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The two-loop five-point amplitude in N = 4 super-Yang–Mills theory
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We compute the symbol of the two-loop five-point scattering amplitude in N = 4 super-Yang-
Mills theory, including its full color dependence. This requires evaluating the symbol of all two-loop
five-point nonplanar massless master integrals, for which we give explicit results.

A great deal of progress in calculating scattering am-
plitudes has been driven by the fruitful interplay be-
tween new formal ideas and the need for increasingly
precise theoretical predictions at collider experiments.
For instance, techniques such as generalized unitarity [1]
and the symbol calculus [2] were first introduced in the
realm of maximally supersymmetric Yang–Mills theory
(N =4 sYM) and went on to have a large impact on pre-
cision collider physics. In this letter, we use cutting-edge
techniques to take a first look at the analytic form of the
two-loop five-point amplitude in N =4 sYM beyond the
planar, Nc→∞, limit of SU(Nc) gauge theory.

Amplitudes in N =4 sYM possess rigid analytic prop-
erties that make them easier to compute than their pure
Yang–Mills counterparts, the state of the art being the
three-loop four-gluon N =4 sYM amplitude [3]. Histori-
cally, calculations in N =4 sYM have therefore preceded
analogous computations in QCD. The planar five-point
amplitude at two loops in N =4 sYM was first obtained
numerically [4], confirming the prediction of [5]. In pure
Yang-Mills, the first planar two-loop five-point ampli-
tude, evaluated numerically, was for the all-plus helic-
ity configuration [6]. Since then, a flurry of activity in
planar multi-leg two-loop amplitudes has seen the an-
alytic calculation of the all-plus amplitude [7], the nu-
merical evaluation of all five-parton QCD amplitudes [8–
11], and recently the computation of analytic expressions
for all five-gluon scattering amplitudes [12, 13]. These
achievements were made possible by the development of
efficient ways to reduce amplitudes to master integrals
using integration-by-parts (IBP) relations [14, 15] auto-
mated by Laporta’s algorithm [16] or modern reformu-
lations based on unitarity cuts and computational alge-
braic geometry [10, 17–20], and to compute master inte-
grals from their differential equations [21, 22]. Indeed,
all planar five-point master integrals have now been com-
puted [23, 24], and substantial progress has been made
in the nonplanar sectors as well [25–27].

In this work, we first discuss the integrand of the two-
loop five-point amplitude in N =4 sYM, and how it can
be reduced to a form involving only so-called pure in-
tegrals (i.e., integrals satisfying a differential equation
in canonical form [22]). We then use the aforemen-

tioned new techniques for integral reduction and differ-
ential equations (most notably the method introduced in
[26]) to compute the symbols [2] (see also [28, 29]) of all
nonplanar massless two-loop five-point master integrals.
From these integrals we finally assemble the symbol of
the complete two-loop five-point N = 4 sYM amplitude
and discuss consistency checks of our result. Throughout,
we work at the level of the symbol where transcendental
constants are set to zero. While such contributions are
important for the numerical evaluation of an amplitude,
the symbol itself contains a major part of the non-trivial
analytic structure of the amplitude.

Our result constitutes the first analytic investigation
of two-loop five-point amplitudes in any gauge or grav-
ity theory beyond the planar limit. Just as the one-loop
five-gluon amplitude [30] did, our two-loop result should
provide valuable theoretical data for further exploring the
properties of structurally complex amplitudes, as well as
the proposed duality between scattering amplitudes and
Wilson loops at subleading color [31]. Furthermore, the
methods will impact precision collider phenomenology:
the master integrals are directly applicable to QCD am-
plitudes, opening the way to computing three-jet produc-
tion at hadron colliders at next-to-next-to-leading order.

Construction of the amplitude

In any SU(Nc) gauge theory with all states in the ad-
joint representation, the trace-based color decomposition
[32, 33] of any two-loop five-point amplitude is1

A(2)
5 =

∑
S5/(S3×Z2)

tr[15]
(
tr[234]−tr[432]

)
Nc

ADT[15|234] (1)

+
∑
S5/D5

(
tr[12345]−tr[54321]

)(
AST[12345]+

ASLST[12345]

N2
c

)
.

