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ABSTRACT 

Experimental constraints on possible lepton and quark substructure 

are analyzed and expressed in terms of a general formalism for describing 

composite particles in terms of their constituents. In particular, the 

measured gyromagnetic ratios may very severely restrict possible internal 

structure of light leptons (electrons and muons) in some models. Simple 

expressions for hadronic g-values and electromagnetic radii are given in 

terms of their quark-gluon infinite momentum frame wave function. The 

contribution to the anomalous moment of a fermion due to internal 

structure is shown to vanish as the mass or inverse size scale of the 

internal state becomes infinitely large. 
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1. INTRODUCTION 

Quarks and leptons are presently viewed as point-like constituents 
h 

of matter. Direct tests of quantum electrodynamics in high energy 

electron-positron collisions at center of mass energies up to 32 GeV have 

confirmed the absence of lepton structure in processes probing distances 

as small as 2 X 10 -IL6 cm ' . The behavior of large momentum transfer lepton- 

hadron interactions is also consistent with the interpretation that point- 

like quark constituents, as analyzed in perturbative quantum chromodynamics, 

are the local carriers of the weak and electromagnetic currents within 

hadrons. However, as the number of generations of quarks and leptons grow, 

and as the mass ratios between the different generations increases to very 

large values: par ex mr/me + 3600, the postulate that the quarks and leptons 

themselves may be composites of a smaller number of more fundamental units 

becomes theoretically more appealing.2 Indeed, it would be very attractive 

on fundamental theoretical grounds to unify quarks with leptons in terms 

of a small number of common constituents. 

In this paper we will be concerned with experimental constraints on 

lepton and quark substructure which we will express. in terms of a general 

formalism for describing composite particles. The higher energy acceler- 

ators and s&rage rings now being built or planned will permit experiments 

which can probe for evidence of structure at momentum transfers up to -10 
3 

GeV, corresponding to a resolution scale of -10 -17 cm . However, as we 

shall show here, the very (almost incredibly) precise measurements of the 

electron and muon gyromagnetic ratios, ge and g 
u 

, put exceedingly restric- 

tive limits on the possibility of lepton internal structure. The critical 

point is that the lepton g values are very close to the Dirac value of 2 -- 
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and there is no a priori reason for g - 2 in the case of composite fer- 

mions. 3 The relationship of the anomalous magnetic moment a = 1/2(g - 2) = 
- 

F2(0) of a fermion to its general relativistic composite structure will be 

discussed in detail in Section III. 

If the electron or muon is in fact a composite system, it is very 

different from the familiar picture of a bound state formed of elementary 

constituents since it must be simultaneously light in mass and small in 

spatial extension. For a typical non-relativistic system such as an atom 

or nucleus, the size R is given roughly by R - (MER) -l/2 > M-1 where M is 

the mass and E B < M is the binding energy. A simple bag model for nucleons 

built of elementary quarks leads to a size R - M -1 . However, for the elec- 

tron we know that the intrinsic size of any constituent structure is limited 

by R 5 lo-l6 cm, which is much less than its Compton wave length 

-1 m -4x10 -IA cm . e 

It is a special challenge for a composite model of the electron or muon 

(and presumably for the quarks too) to explain why its mass is so light 

on the scale of its size l/R 3 100 GeV. It is natural to look for a chiral 

symmetry in the underlying dynamics in order to explain the occurrence of 

massless fermions or the suppression of contributions to their self- 

energies. As we will see, such dynamical symmetries can have a major effect 

on the predicted value of the magnetic moment of a composite fermion. 

It is simple to think of a fermion as having a very small spatial 

extension because it is a very tightly bound structure of internal con- 

stituents of a much larger mass m* >> m R' Let us ignore for the moment 

the possibility of cancellations or suppression factors due to symmetries 

in the underlying dynamics that might account for the very small mass m R 
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of the composite lepton itself. In this case we find that the contribution 

to the anomalous moment is linear in the mass ratio4 
h 

6a -@Y(s) (1) 

This result reflects the fact that the natural scale for the magnetic 

moment LI is eR, where R - l/m* is the scale size of the system.5 In con- 

trast, a quadratic dependence on R2 - (l/m*)2 is characteristic of vacuum 

polarization corrections. 

