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ABSTRACT 

We present a description, including relevant formulas and numerical 

estimates, of a set of polarization transfer experiments which appear to 

offer a feasible way to a) separate the deuteron charge and quadrupole 

form factors and b)measure the neutron and proton electric form factors. 

The experiments require a 2 to 4 GeV high-intensity, high-duty factor, 

longitudinally polarized electron beam, and require that the polarization 

of the recoiling hadron be measured in a second, analyzing, scattering. 

-The relevant asymmetries are fairly large, and our calculations show 

that they are sensitive to different models.obtained from existing data. 

Attention is called to the fact that the proposed deuteron measurements 

will require new 10% measurements of vector and tensor analyzing powers 

of deuterons with kinetic energy from 150 to 450 MeV. 
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1. OVERVIEW AND SUMMARY 

A. Introduction 

A complete understanding of the electromagnetic structure of the 

neutron and proton requires knowledge of both the electric form factors 

(GEn and G 
EP 

) and the magnetic form factors (GM and G 
MP 1; Yet in the 

region of four-momentum transfer squared, Q2, greater than2 (GeV/c) 2 the 

electric form factors are very poorly known. The situation for the 

deuteron is even worse; there we need to know three form factors, the 

charge, Gc, quadrupole, G 
Q' and the magnetic, GH, but only one combination 

of these, A = Gt + tn2G2 2 2 
Q + TnGM. is known for Q2 > 1 (GeV/c)20 If we 

could separately determine all of the nucleon and deuteron form factors, 

our knowledge of the physics of these systems would be greatly increased. 

In this paper we will report calculations, and suggest experiments which 

appear to offer a feasible way to do this. A key factor in these experi- 

ments is the use of longitudinally polarized electron beams. 

Electron beams with 85% polarization and low intensity1 and 40% 

polarization and high intensity2 have been used at ST&Z, and there is hope 

that beams which are both highly polarized and intense will be availabie 

in the near future.3 Such beams can be used to separate the form factors, 

provided the polarization of either the initial or final hadron is also 

known. While polarized targets have already been used with low-intensity 

beams,l there appear to be fundamental difficulties in using them with 

the high-intensity beams required for measurements at high Q2 where the 

counting rates are low. It is therefore natural to examine the alternative 

where polarization of the recoiling hadron is measured by looking at the 

asymmetry produced in a second scattering. Such a detector (polarimeter) 
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-3 will inevitably have low efficiency (10 to 10e5), but has advantages 

over a polarized target in that it would be a relatively simple, passive 

system with little or no dead time, can analyze many 'states for which 

polarized targets are not available, and can take full advantage of the 

high current and high duty factor planned for the next generation of 

electron accelerators. 

To extract the form factors to 10% accuracy from the asymmetries 

measured in the second scattering requires that the analyzing powers of 

the second scattering should also be known to at least 10% accuracy. 

Analyzing powers. for neutrons and protons have already been measured4 at 

the right energies and to the required level of accuracy. Better measure- 

ments of these would be desirable, but are not essential. For the deuteron 

the situation is less favorable. Analyzing powers are known only for a 

few selected targets at a few isolated energies and scattering angles. , 

Both the vector and tensor powers have been measured' at 420 MeV deuteron 

lab energy (corresponding to .Q2 of 1.6 (GeV/c)2), and while some vector 

power measurements have been made at lower energies6 (94-157 MeV corre- 

sponding to Q2 of 0.35 to 0.6 (GeV/c)2), the tensor powers were not ob- 

served there. New, 10% measurements of all the analyzing powers from 

150 to 450 MeV are needed before the experiments outlined in part B below 

can be carried out to the 10% accuracy desired, and more nuclei should be 

searched to find those which give particularly large analyzing powers. 

The asymmetries expected for the experiments proposed in this paper 

are typically of the order of 0.10, so that while the experiments will be 

difficult, it should be feasible to measure these to the desired 10% ac- 

curacy. We also wish to point out at the outset that, while most of the 
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measurements discussed in this paper require longitudinally polarized 

electron beams, some of the measurements for the deuteron are possible 

without polarized beams. 

We turn now to a discussion of the proposed experiments. Since the 

detailed considerations are different, the deuteron, neutron, and proton 

will be discussed in separate parts below. Finally, some details of the 

calculations for the deuteron are given in Section II. 

B. Deuteron 

Three form factors - GC, GM, and GQ for the charge;magnetic moment, 

and quadrupole moment distributions - describe the electromagnetic inter- 

action of the deuteron in elastic scattering. These form factors depend 

directly on the wave function of the deuteron. Measuring the three 

deuteron form factors:is thus a test of our knowledge of the nucleon- 

nucleon interaction; at higher momentum transfers where relativistic 

corrections or meson exchange currents become important our understanding 

of these matters is also probed. The deuteron form factors are proportional 

to the electromagnetic form factors of the constituent nucleons and at high 

Q2 uncertainties in (particularly) the neutron form factors presently hamper 

our ability to extract information dependent only on the nucleon interaction. 