1 In our conventions, we factor out e−γεg2Nc
(4π)2−ε

per loop in a stan-

dard perturbative expansion of the amplitude. The generators
of the fundamental representation of SU(Nc) are normalized as
tr[TaT b] = δab, and tr[i1i2...ik] ≡ tr[Tai1 Tai2 · · ·Taik ].
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FIG. 1. Diagram topologies entering the local representa-
tion of the two-loop five-point integrand of N = 4 sYM [43].
Each diagram has an associated color structure and numera-
tor which we suppress.

Here, single-trace (ST), subleading-color single-trace
(SLST) and double-trace (DT) denote different partial
amplitudes. Sn (Zn) is the (cyclic) permutation group,
and Dn the dihedral group.

It is a powerful fact about MHV scattering ampli-
tudes in N = 4 sYM that all leading singularities [34]
are given in terms of different permutations of Parke-
Taylor tree-(super-)amplitudes [35, 36]. This highly non-
trivial result has been derived from a dual formulation of
leading singularities in terms of the Grassmannian [37].
Furthermore, N = 4 sYM amplitudes are conjectured to
be of uniform transcendental weight [5, 38–40]. A rep-
resentation of the four -dimensional integrand has been
given in [41], where this Parke-Taylor structure together
with further special analytic properties of N = 4 sYM—
logarithmic singularities and no residues at infinite loop
momentum—are manifest. In this representation, the
full, color-dressed amplitude splits into 3 distinct parts

A(2)
n = C ⊗ PT⊗ gpure , (2)

where C schematically denotes the color structure of the
gauge theory. For a five-point scattering amplitude, the
space of Parke-Taylor factors is spanned by a set of 3!
Kleiss-Kuijf (KK) independent elements [42] that we de-
note by PT[1σ2σ3σ45], where

PT[σ1σ2σ3σ4σ5]=
δ8(Q)

〈σ1σ2〉〈σ2σ3〉〈σ3σ4〉〈σ4σ5〉〈σ5σ1〉
. (3)

The super-momentum conserving delta-function, δ8(Q),
encodes the supersymmetric Ward identities relating the
(−−+ + +)-helicity five-gluon amplitude to all other five-
particle amplitudes. The third part, gpure, denotes a pure
function of transcendental weight 4.

The goal of this section will be to compute the partial
amplitudes in (1). Our starting point is the integrand
of [43] which is valid in d = 4−2ε space-time dimensions
and is given in terms of the six topologies in Fig. 1,

A(2)
5 =

∑
S5

(
I(a)

2
+
I(b)

4
+
I(c)

4
+
I(d)

2
+
I(e)

4
+
I(f)

4

)
. (4)

The sum is over all 5! permutations of external legs and
the rational numbers correspond to diagram-symmetry
factors.

For each of the topologies in Fig. 1, we construct a ba-
sis of pure master integrals, on which the amplitude (4)
can be decomposed, so that the separation into color,
rational, and transcendental parts (2) becomes mani-
fest. Most required master integrals are already known
in pure form [7, 23, 26, 27, 44]. The one missing topology,
which we discuss momentarily, is the nonplanar double-
pentagon (diagram (c) of Fig. 1). The integrals we are
concerned with are functions of five Mandelstam invari-
ants, s12, s23, s34, s45, s51, with sij = (ki+kj)

2. We also
encounter the parity-odd ε-tensor contraction

tr5 = 4iεµνρσk
µ
1 k

ν
2k

ρ
3k
σ
4 = tr(γ5/k1/k2/k3/k4) . (5)

To find a basis of pure master integrals for the top-level
(eight-propagator) topology of Fig. 1(c) it was necessary
to construct nine independent numerators. Specifically,
we chose the following set of master integrals:

1. The parity-even part of the integral with numera-

tor N
(a)
1 identified in [41], rewritten as spinor traces

in Eq. (21) of [45]. By deleting γ5 from the spinor
traces, we obtain the parity-even parts in a form
that is valid in d dimensions. Two more pure inte-
grals are obtained from it by using the diagram’s
Z2 × Z2 symmetry.