To explore the significance of (1) consider the agreement between 

theory and experiment for the electron's g-2 value. The most precise 

published experimental value for the anomalous magnetic moment of the 

electron is6 

a exp = 1 159 652 200(40) x 10 -12 
e- . 

n 

The prediction of quantum electrodynamics through order (a/~)', including 

uncertainties in the value of the fine structure constant and of the 

numerical integration of the o3 contributions, together with small weak 

and hadronic corrections is 7 

,QED -12 
e = 1 159 652 570(150) x 10 . 

Aside from possible eighth order contributions now under study,8 the 

possible extra contribution from an electron internal structure is thus 

limited to 

,QED _ ,ex~ -12 
e e- = (370 2 155) x 10 

i.e., 

16ael 
-10 55x10 . 

If we assume the linear parametrization of Eq. (l), and define 
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16ae[ = 5 5 meRe (2) 
h 

we find 

m* 2 lo6 GeV = lo3 TeV 

Rez 2 x 10 -20 cm . 

This bound is almost four orders of magnitude smaller than the present high 

energy limit. Thus, paradoxically, one of the lowest energy experiments6 

in physics yields the highest energy bound on elementary particle sub- 

structure. For the muon the bound is comparable, since' 

-20 x 10 -9 < a? - a th < 26 x 10 -9 
1-I 

(95% conf.) 

This implies by Eq. (2) that 

m* 2 2 x lo6 GeV 

R S 10B2' cm . 
P 

It should be emphasized that any model of heavy fermion constituents 

which leads to Eq. (1) and the above estimates for 6a would be expected, 

on dimensional grounds, to lead to a large first order contribution to the 

fermion self energy; i.e., 

SmR - @(m*> . (3) 

However, the observed lepton masses are very small, effectively vanishing 

on the scale m* >> m. Hence we have two choices: either (3) must be 

cancelled by a large bare mass -- or, more naturally perhaps, (3) itself 

must be suppressed, either by a chiral symmetry, or another special 

selection rule of the theory. From this point of view, the challenge of 

building a composite model of leptons and quarks is to make the contributions 

to both Ba and to 6m simultaneously very small. 
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The simplest possibilitylo for accomplishing this is to introduce a 

second& and still larger, mass scale, and 

states of a fermion of mass m f and a much 

boson may itself be nothing but a massive 

In this case (m: << X2> [see Sections II, 

mllmf 6a-d- 
c ) A2 

describe the leptons as bound 

heavier boson of mass h; the 

state of two bound leptons. 

III]11 

. (4) 

The resulting bound A 2 (mf/A) x 10 6 GeV for composite electrons is 

clearly not very restrictive for m:/h2 << 1. Choosing the fermion mass 

mf small in this model also implies that the lepton mass can be kept 

small. 

A more natural possibility, which we discuss further in Section II, 

is to design the couplings so that both left- and right-handed constituent 

fermions of large mass m* appear with equal weight in the state wave- 

function of the composite lepton. This is a chirally invariant model with 

the property that the symmetry of amplitudes under the transformation 

m* + -m* removes the linear dependence of Eq. (1); thus we can obtain a 

small effect, 6a - (mi/m*2). Also the perturbative contribution to the 

lepton mass vanishes in such a chiral model. The chiral symmetry of such 

a model requires an effective doubling of the number of constituents and 

leads to as yet unobserved leptonic states of anomalous parity. 

In the following section we consider some very elementary models of 

composite leptons in order to illustrate the dynamical effects which con- 

trol the anomalous moment. In Section III we give a general analysis of 

composite system which shows that the above estimates for 6a are applicable 

to the extent that there are specific spin states of the constituents which 
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can couple to leptons with both Sz = +1/2 and Sz = -l/2. We also show 

in Appendix A how the sum rule4 which relates the square of the lepton h 

anomalous moment to polarized photo-absorption cross sections leads to 

complimentary constraints on lepton compositeness. 

The message of Eq. (1) is that one proceeds at peril when introduc- 

ing lepton structure on a mass scale lower than lo3 TeV. Indeed if (1) 

is applicable, it leads to the conclusion that at least for the foreseeable 

generation of accelerators, which will reach into the - 1 TeV energy range, 

electrons and muons will behave as elementary point particles. In the 

following we will explain the basis for Eqs. (1) and (4), which leads to 

this conclusion. 

