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Abstract

We show results for Thrust and C-parameter in e+e− annihilation to 3 jets obtained using
the recently developed new method for eliminating the scale ambiguity and the scheme
dependence in pQCD namely the Infinite-Order Scale-Setting method using the Prin-
ciple of Maximum Conformality (PMC∞). This method preserves the property of the
gauge theories, defined as intrinsic Conformality (iCF) and leads to a remarkably effi-
cient method to solve the conventional renormalization scale ambiguity at any order in
pQCD. Comparison with Conventional Scale Setting method (CSS) is also shown.
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1 Introduction

One of the obstacles in making precision tests of the quantum chromodynamics (QCD) is the
uncertainty in setting the renormalization scale µR into running coupling αs(µ2

R) for the per-
turbative expansion of a scale invariant quantity.

The conventional practice (i.e. conventional scale setting - CSS) of simply guessing the
scale µR of the order of a typical momentum transfer Q in the process, and then varying the
scale over a range Q/2 and 2Q, leads to predictions that are affected by large renormalization
scale ambiguities.

Additionally, the CSS procedure is not consistent with the Gell-Mann-Low scheme [1] in
Quantum Electrodynamics (QED) [2], the pQCD predictions are affected by scheme depen-
dence and the resulting perturbative QCD series is also factorially divergent like n!βn

0α
n
s , i.e.

the "renormalon" problem [3]. Given the factorial growth, the hope to suppress scale un-
certainties by including higher-order corrections is compromised. We recall that there is no
ambiguity in setting the renormalization scale in QED. The standard Gell-Mann-Low scheme
determines the correct renormalization scale identifying the scale with the virtuality of the
exchanged photon. For example, in electron-muon elastic scattering, the renormalization
scale is the virtuality of the exchanged photon, i.e. the spacelike momentum transfer squared
µ2

R = q2 = t. Thus

α(t) =
α(t0)

1−Π(t, t0)
(1)

where

Π(t, t0) =
Π(t)−Π(t0)

1−Π(t0)

From Eq.1 it follows that the renormalization scale µR = t can be determined by the β0-term
and it sums up all the vacuum polarization contributions into the dressed photon propagator,
both proper and improper at all orders. Given that the pQCD and pQED predictions match
analytically in the NC → 0 limit where CFαQC D → αQED (see ref. [4]) it would be convenient
to extend the same procedure to pQCD. A solution to the scale ambiguity problem is offered by
the Principle of Maximum Conformality (PMC) [5–10]. This method provides a systematic way
to eliminate renormalization scheme-and-scale ambiguities from first principles by absorbing
the β terms that govern the behavior of the running coupling via the renormalization group
equation. Thus, the divergent renormalon terms cancel, which improves the convergence of
the perturbative QCD series. Furthermore, the resulting PMC predictions do not depend on
the particular scheme used, thereby preserving the principles of renormalization group invari-
ance [11,12]. The PMC procedure is also consistent with the standard Gell-Mann-Low method
in the Abelian limit, Nc → 0 [4]. Besides, in a theory of unification of all forces, electromag-
netic, weak and strong interactions, such as the Standard Model, or Grand Unification theories,
is highly desirable to use only one method. The PMC offers the possibility to apply the same
method in all sectors of a theory, starting from first principles, eliminating the renormalon
growth, the scheme dependence, the scale ambiguity, and satisfying the QED Gell-Mann-Low
scheme in the zero-color limit Nc → 0.
The recently developed PMC∞: Infinite-Order Scale-Setting using the Principle of Maximum
Conformality [13] is a new method based on the PMC and it preserves the property that we
define as Intrinsic Conformality (iCF). This property stems directly from an analysis of the per-
turbative QCD corrections and leads to scale invariance of an observable calculated at any fixed
order independently from the particular process or kinematics. Here we apply this method to
the Event Shape Variables : Thrust and C-parameter, showing results and comparison with the
CSS.



2 The Thrust and C-parameter at NNLO and the CSS

The thrust (T) and C-parameter (C) are defined as

T =max
n⃗

�∑
i |p⃗i · n⃗|∑

i |p⃗i|
�

, (2)

C =
3
2

∑
i, j |p⃗i||p⃗ j| sin2 θi j�∑

i |p⃗i|
�2 , (3)

where p⃗i denotes the three-momentum of particle i. For the thrust, the unit vector n⃗ is varied
to define the thrust axis n⃗T by maximizing the sum on the right-hand side. For the C-parameter,
θi j is the angle between p⃗i and p⃗ j . It is often used the variable (1− T ), which for the LO of
the 3 jet production is restricted to the range (0 < 1− T < 1/3) and for the C-parameter is
0≤ C ≤ 1. (For a review on the Event Shape variables see Refs. [14–26].)