2. (6−2ε)-dimensional scalar integrals with any of the
eight propagators squared, normalized by a factor
of tr5 and a homogeneous linear function of the
sij variables. Six such integrals, which we have
converted to integrals in (4−2ε) dimensions [46–49],
are included in our basis.

Explicit expressions for these new pure master integrals
can be found in the ancillary file masters.m.

Next, we construct differential equations in canonical
form [22] for the master integrals. The (iterated) branch-
cut structure of the integrals is encoded in the symbol let-
ters which are algebraic functions of the kinematic invari-
ants. It is convenient to parametrize the five-point kine-
matics in terms of variables that rationalize all letters of
the alphabet. This can be accomplished via momentum-
twistors [50] and the xi-parametrization proposed in [6].2

For the nonplanar double-pentagon integral, we find that
the complete system contains 108 masters and depends
on the 31 Wα-letters suggested in [25]:

∂xiIa≡
∂Ia
∂xi

=ε

31∑
α=1

∂ logWα

∂xi
Mab
α Ib , 1≤a, b≤108 . (6)

2 Explicit expressions for our kinematics can be found in the an-
cillary file kinematics.m.
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Ten of the letters (α ∈ {1,...,5}∪{16,...,20}) are sim-
ple Mandelstam invariants sij , 15 further letters (α ∈
{6,...,15}∪{21,...,25}) are differences of Mandelstam in-
variants sij−skl, the 5 parity-odd letters (α∈{26,..., 30})
can be expressed as ratios of spinor-brackets such as
〈12〉[15]〈45〉[24]
[12]〈15〉[45]〈24〉 which invert under complex conjugation

〈·〉 ↔ [·] or tr5 → −tr5, and the final, parity-even letter
(α = 31) is tr5. The 31 Mα-matrices consist of simple
rational numbers.

Computing the Mα-matrices in (6) requires perform-
ing IBP reduction on differentials of the original mas-
ters ∂xiIa with respect to the kinematic variables in or-
der to re-express them in terms of the original basis Ia.
We use the efficient approach introduced in [26], which
builds on the modern formulation of IBP relations in
terms of unitarity cuts and computational algebraic ge-
ometry [10, 17–20]. The method requires IBP reduction
at only 30 rational, numerical phase-space points to fix
all the Mα, dramatically reducing the computation time
compared to analytic IBP reduction. Combined with the
first-entry condition [51], which restricts integrals to only
have branch-cut singularities at physical thresholds, we
obtain solutions to the differential equations at the sym-
bol level for all master integrals. As a check, we verified
that we reproduce (at symbol level) all known results for
descendant integrals (≤ 7 propagators). The full results
are included in the ancillary file masters.m.

Having established a basis and computed the master
integrals required for massless two-loop five-point ampli-
tudes, we can now write the N = 4 sYM amplitude in
that basis. As already stated, we use the d-dimensional
representation of the integrand given in [43]. While this
representation has the advantage of being in the so-called
Bern-Carrasco-Johansson (BCJ) form [52], which allows
for the immediate construction of the gravity integrand
via the ‘double-copy’ prescription, it obscures some of
the simplicity of the final result. For instance, each in-
dividual diagram in Fig. 1 introduces spurious rational
factors. Applying Fierz color-identities [32] to decom-
pose the integrand (4) into the partial amplitudes in (1)
and using IBP reduction to rewrite those in our pure ba-
sis, we can obtain a representation that is manifestly in
the form of (2). In particular, we find a simple rational
kinematic dependence for all partial amplitudes via at
most six KK-independent Parke-Taylor factors:

AST[12345] = PT[12345] MBDS
(2) ,

ADT[15|234] =
∑

σ(234)∈S3

PT[1σ2σ3σ45] gDT
σ2σ3σ4

,

ASLST[12345] =
∑

σ(234)∈S3

PT[1σ2σ3σ45] gSLSTσ2σ3σ4
,

(7)

where MBDS
(2) is the two-loop BDS ansatz [5] and gX~σ are

pure functions. Both MBDS
(2) and gX~σ can be written as

Q-linear combinations of our pure master integrals. The
IBP reduction was done following the same strategy al-

ready discussed for the differential equations. Given the
simple kinematic dependence of the result it was suffi-
cient to perform the reduction at 6 numerical kinematic
points. Furthermore, we were able to achieve a computa-
tional speedup by performing all calculations in a finite
field with a 10-digit cardinality, before reconstructing the
simple rational numbers from their finite-field images us-
ing Wang’s algorithm [53–55].

Inserting the symbol of the master integrals, we di-
rectly obtain the symbol of the two-loop five-point N =
4 sYM amplitude. The amplitude is naturally decom-
posed into parity-even and parity-odd parts under a sign-
flip of ‘tr5’ defined in (5). At symbol level, the parity
grading can be determined by counting the number of
parity-odd letters, W26, ...,W30, in a given symbol tensor.
The parity-odd part of our result is highly constrained by
the first- and second-entry conditions, as well as the in-
tegrability of the symbol [2], leading to a much simpler
structure than the even part. It is important to note
that in all collinear limits the parity-odd parts of the
amplitude vanish since the external momenta span only
a 3-dimensional space and hence tr5 = 0. We attach the
explicit symbol-level results for the partial amplitudes in
the ancillary file amplitudes.m.

Validation

In the previous section we described the assembly of
the two-loop five-point amplitude in N =4 sYM in terms
of pure master integrals. In this section we validate our
final result by checking nontrivial identities between dif-
ferent terms and comparing to known kinematic limits.
We focus our discussion on verifying collinear factoriza-
tion when two external momenta become parallel [56].
Aside from this check, we also verified that:

• The planar amplitude matches the BDS ansatz [5]
stating that four- and five-particle amplitudes in
planar N =4 sYM are given to all orders by expo-
nentiating the one-loop amplitude [30].

• The partial amplitudes satisfy the group-theoretic
Edison-Naculich relations [57], allowing us to
write all subleading single-trace partial amplitudes
ASLST in terms of linear combinations of planar
AST and double-trace ADT amplitudes, e.g.

ASLST[12345] = 5AST[13524] (8)

+
∑
cyclic

[
AST[12435]−2AST[12453]

+
1

2

(
ADT[12|345]−ADT[13|245]

)]
,

where the 5 cyclic permutations are generated by
the relabeling i→ i+1 (mod 5). Thus we need not
discuss ASLST further, and the amplitude is fully
specified by two functions, MBDS

(2) and gDT
234.
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• The infrared poles of the amplitude match the uni-
versal pole structure predicted by Catani [58], see
also e.g. [56, 59], where the poles of two-loop am-
plitudes can be computed in terms of known tree-
and one-loop amplitudes.

Several of these checks require the one-loop five-point am-
plitudes expanded through order ε2. An exact expression
for the integrand of this amplitude is known [60]. The
box integrals are known to all orders in ε [47]. The only
integral that is not known to all orders is the (parity-odd)
six-dimensional scalar pentagon, Id=6−2ε

5 , whose symbol
can either be computed to any order in ε from [61] or by
direct evaluation of the integral with HyperInt [62].

The test we discuss in more detail is the collinear
limit of the double-trace partial amplitudes ADT. As
already stated, all parity-odd contributions of any par-
tial amplitude vanish in this limit since tr5 = 0. For
concreteness, in the rest of this section we focus on
ADT[15|234], which in our conventions is symmetric in
the (15) indices and totally antisymmetric in (234). All
other double-trace amplitudes are given by simple rela-
belling. Scattering amplitudes obey a universal collinear
factorization equation [1, 56]. Here, we discuss the five-
point limit 2||3 where two momenta, k2 and k3, become
collinear k2 = τP , k3 = (1−τ)P with collinear split-
ting fraction τ . The two-loop amplitude factorizes into∑2
`=0 Split