II. MODELS OF LEPTON SUBSTRUCTURE 

We consider first a simple prototype model for a composite lepton 

the two-particle system represented in Fig. la, where mf is the mass of 

a heavy fermion (mf ?> mR) which carries the lepton charge and A is the 

mass of a heavy boson constituent which we take as vector or pseudoscalar. 

In particular this X-boson may be viewed as the bound state formed of two 

heavy fermions of mass mF. In this simple model we shall assume a vertex 

function with 

insure finite 

of the vertex 

propagator: 

L 

simple Dirac structure G(k) yu or $(k) y5. In order to 

wavefunction normalization, we also assume that the square 

function falls off as some arbitrary power of the boson 

We then fix gi to normalize the total charge of the bound state to e. 
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The standard calculation of the lepton vertex 

h cM,, = i (p+q) [yFi Fl(q2) + $- ~ Ed, Y,] F2(q2)]u(p) 

from Fig. lb then gives integrals of the form 

where, in the limit (mR/mf) -f 0, 

C(Z) = zA2 + (l-z) rn: 

N =m2+LK2 1 f 2 , N2 = 4mRmfz (vector) 

Nl =m:+$k2 , N2 = -2 mRmf(l-z) (pseudoscalar) 

Thus we immediately have 

F2 (0) 
(5) 

-2 where K = l/6 c(z) is the mean value of the intrinsic momentum. Equation 

(5) indicates the linear relation as in (1) for a massive internal fermion. 

For example, for 6 = 1 and A2 =m :, a = ma/mf for the vector case and 

a = -l/2 mQ/mf for the pseudoscalar. Note that for very large internal 

momenta, -2 or for a very massive boson, such that K > rn: the anomaly, a, 

vanishes quadratically rather than linearly, as in Eq. (4). 

Let us next enhance this prototype model by including two equal 

amplitudes in the lepton wavefunction, one containing a meson of mass m f 

produced in a state of positive chirality (1 + y5) u(k) and the other with 

negative chirality (1 - y5) u(k) as illustrated by the graphs of Fig. 2. 

Since, in this model, the transformation m f + -m f is an invariance operation, 
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the numerators N2 in Eq. (5) vanish and there is no contribution to a 

that is linear in "a/m*. The absence of linear mass terms in such a model 

also implies that the lepton bound state will be massless. 

III. THE FORM FACTORS OF GENERAL, COMPOSITE SYSTEMS 

In order to analyze the consequences of lepton substructure in 

greater generality we will describe the lepton wave function and its 

electromagnetic form factors using the light-cone (infinite momentum 

frame) Fock space description.12'13 We choose light-cone coordinates with 

the incident lepton directed along the z-direction (p' E p" t p3):14 

P . Pf, P-, 
lJ= 

( $1) = (P+, $31) 

(6) 

q = ( 0 2q.p , + 3 ;;I ) 
P' 

where q2 = -2q.p = -q1 2 and M = m R is the mass of the composite system. 

The Dirac and Pauli form factors can be identified from the spin- 

conserving and spin-flip current matrix elements (J+ = Jo + J3):13 

+ 
-lc;+ = (p+q, rl + 1 p,t) = 2Fl(q2) 

P 
(7) 

4 = (p+q, rl LQL Ip, r> 
F2 (q2> 

Pf 
= -2(ql-iq2) 2M (8) 

where t corresponds to positive spin-projection Sz = +1/2 along the i 

axis. 

Each Fock state wavefunction In) of the incident lepton is repre- 

sented by the functions $Fi (xi, qi, Si), 
' z 

where 
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specifies the light-cone momentum coordinates of each constituent 

. 
1' 1 ~-~~~ n, and S i specifies its spin-projection S,'. Momentum con- 

servation on the light-cone requires 
n n 

c 
kli = 0 , 

c 
x '1, i 

i=l i=l 

andthusO<x cl. i The amplitude to find n (on-mass-shell) constituents 

in the lepton is then I/J Cd multiplied by the spinor factors u si(ki>/Ji;T 

or vsi(ki)/-q f or each constituent fermion or anti-fermion. 15 The Fock 

state is off the "energy shell": 

(p- -$+kY,” = ,i,c ‘:: -‘) *- *- 
The quantity 6 

2 li + rn: > /xi is the relativistic analogue of the kinetic 

energy $t/2mi in the Schroedinger formalism. 