In general a normalized IR safe single variable observable, such as the thrust or the C-
parameter distribution for the e+e− → 3 jets [27, 28], is given by the sum of pQCD contribu-
tions calculated up to NNLO at the initial renormalization scale µ0:

1
σtot

Odσ(µ0)
dO

=

�
x0 · OdĀO(µ0)

dO
+ x2

0 · OdB̄O(µ0)
dO

+ x3
0 · OdC̄O(µ0)

dO
+O(α4

s )

�
, (4)

where x(µ) ≡ αs(µ)/(2π), O is the selected Event Shape variable, σ the cross section of the
process,

σtot = σ0

�
1+ x0Atot + x2

0Btot +O
�
α3

s

��
is the total hadronic cross section and ĀO, B̄O, C̄O are respectively the normalized LO, NLO and
NNLO coefficients:

ĀO = AO

B̄O = BO − AtotAO (5)

C̄O = CO − Atot BO −
�
Btot − A2

tot

�
AO.

where AO, BO, CO are the coefficients normalized to the tree level cross section σ0 calculated
by MonteCarlo (see e.g. EERAD and Event2 codes [20–24]) and Atot, Btot are:

Atot =
3
2

CF ;

Btot =
CF

4
Nc +

3
4

CF
β0

2
(11− 8ζ(3))− 3

8
C2

F . (6)

where ζ is the Riemann zeta function.
In general according to CSS the renormalization scale is set to µ0 =

p
s = MZ0

and the-
oretical uncertainties are evaluated using standard criteria. In this case, we have used the
definition given in Ref. [20] of the parameter δ, we define the average error for the event
shape variable distributions as:

δ̄ =
1
N

N∑
i

maxµ(σi(µ))−minµ(σi(µ))

2σi(µ= MZ0
)

, (7)

where i is the index of the bin and N is the total number of bins, the renormalization scale is
varied in the range: µ ∈ [MZ0

/2; 2MZ0
].



3 The iCF : conformal coefficients and intrinsic scales

We define Intrinsic Conformality as the unique property of a renormalizable SU(N)/U(1) gauge
theory, like QCD, which yields to a particular structure of the perturbative corrections that can
be made explicit representing the perturbative coefficients of Eq. 4 using the following RG
invariant parametrization:

AO(µ0) = AConf ,

BO(µ0) = BConf +
1
2
β0 ln

�
µ2

0

µ2
I

�
AConf ,

CO(µ0) = CConf + β0 ln

�
µ2

0

µ2
I I

�
BConf +

1
4

�
β1 + β

2
0 ln

�
µ2

0

µ2
I

��
ln

�
µ2

0

µ2
I

�
AConf

(8)

where the AConf , BConf , CConf are the scale invariant Conformal Coefficients (i.e. the coefficients
of each perturbative order not depending on the scale µ0) while we define the µN as Intrinsic
Conformal Scales and β0,β1 are the first two coefficients of the β-function [29–33].

By collecting together the terms identified by the same conformal coefficient, we obtain
the observable written in conformal subset (σn) :

σI =

��
αs(µ0)

2π

�
+

1
2
β0 ln

�
µ2

0

µ2
I

��
αs(µ0)

2π

�2
+

1
4

�
β1+β

2
0 ln

�
µ2

0

µ2
I

��
ln

�
µ2

0

µ2
I

��
αs(µ0)

2π

�3
+ . . .

�
AConf

σI I =

��
αs(µ0)

2π

�2
+β0 ln

�
µ2

0

µ2
I I

��
αs(µ0)

2π

�3
+ . . .

�
BConf

σI I I =

��
αs(µ0)

2π

�3
+ . . .

�
CConf ,

... ..
.

σn =
§�
αs(µ0)

2π

�nª
LnConf , (9)

Any combination of the conformal subsets, σI ,σI I ,σI I I , ... such as σN =
∑

i σi is still confor-
mal : �

µ2 ∂

∂ µ2
+ β(αs)

∂

∂ αs

�
σN = 0. (10)

We define here this property of Eq. 9 of separating an observable in the union of ordered
scale invariant disjoint subsets σI ,σI I ,σI I I , ... as ordered scale invariance.