(`)
23 (ε)×A(2−`)

4 (ε):

A(2)
5

2||3−→ + + . (9)

The empty blobs on the left of each diagram denote the
collinear splitting functions and the filled blobs on the
right are the four-point amplitudes depending only on
P , k1, k4 and k5. The color part of the splitting function
is very simple: in the example above it is directly propor-
tional to f23P . Kinematic expressions for the one- and
two-loop splitting functions can be found in [1, 56]. Fur-
thermore, the one- and two-loop four-point amplitudes
[1, 33], and relevant integrals [63, 64], are also known to
the required order in the ε-expansion. To approach the
collinear limit, we map from the generic five-dimensional
kinematic space (parametrized in terms of the xi of [6])
to the collinear limit. This can be done via the following
substitution (see footnote 2):

x1 7→sτ , x2 7→csδ , x3 7→r2csδ , x4 7→δ , x5 7→−
1

cδ
, (10)

where s characterizes the overall scale of all Mandelstam
invariants, δ → 0 corresponds to the collinear limit, τ is
the aforementioned collinear splitting fraction, r2 = s15

s45
the ratio of Mandelstam invariants of the underlying four-

point process and c ∼ [23]
〈23〉 corresponds to an azimuthal

phase. Expanding the 31 letter alphabet to leading order

in δ, we find 14 multiplicatively independent letters in the
collinear limit: 7 physical {δ, s, τ, 1−τ, r2, 1+r2, c} (in fact
this number reduces to 6 because cδ2 always appear in
this fixed combination) and 7 spurious letters that cannot
be part of the (leading power) limit. When comparing
the collinear limit of our result to the factorization for-
mula (9), we note that only Parke-Taylor factors where
legs 2 and 3 are adjacent become singular. For instance,
while PT[12345] 7→ 1√

τ(1−τ)〈23〉
PT[1P45], PT[12435] has

no collinear singularity in the 2||3 limit. We find that
our result exactly matches the collinear factorization for-
mula (9). Besides this limit, there are two further in-
equivalent collinear limits we can check for ADT[15|234]:
when 1||5 and 1||2. When looking at the color factors
of the appropriate relabelling of (9) it becomes clear
that neither of them contains tr[15](tr[234]−tr[432]) so
ADT[15|234] is forced to vanish in these limits. We have
checked that our result indeed reproduces this behavior.

Discussion of the result and outlook

After discussing various consistency checks of our an-
swer for the two-loop five-point amplitude in N =4 sYM,
let us briefly summarize some of its analytic features.
First, we highlight in Tab. I that a number of terms in
the ε-expansion vanish, which is of course predicted by
the Catani formula. We note that some of the two-loop
master integrals have weight-two odd terms, but this con-
tribution is absent from the amplitude.

1/ε4 w0 1/ε3 w1 1/ε2 w2 1/ε1 w3 ε0 w4

AST
even X X X X X
AST

odd 0 0 0 X X
ADT

even 0 X X X X
ADT

odd 0 0 0 X X
ASLST

even 0 0 X X X
ASLST

odd 0 0 0 0 X

TABLE I. Summary of vanishing on non-vanishing terms in
the ε-expansion of the different partial amplitudes.

We also note that our answers for the amplitude, as
well as individual pure master integrals, are compatible
with the empirical second-entry-conditions first observed
for individual integrals in [7, 24, 25, 27]. It would be
very interesting to understand the underlying physical
reason for this property perhaps from the point of view
of a diagrammatic coaction principle [61, 65, 66].

Our full result is too lengthy to print in this letter.
However, it has very restricted analytic structure. For in-
stance, the parity-odd transcendental part of any deriva-
tive of any weight 4 function in the amplitude belongs to a
12-dimensional subspace of the 111-dimensional space of
weight 3 parity-odd functions that obey integrability and
the second-entry condition of [25]. This 12-dimensional
subspace is spanned by the 12 inequivalent permutations,
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Σj , of the O(ε0) part of the pure, parity-odd scalar pen-
tagon in d = 6, Id=6

5 (Σj). (Due to the dihedral D5-
invariance of the integral, there are only 5!/10 = 12 in-
equivalent permutations.) The parity-odd part of the 1/ε
coefficient of MBDS

(2) is just −5 Id=6
5 ({12345}).