The wavefunction for the lepton directed along the final direction 

p+q in the current matrix element is then 

lcI Cd 
p+qr S; 

where (see Fig. 3a)16 

4 

j 

= qj + (l-xj) ~ 

for the struck constituent and 

for each spectator (i # j). The $' are transverse to the p+q direction 

with 
n 

c 
q=o. 

i=l 
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The interaction of the current J'(0) conserves the spin-projection 

of thgstruck constituent fermion 3 + 
s' y us /k+ = 213~~'. Thus, from Eqs. 

> 
(7) and (8) 

Fl(q2) = 1/2&c? = 

and 

q1 - iq 2 -( ) 2M F2(q2) = 1/24 
(10) = [dx][d2<] $zyi + (x, xl', S) @p(n+)(x, $9 S) 

, , 

where e 
j 

is the fractional charge of each constituent. (A summation of 

all possible Fock states (n) and spins (S) is assumed.) The phase space 

integration is 

and 

[dxl = 6(1-xxi) n" dx 
i=l i 

d2kl 
[d2kl] = 167r3 6(2)(xkli) fi - 

i=l 16r3 

(11) 

(12) 

Equation (9) evaluated at q2 = 0 with Fl(0) = 1 is equivalent to wave- 

function normalization. The anomalous moment a = F2(0)/Fl(0) can be 

determined from the coefficient linear in ql - iq2 from JI* 
p+q 

in Eq. (10). 

In fact, since17 

(13) 

(summed over spectators) 
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We can, 'after integration by parts, write explicitly 

The wavefunction normalization is 

(15) 

A sum over all contributing Fock states is assumed in Eqs. (14) and (15). 

We thus can express the anomalous moment in terms of a local matrix 

element at zero momentum transfer. It should be emphasized that Eq. (14) 

is exact; it is valid for the anomalous moment of any spin l/2 system. 

As an example, in the case of the electron's anomalous moment to 

order CL in QED,18 the contributing intermediate Fock states (see Fig. 3b) 

are the electron-photon states with 

wavefunctions are (ki and x are the 

fi 
Ji pJ = 

e/&F 

M2 - 
k;+h2 k;+m2 

x -1-x fi 

spins /-l/2, 1) and 11/2, -1). The 

momentum coordinates of the photon): 

(kl - ik2) 

and 

M(l-x) - ;h 
1 -x e/v/;; -xc? 

$p”r = 

M2 - 
k;+x2 k;+;R2 

x -1-x (kl - ik2) 
-dT x 

X 

M(l-x) - & 
1 -x 

(-l/2) + /-l/2, 1) 

(16) 

I-w) -t 1 l/2, -1) 

The quantities to the left of the curly bracket 

j-1/2, 1) -t 11/2) 

(17) 

11/L -1) -t ‘[l/2) 

in Eqs. (16) and (17) are 

the matrix elements of 

U 
Y - - 

dp+- k+ 
l s* t+ and t+ y l 

U 
& 

I. 
v/+-k+ 
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respectively, where G = ^E = k1 (2 + i$>, c-k = 0, E+ = 0 in the light- 
f(J) fi 

cone g*ge for vector spin projection S 
Z 

= &l [See Refs. 12 and 133. For 

the sake of generality, we let the intermediate lepton and vector-boson 

have mass m and A, respectively. 

Substituting (16) and (17) into Eq. (14), one finds that only the 

1-l/2, 1) intermediate state actually contributes to a, since terms which 

involve differentiation of the denominator of JI 
PJ- 

cancel. We thus have 

a = 4M e2 
/ 

d2kl 

16n3 / 

1 

dx 

0 

- (1 -x)M)/x(l -x) 

k;+^m2 k;+h2 2 

1 -x - X 1 
or 

1 
a a=- J dx M(m - M(l-x)) x(1-x) 
IT 

0 ii2x + x2(1-x) - M2x(1 -x) 

which, in the case of QED (6 = M, A = 0) gives the Schwinger result 

a = a/2n. 

