RHW ac-
knowledge support from the U.S. Department of Energy
under contract number DE-AC02-76SF00515.

Funding for SDSS-III has been provided by the Alfred
P. Sloan Foundation, the Participating Institutions, the
National Science Foundation, and the U.S. Department
of Energy Office of Science. The SDSS-III web site is
http://www.sdss3.org/.

REFERENCES

Alam, S., Albareti, F. D., Allende Prieto, C., et al. 2015, The
Astrophysical Journal Supplement Series, 219, 12

Astier, P., Guy, J., Regnault, N., et al. 2006, Astronomy &
Astrophysics, 447, 31

Barbary, K. 2014, sncosmo, v0.4.2, , , doi:10.5281/zenodo.11938.
https://doi.org/10.5281/zenodo.11938

Betoule, M., Kessler, R., Guy, J., et al. 2014, Astronomy &
Astrophysics, 568, A22

Bishop, C. M. 2006, Pattern Recognition and Machine Learning
Blanton, M. R., & Roweis, S. 2007, AJ, 133, 734
Bovy, J., & Hogg, D. W. 2010, The Astrophysical Journal, 717,

617
Bovy, J., Hogg, D. W., & Roweis, S. T. 2009, The Astrophysical

Journal, 700, 1794
—. 2011, Annals of Applied Statistics, 5, 1657
Bovy, J., Myers, A. D., Hennawi, J. F., et al. 2012, The

Astrophysical Journal, 749, 41
Childress, M., Aldering, G., Antilogus, P., et al. 2013, The

Astrophysical Journal, 770, 108
Connolly, A. J., Angeli, G. Z., Chandrasekharan, S., et al. 2014,

in Proc. SPIE, Vol. 9150, Modeling, Systems Engineering, and
Project Management for Astronomy VI, 915014

Galbany, L., Stanishev, V., Mourão, A. M., et al. 2014,
Astronomy & Astrophysics, 572, A38

Graur, O., Bianco, F. B., Huang, S., et al. 2016a, ArXiv e-prints,
arXiv:1609.02921

Graur, O., Bianco, F. B., Modjaz, M., et al. 2016b, ArXiv
e-prints, arXiv:1609.02923

Graur, O., Rodney, S. A., Maoz, D., et al. 2014, The
Astrophysical Journal, 783, 28

Guy, J., Astier, P., Baumont, S., et al. 2007, Astronomy &
Astrophysics, 466, 11

Hogg, D. W., Blanton, M. R., Roweis, S. T., & Johnston, K. V.
2005, The Astrophysical Journal, 629, 268

Holoien, T. W.-S., Marhsall, P. J., & Wechsler, R. H. 2016a,
XDGMM, v1.0, , , doi:10.5281/zenodo.163858.
https://doi.org/10.5281/zenodo.163858

—. 2016b, empiriciSN, v1.0, , , doi:10.5281/zenodo.163859.
https://doi.org/10.5281/zenodo.163859

Ivezić, Ž., Connelly, A. J., VanderPlas, J. T., & Gray, A. 2014,
Statistics, Data Mining, and Machine Learning in Astronomy

Ivezic, Z., Connolly, A. J., & Vanderplas, J. 2015, in American
Astronomical Society Meeting Abstracts, Vol. 225, American
Astronomical Society Meeting Abstracts, 336.48

Ivezić, Ž., Smith, J. A., Miknaitis, G., et al. 2007, AJ, 134, 973
Ivezic, Z., Tyson, J. A., Abel, B., et al. 2008, ArXiv e-prints,

arXiv:0805.2366
Koposov, S. E., Belokurov, V., & Wyn Evans, N. 2013, The

Astrophysical Journal, 766, 79
Melinder, J., Mattila, S., Östlin, G., Menćıa Trinchant, L., &

Fransson, C. 2008, Astronomy & Astrophysics, 490, 419
Modjaz, M., Kewley, L., Kirshner, R. P., et al. 2008, The

Astronomical Journal, 135, 1136
Pedregosa, F., Varoquaux, G., Gramfort, A., et al. 2011, Journal

of Machine Learning Research, 12, 2825

11

Rasmussen, C. E., & Williams, C. K. I. 2006, Gaussian Processes
for Machine Learning

Sako, M., Bassett, B., Becker, A. C., et al. 2014, ArXiv e-prints,
arXiv:1401.3317

Schwarz, G. 1978, The Annals of Statistics, 6, 461
Skuljan, J., Hearnshaw, J. B., & Cottrell, P. L. 1999, Monthly

Notices of the Royal Astronomical Society, 308, 731
Sullivan, M., Conley, A., Howell, D. A., et al. 2010, Monthly

Notices of the Royal Astronomical Society, 406, 782

Sullivan, M., Guy, J., Conley, A., et al. 2011, The Astrophysical
Journal, 737, 102

Vanderplas, J., Connolly, A., Ivezić, Ž., & Gray, A. 2012, in
Conference on Intelligent Data Understanding (CIDU), 47–54

York, D. G., Adelman, J., Anderson, Jr., J. E., et al. 2000, The
Astronomical Journal, 120, 1579