Let us recall that the amplitude is fully specified by
gDT
234 and the previously-known MBDS

(2) . We may write the
odd transcendental part of the derivative of the odd part
of gDT

234 using this Id=6
5 basis, as

∂xi

[
gDT,odd
234

]∣∣∣
odd

=
∑
j,γ

Id=6
5 (Σj) mjγ

∂ logWγ

∂xi
, (11)

where j labels the 12 inequivalent pentagon-permutations
{12543}, {12453}, {13524}, {12534}, {13254}, {12354},
{14325}, {13425}, {14235}, {12435}, {13245}, {12345},
and γ ∈ {1,...,5}∪{16,...,20}∪{31} are the nonzero final
entries. In these conventions, the matrix mjγ is

mjγ =



− 17
4
− 5

4
−6 − 17

4
− 7

2
− 17

4
− 7

4
1
2

−1 − 17
4

10
17
4

5
4

5
4

17
4

4 17
4

11
2

17
4

1
2

1
2
−10

0 0 0 0 0 0 0 0 0 0 0
1
4

− 1
4
− 1

4
0 0 0 0 0 1

4
0 0

0 − 1
4
− 1

4
1
4

0 0 0 0 0 1
4

0

− 17
4
−6 − 5

4
− 17

4
− 7

2
1
2

− 7
4
− 17

4
− 17

4
−1 10

− 1
4

1
2

1
2

− 1
4

0 0 0 0 − 1
4
− 1

4
0

1
4

− 1
2

1
4

0 − 1
2

1
4

− 1
4
− 1

2
1 0 0

0 1
4
− 1

2
1
4

− 1
2
− 1

2
− 1

4
1
4

0 1 0

− 1
4

0 1
4

0 1
2

1
4

1
4

0 − 1
2
− 1

2
0

0 1
4

0 − 1
4

1
2

0 1
4

1
4

− 1
2
− 1

2
0

17
4

6 6 17
4

9 − 1
2

4 − 1
2
− 5

4
− 5

4
−10


which has rank 8, so only eight independent combinations
of final entries appear.

While the first derivatives are quite constrained, the
second derivatives (actually the {2, 1, 1}-coproducts) of
the ε0-terms of the amplitude span the entire 79-
dimensional space identified in [25].

Building on this first analytic result for a nonplanar
two-loop five-point amplitude, there are a number of av-
enues for future research. The upcoming work of [67] will
explore the analytic structure of the factorization of the
amplitude when one of the external gluons becomes soft.
For this limit, there exists an eikonal semi-infinite Wil-
son line picture. Starting at two loops the possibility of
coupling three hard lines via nontrivial color connections
opens up, which leads to an interesting parity-odd com-
ponent of the soft-emission function which is compatible
with the soft limit of our symbol-level result. Further-
more, it would be interesting to explore the subleading-
in-color behavior of this scattering amplitude in multi-
Regge kinematics [68–70]. With our result, it now also
becomes possible to test the proposed relation between
scattering amplitudes and Wilson loops beyond the lead-
ing term in the large Nc limit [31], and it would be inter-
esting to match our result to a future near-collinear OPE
computation on the Wilson-loop side.

Since we have now computed the symbol of all relevant
Feynman integrals for massless two-loop five-point scat-
tering, we can in principle discuss other theories, such as
N ≤ 4 sYM as well as N ≥ 4 supergravity. In particular,
it would be interesting to investigate the uniform tran-
scendentality (UT) property of two-loop five-point am-
plitudes in N = 8 supergravity. According to [71], this
integrand only has logarithmic singularities and no poles
at infinity, so one would expect a UT result. Finding
such a result would lend further credence to the empir-
ical relation between logarithmic poles of the integrand
and transcendentality properties of amplitudes.
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