The general result (14) can also be written in matrix form 

(18) 

(19) 

(20) 

where S is the spin operator for the total system and $ is the generator 

of "Galilean" transverse boosts12913 on the light-cone, i.e., 

4 . x1 = (S+L + S-L+)/2 where S, = (Sl + iS2) is the spin-ladder 

operator and 

L, = xi -?-- 
-I( 

a 

if j 
akli z %g 

> 
cm 

(summed over spectators) is the analogue of the angular momentum operator 
-t-F 
pxr. Equation (14) can also be written simply as an expectation value 

in impact space. 
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The results given in Eqs. (9), (lo), and (14) may also be convenient 

for cakulating the anomalous moments and form factors of hadrons in quan- 

tum chromodynamics directly from the quark and gluon wave functions 

$61, x, s> - These wavefunctions can also be used to construct the structure 

functions and distribution amplitudes which control large momentum transfer 

inclusive and exclusive processes. 13,19 The charge radius of a composite 

system can also be written in the form of a local, forward matrix element:20 

=yq2) 
aq2 

= - 
q2=o 

We thus find that, in general, any Fock state In) which couples to 

both $J: and $, will give a contribution to the anomalous moment. Notice 

that because of rotational symmetry in the ?,T direction, the contribution 

to a = F2(0) in (14) always involves the form (a,b = 1 ..:n) 

M $r” c x -.A- $+ - iak+ UM P kl (‘” . q) (23) 

i#j 
compared to the integral (15) for wavefunction normalization which has terms 

of order 

(24) 

Here p is a rotationally invariant function of the transverse.momenta, and 

1-1 is a constant with dimensions of mass. Thus, in order of magnitude 

(25) 

summed and weighted over the Fock states. In the case of a renormalizable 

theory, the only parameters u with the dimension of mass are fermion 
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masses. In super-renormalizable theories, 1-1 can be proportional to a 

coupling constant g with dimension of mass. 21 
h 

In the case where all the mass scale parameters of the composite 

state are of the same order of magnitude, we obtain a = @(MR) as in 

2 -l/2 Eqs. (11) and (12) where R = (kl) is the characteristic size 2o of the 

Fock state. On the other hand, in theories where p2 << (kf), we obtain 

the quadratic relation a = @(uMR2> as in Eq. (4). 

Thus composite model for leptons can avoid conflict with the high 

precision measurements in several ways: 

(a) There can be strong cancellations between the contributions 

of different Fock states. An example of this is the chiral model of 

Section II. 

(b) The parameter v can be minimized. For example in a re- 

normalizable theory this can be accomplished by having bound state of 

light fermions and heavy bosons. Since u >- M, we then have a L 6 (M2R2). 

(c) If the parameter 1~ is of the same order as the other mass scales 

in the composite state then we have the linear condition a = @(MR), and 

the strong constraints of Section I must be satisfied. 

IV. CONCLUSION 

We have seen that the g-2 value poses a constraint on the form of 

possible models of composite structure for leptons and quarks. In 

particular, the contribution of a massive charged constituent with spin 

l/2 will be of order (m,/m*) unless suppressed by a selection rule such 

as chiral invariance of the theory or by a large ratio of constituent 

boson to fermion masses.lO In each case the self-energy corrections are 

also suppressed. For a chirally invariant theory there arises the problem 
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of parity doubling of the leptons. Other possible models are considered 

in Ref, 2. The simplest alternative may be that the leptons are in fact 

point-like rtelementary particles." 
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APPENDIX A 

Sum Rule Analysis of Anomalous Moments 

An alternative, but equivalent formulation, of the 

particle's anomalous moment (for any spin) can be based 

rule.23 For spin l/2 systems, 

- a,(s>l 

analysis of a 

on the DHG sum 

(A-1) 

where Ok is the total photoabsorption cross section with parallel 

(anti-parallel) photon and target spins. This sum rule follows from the 

low energy theorem and the existence of an unsubtracted dispersion relation 

for the forward spin-flip Compton amplitude. If the lepton has a sub- 

structure at short distances then there will be new resonance or continuum 

contributions to u P and uA beyond a new threshold sth = rnT2 associated 

with the mass scale of this substructure. Barring special cancellations, 

we thus have 

2 IT - f(m*2/s) oP i oA - e ,51.2 

The contribution to the sum rule from the region s 2 m *2 then yields a 

contribution to the anomalous moment (6a NON-QED)2 - 2 *2 (M /m > in agreement 

with Eq. (1). Notice that the contributions to op - crA from the lepton 

and photon final states at s << m *2 yield the standard contribution22 

(SaQED)' = (ol/2~ + ...)2. In addition, as illustrated in Fig. 5, the 

interference between QED and non-QED amplitudes yield the expected 

26aQED . 6aNON-QED contributions. Thus the QED and composite structure 

contributions to the anomalous moment are additive. 