The coefficients of Eq. 8 can be identified from a numerical either theoretical perturba-
tive calculation. For the purpose we use the NNLO results calculated in Refs. [23, 24]. Since
the leading order is already (AConf ) void of β-terms we start with NLO coefficients. A gen-
eral numerical/theoretical calculation keeps tracks of all the color factors and the respective
coefficients:

BO(N f ) = CF

�
CABNc

O + CF BCF
O + TF N f B

N f

O

�
(11)

where CF =
(N2

c −1)
2Nc

, CA = Nc and TF = 1/2. We can determine the conformal coefficient BConf
of the NLO order straightforwardly, by fixing the number of flavors N f in order to kill the β0



term:

BConf = BO

�
N f ≡ 33

2

�
,

Bβ0
≡ log

µ2
0

µ2
I

= 2
BO − BConf

β0AConf
(12)

we would achieve the same results in the usual PMC way, i.e. identifying the N f coefficient
with the β0 term and then determining the conformal coefficient. At the NNLO a general
coefficient is made of the contribution of six different color factors:

CO(N f ) =
CF

4

�
N2

c C
N2

c
O + C

N0
c

O +
1

N2
c

C
1

N2
c

O

+N f Nc · CN f Nc

O +
N f

Nc
C

N f /Nc

O + N2
f C

N2
f

O

ª
. (13)

In order to identify all the terms of Eq.8 we notice first that the coefficients of the terms β2
0

and β1 are already given by the NLO coefficient Bβ0
, then we need to determine only the β0-

and the conformal CConf -terms. In order to determine the latter coefficients we use the same
procedure we used for the NLO , i.e. we set the number of flavors N f ≡ 33/2 in order to drop
off all the β0 terms. We have then:

CConf = CO

�
N f ≡ 33

2

�
− 1

4
β1Bβ0

AConf ,

Cβ0
≡ log

�
µ2

0

µ2
I I

�
=

1
β0BConf

�
CO − CConf

− 1
4
β2

0 B2
β0

AConf − 1
4
β1Bβ0

AConf

�
,

(14)

with β1 ≡ β1(N f = 33/2) = −107. This procedure can be extended to all orders and one may
also decide whether to cancel the β0, β1 or β2 by fixing the appropriate number of flavors. We
point out that extending the Intrinsic Conformality to all orders we can predict at this stage
the coefficients of all the color factors of the higher orders related to the β-terms except those
related to the higher order conformal coefficients and β0-terms (e.g. at NNNLO the DConf and
Dβ0

). The β-terms are coefficients that stem from UV-divergent diagrams connected with the
running of the coupling constant and not from UV-finite diagrams. UV-finite NF terms may
arise but would not contribute to the β-terms. These terms should be considered as conformal
terms.

4 The PMC∞ renormalization scales

According to the PMC∞ , renormalization scales are set to the intrinsic scales, and Eq.4 be-
comes:

1
σtot

Odσ(µI , µ̃I I ,µ0)
dO

=
�
σI +σI I +σI I I +O(α4

s )
	

, (15)



where the σN are normalized conformal subsets that are given by:

σI = AConf · x I

σI I =
�
BConf +ηAtotAConf

� · x2
I I −ηAtotAConf · x2

0

−AtotAConf · x0 x I

σI I I =
�
CConf−AtotBConf−(Btot − A2

tot)AConf

� · x3
0 ,

(16)

where x I , x I I , x0 are the couplings determined at the µI , µ̃I I ,µ0 scales respectively.
Normalized conformal subsets for the region (1− T )> 0.33 and C > 0.75 can be achieved

simply by setting AConf ≡ 0 in the Eq. 16. The PMC∞ scales, µN , are given by:

µI =
p

s · e fsc− 1
2 Bβ0 , (1−T )<0.33 , C<0.75

µ̃II =


p

s · e fsc− 1
2 Cβ0
· BConf

BConf+η·AtotAConf ,
(1−T )<0.33 , C<0.75,p

s · e fsc− 1
2 Cβ0 ,

(1−T )>0.33 , C>0.75

(17)

and µ0 = MZ0
. The renormalization scheme factor for the QCD results is set to fsc ≡ 0.

The η parameter is a regularization term in order to cancel the singularities of the NLO
scale, µI I , in the range (1 − T ) < 0.33 and C < 0.75, depending on non-matching zeroes
between numerator and denominator in the Cβ0

. In general this term is not mandatory for
applying the PMC∞, it is necessary only in case one is interested to apply the method all over
the entire range covered by the thrust, or any other observable. Its value has been determined
to η = 3.51 for both thrust and C-parameter distribution and it introduces no bias effects
up to the accuracy of the calculations and the related errors are totally negligible up to this
stage. The LO and NLO PMC∞ scales for thrust and C-parameter are shown in Fig.1. The
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Figure 1: The LO-PMC∞ (Solid Red) and the NLO-PMC∞ (Dashed Black) scales for
thrust (Left) and C-parameter (Right).

PMC∞ scales are functions of the center-of mass-energy
p

s and of the event shape variable.
We notice that LO and NLO PMC∞ scales have similar behaviors in the range (1− T ) < 0.33
and C < 0.75 going to zero at the lower boundary.