- 18 - 

REFERENCES 

1.. Asummary of recent results from the PETRA storage ring is given in 

G. Wolf, DESY 80/13 (1980). 

2. Models of composite leptons and/or quarks include: 

J. G. Pati and A. Salam, Phys. Rev. E, 275 (1974); J. C. Pati, 

A. Salam, and J. Strathdee, Phys. Lett. m, 265 (1975). 

H. Terazawa, University of Tokyo (INS-Rep 35), 1979. 

0. W. Greenberg and C. A. Nelson, Phys. Rev. e, 2567 (1974), 

0. W. Greenberg, University of Maryland report 76-012 (1975). 

J. D. Bjorken, unpublished. 

G. R. Ralbfleish and B. C. Fowler, Nuovo Cimento z, 173 (1974). 

E. Novak, J. Sucher and C. H. Woo, Phys. Rev. g, 2874 (1977). 

M. Veltman, Proceedings of the International Symposium on Lepton 

and Photon Interactions at High Energy, FNAL, Batavia, IL (1979). 

G. 't Hooft, Lecture given at the Cargese Summer Institute (1979). 

H. Harari, Phys. Lett. s, 83 (1979). 

M. A. Sharpe, Phys. Lett. a, 87 (1979). 

J. G. Taylor, Phys. Lett. %, 291 (1979). 

R. Raitio, Helsinki preprint HU-TFT-79-39, November 1979. 

V. Visnjic-Triantafillou, Fermilab preprint Pub-80/15 (January 1980). 

E. Derman, University of Colorado preprint COLO-HEP-19 (February 1980). 

J. G. Pati, University of Maryland preprint (1980). 

S. Dimopoulos, S. Raby, L. Susskind, Stanford University preprint 

ITP-662 (February 1980). 



- 19 - 

3. However, we prove here the theorem: if m* (th e mass or inverse 

site scale of the internal state) + a, the internal structure contri- 

bution to the anomalous moment a = 1/2(g-2) + 0. Notice that this 

is contrary to non-relativistic additivity 

i=l 

which would predict g -f 0. For a discussion of non-relativistic 

models, see H. J. Lipkin, FNAL Conference 79/60-Thy, July 1979, and 

M. Gliick, Phys. Lett. s, 247 (1979). 

4. A derivation of Eq. (1) from the point of view of the DHG sum rule 

[S. D. Drell and A. C. Hearn, Phys. Rev. Lett. 16 908 (1966); S. B. --2 

Gerasimov, Sov. Journal Nucl. Phys. 2, 480 (1966)] was given in 

S. J. Brodsky, SLAC-PUB-1699, published in the LAMPF Users Group 

Newsletter, Vol. 8-1, February 1976, and S. J. Brodsky and G. P. 

Lepage, SLAC-PUB-1966, published in the Proceedings of the 4th 

International Colloquium on Advanced Computing Methods in Theoretical 

Physics, Saint-Maximin, France, March 1977, Editor, A. Visconti. 

This result has also been recently derived using sidewise dispersion 

relations by G. L. Shaw, D. Silverman, and R. Slansky, Los Alamos 

preprint LA-UR-80-588 (1980). 

5. This linear dependence in the composite system size is analogous to 

results for the nuclear polarization contribution to the hyperfine 

splitting of hydrogen which is linear in the nuclear size, See 

C. Zemach, Phys. Rev. 104, 1771 (1956). 

6. R. S. Van Dyck, Jr., Bull. Am. Phys. Sot. 24, 758 (1979). 

7. For a recent review, see T. Kinoshita, Cornell preprint CLNS-70/437 

(1979). 



- 20 - 

8. T. Kinoshita and W. B. Lindquist, Cornell preprints CLNS-424 and 

42&l (1979). 

9. J. Bailey et al., Nucl. Phys. B150, 1 (1979). F.J.M. Farley and 

E. Picasso, Ann. Rev. Nucl. Part. Sci. 2, 243 (1979). 

10. See also S. Dimopoulos et al., Ref. 2. A discussion of the possibility 

of obtaining massless bound states in models with zero mass fermion 

constituents is given in this reference. 

11. The form of this result agrees with the contribution 6a - BGF(mR mF) 

due to weak interactions which involve the couplings of the electron 

or muon to heavy fermions. See K. Fujikawa, B. W. Lee and A. I. Sanda, 

Phys. Rev. E, 2923 (1972). 

12. See J. D. Bjorken, J. B. Kogut, and D. E. Soper, Phys. Rev. s, 1382 

W71), and references therein. See also Refs. 13, 14, 16, and 18 

below. 

13. A summary of light-cone perturbation theory calculation rules for 

gauge theories is given in G. P. Lepage and S. J. Brodsky, 

SLAC-PUB-2478 (1980). We follow the notation of this reference here. 

14. This is the light-cone analogue of the infinite momentum frame 

introduced in S. D. Drell, D. J. Levy, and T. M. Yan, Phys. Rev. 

Lett. 22, 744 (1969). See also S. J. Brodsky, F. E. Close, and J. F. 

Gunion, Phys. Rev. E, 177 (1972). 

15. The polarization of each vector boson constituent is specified by the 

helicity index Si in $ as in Eq. (16). 

16. S. D. Drell and T. M. Yan, Phys. Rev. Lett. 24, 181 (1970). 

17. We use momentum conservation to eliminate the dependence of I# on 

% lj' where j is the struck quark. 



- 21 - 

18. Related calculations in the infinite momentum frame are given in 

. 19 

20 

21 

the anomalous moment of the electron is also given in the last reference. 

S. J. Brodsky, T. Huang, and G. P. Lepage, SLAC-PUB-2540. 

Parton model expressions for other definitions of the charge radius 

are given in F. E. Close, F. Halzen, and D. M. Scott, Phys. Lett. m, 

447 (1977). 

For example, the contribution of Fig. 4 to the nucleon anomalous 

moment in the quark model gives a contribution 6a 0~ @$,J(k:) if there 

is a g$3 tri-linear coupling of scalars. It is thus possible to 

obtain a contribution to the anomalous moment of a fermion which is 

linear in its mass even if all of its constituent fermions are 

massless. 

A better estimate (see Ref. 19) is R2 = (S) -1 ‘da. where 37 

S.-J. Chang and S. K. Ma, Phys. Rev. 180, 1506 (1969); J. D. Bjorken 

et al., Ref. 12; D. Foerster, University of Sussex thesis (1972); and 

S. J. Brodsky, R. Roskies, R. Suaya, Phys. Rev. g, 4574 (1973). The 

infinite momentum frame calculation of the order cx 2 contribution to 

S =f i’:m2)i . 

i=l 

23. S. D. Drell and A. C. Hearn, Ref. 4; S. B. Gerasimov, Ref. 4. A 

discussion of the DHG sum rule for composite systems is given in 

S. J. Brodsky and J. R. Primack, Annals Phys. 52, 315 (1969). 

A calculation of 6a QED using the DHG sum rule is given in G. Altarelli, 

N. Cabbibo, and L. Miani, Phys. Lett. s, 415 (1972). 
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FIGURE CAPTIONS 

1. (a) Simple composite model for lepton with a charged fermion and 

neutral boson constituent structure. 

(b) Calculation of electromagnetic form factors. 

2. Chiral model for lepton constituent structure. The cancelling contri- 

butions of the left-handed and right-handed fermion constituents 

eliminates anomalous moment contributions linear in the internal 

fermion mass. 

3. (a) Calculation of the electromagnetic vertex for a general composite 

system in light-cone (infinite momentum frame) perturbation theory. 

(b) Calculation of the a/27r contribution to the electron anomalous 

moment in light-cone perturbation theory. 

4. Example of a contribution to the anomalous moment of the nucleon in 

the quark model if a g+3 coupling of scalars is present. The + indicate 

the spin projection Sz of the quarks. 

5. Calculation of the anomalous moment squared (6a)2 from the DHG sum rule. 

(a) Contribution (Sa NON-QED)2 f rom internal structure s >> m "2: 

ho - *2 @(na)xlm . 

(b) Interference contribution (2 6aNoNeQED l 6aQED) due to internal 

structure corrections to the QED calculation. 

(c) QED contribution (6a QED)2 from Aa - $2 . 
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