5 Comparison of the CSS and PMC∞ Results

We show in Fig.2 and Fig. 3 results for the thrust and C-parameter with a direct comparison
of the PMC∞ with the the CSS method. In addition we have shown also the results of the
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Figure 2: The thrust distribution at NNLO under the Conventional (Dashed Black),
the PMC(µLO) (DotDashed Blue) and the PMC∞ (Solid Red). The experimental data
points are taken from the ALEPH, DELPHI,OPAL, L3, SLD experiments [34–38]. The
shaded areas show theoretical errors predictions at NNLO.

first PMC approach used in [39, 40] that we indicate as PMC(µLO) extended to the NNLO
accuracy. In this approach the last unknown PMC scale µNLO of the NLO has been set to the
last known PMC scale µLO of the LO, while the NNLO scale µNNLO≡ µ0 has been set to the
kinematic scale µ0 ≡ ps and varied in the range

p
s/2 ≤ µ0 ≤ 2

p
s. This analysis has been

performed in order to show that the procedure of setting the last unknown scale to the last
known one leads to stable and precise results and is consistent with proper PMC method in a
wide range of values of the (1− T ) and C variable. Using the PMC∞, average errors in the
range 0. < (1− T ) < 0.42 of the thrust improve from δ̄ ≃ 7.36% to 1.95% and in the range
0 < (C) < 1 of the C-parameter from δ̄ ≃ 7.26% to 2.43% from NLO to NNLO respectively.
Average errors calculated in different regions of the spectrum are reported in Table 1 for thrust
and C-parameter. From the comparison with the CSS we notice that the PMC∞ prescription
significantly improves the theoretical predictions. Besides, results are in remarkable agreement
with the experimental data in a wider range of values for both the 1 − T and C variables
and they show an improvement of the PMC(µLO) results when the two-jets and the multi-jets
regions are approached, i.e. the region near the lower and the upper boundary respectively.
The use of the PMC∞ approach on perturbative thrust QCD-calculations restores the correct
behavior of the thrust distribution in the region (1 − T ) > 0.33 and C > 0.75 and this is a
clear effect of the iCF property. Comparison with the experimental data has been improved
all over the spectrum and the introduction of the N3 LO order correction would improve this
comparison especially in the multi-jet region. In the PMC∞method theoretical errors are given
by the unknown intrinsic conformal scale of the last order of accuracy. We expect this scale not
to be significantly different from that of the previous orders. In this particular case, as shown
in Eq.16, we have also a dependence on the initial scale αs(µ0) left due to the normalization
and to the regularization terms. These errors represent the 12.5% and 1.5% respectively of
the whole theoretical errors in the range 0 < (1− T ) < 0.42 and they could be improved by
means of a correct normalization.
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Figure 3: The NNLO C-parameter distribution under the Conventional Scale Setting
(Dashed Black), the PMC(µLO) (DotDashed Blue ) and the PMC∞ (Solid Red). The
experimental data points (Black) are taken from the ALEPH experiment [34]. The
shaded area shows theoretical errors predictions at NNLO.

δ̄[%] CSS PMC(µLO) PMC∞
0.00< (1− T )< 0.33 5.34 1.33 1.77
0.00< (1− T )< 0.42 6.00 - 1.95

0.00< (C)< 1.00 6.47 1.55 2.43

Table 1: Average error, δ̄, for NNLO Thrust and C-parameter distributions under CSS,
PMC(µLO) and PMC∞ scale settings calculated in different intervals.

6 Conclusion

In this article we have shown results for thrust and C-parameter for e+e−→ 3 jets, comparing
the two methods for setting the renormalization scale in pQCD: the Conventional Scale Setting
(CSS) and the infinite-order scale setting based on the Principle of Maximum Conformality
(PMC∞). The PMC∞ method preserves the unique property of the Intrinsic Conformality
(iCF). This property leads to a RG invariant parametrization which underlies the ordered scale
invariance. The PMC∞ method solves the renormalization scale ambiguity, eliminates the
scheme dependence and is consistent with the Gell-Mann and Low scheme in QED. We point
out that in fixed order calculations the PMC∞ last scale is set to the kinematic scale of the
process: in this case µI I I =

p
s = MZ0

. As shown in Eq. 9, the scale dependence on the initial
scale is totally confined in the last subset σn. Thus the the last term in the iCF determines the
level of conformality reached by the expansion and is entangled with theoretical uncertainties
given by higher order uncalculated terms. Any variation of the last scale has to be intended to
evaluate theoretical uncertainties given by higher order contributions and not an ambiguity of
the PMC∞ method [41]). Evaluation of the theoretical errors using standard criteria shows
that the PMC∞ significantly improves the precision of the pQCD calculations for thrust and
C-parameter. We remark that an improved analysis of theoretical errors might be obtained by
giving a prediction on the contributions of higher order terms using a statistical approach as
shown in Ref. [42,43]. This would lead to a more rigorous method to evaluate errors and thus
to restrict the range of the last PMC∞ scale that, as we have shown here, can also be fixed to
the last known PMC∞ one leading to precise and stable predictions.
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