In scattering unpolarized electrons from unpolarized deuterons, only 

two combinations of the three form factors can be separated. The differ- 

ential cross section is given by 

(1) 

where 0 is the lab scattering angle of the electron, do /da 1 NS is the cross 

section for structureless particles, 



$INS =($)' 

and 

A=C 3 My G2 +$lG2 + 8n2G2 
Q 

B = $n (1 + T)) G; (3: 

(2: 

where Q2 is the four momentum transfer squared. (Our conventions follow 

Bjorken and Drell, and if Q is the momentum transfer, Q 2 G -q 2 > 0.) 

Accurate measurements over a range of angles can determine GM, but cannot 

separate GC from G Q . 

To aid in separating GC from G 
Q 

, we discusspolarization experiments 

In particular, consider scattering longitudinally polarized electrons 

from unpolarized deuterons.7 The outgoing deuteron from this reaction 

will have vector and tensor polarizations pi and p 
ij (Lj = x,y,z) which 

can be calculated in terms of the three deuteron form factors and which 

can be measured by a second, analyzing, scattering from another (perhaps 

carbon) target. The cross section for the two scatterings together in 

the coordinate systems of Fig. 1, is* 

da 
&dR2 1 -f-+ a p A sin$2 + i pzzAzz 

XY 

+ 5 pxzAxz ~0%~ -. (4 

+ + (p, - pyy)(Axx - Ayy) cos@p} 

Here, a is the polarization of the incoming electron beam (i.e., a'is the 

probability of finding a right-handed polarized electron minus the 
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probability of finding a left-handed one; Ial 5 1). The quantity 

do 
----I 
aa2 0 

is the cross section for scattering with unpolarized electrons 

followed by a second scattering with unpolarized deuterons. The azimuth 

angle between the two scattering planes is $, (see Fig. 1). The only @2 

dependence is in the sines and cosines displayed explicitly above, so that 

a simple Fourier analysis will separate all the terms except pzz. The 

second scattering has analyzing powers Ai and A 
ij 

which are functions of 

the energy of the deuteron which enters the second scattering and of the 

second scattering angle 02. We could also say that they were functions 

of Q2 and 8 2 since the kinetic energy of the deuteron entering the second 

scattering is given by 

2 
K' =&- (5) 

d 

The values of Ai and A 
ij 

must be measured in a separate experiment. 

The non-zero polarizations are given in terms of Q2, 8 9' Gc(Q2), GM(Q2) s 

and GQ(Q2) by 

IoPx = - 3 4 m GM (Gc + !jn GQ) tan(i0) 

IOPZ - f ~-~/(l+r~)(l+r, sin2($8)) Gi tax&)sec($I) 

-IO%, = $GcGQ +$q2G; f fn(1 + 2 (l+n) tar+)) 

+ II~ sin"($e> GMGQ set ($8) 

(6) 

Gi 

where 

'IO = A + B tan2(i8) (7) 
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and some readers may wish to rewrite two of the above using 

bm = EZ+ME' sin($0) 
d 

(8) 

where E and E' are the initial and final electron lab energies. We give 

pz even though it does not enter the cross section Eq. '(4) directly. In 

practice, the deuteron may pass through a magnetic field between the first 

and second scattering, causing the polarizations to precess. Then in order 

to calculate the vector polarization components of the deuteron when it 

enters the second reaction, both px and p, of the deuteron as it emerges 

from the first reaction must be known. 

Polarizations px and px, are the most interesting because they involve 

combinations of GC and GQ different from A(Q2). Polarization (pxx - pyy) 

is less interesting from this viewpoint since it depends only on Gi, which 

could be measured with no polarization analysis. Also we shall see that 

(Pxx - p,) gives contributions in Eq. (4).that are numerically small. If 

the absolute normalization of an experiment proves hard to determine, then 

the only quantities that come easily from a Fourier analysis in 4, are the 

ratios P,/P,,, px/(l + ~P,,A~~), and pxz/(l +$~z,Az,)* If the initial 

electrons are unpolarized, only the last ratio can be measured. The last 

two ratios can determine p, and pxz individually only if we.have separate 

information about pzz. In some cases one might be willing to trust a 

calculation of pzz: it can happen that the uncertainty or model dependence 

of P zz is large but that'this does not cause a large percentage uncertainty 

in (1 + $pzzAZz). However, the first ratio yields: 

Md GC +I 

i ) E-I-E' %- 3 ' 
Q 

(9) 

which gives new information and can be determined independently of p,, and GM: 
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A few remarks should be made regarding why the particular polari- 

zations in Eq:6 are non-zero. If neither of the initial particles were 

polarized, parity invariance could be used to show that px = p, = 0. In 

the present case, this does not apply, and neither px nor p, is zero. In 

general py is not zero. It is not forbidden by parity or any other in- 

variance principle. That py = 0 here is a consequence of making the usual 

one-photon-exchange approximation. Also with the one-photon-exchange 

approximation, the tensor polarizatiotis are independent of.the electron 

polarization. Hence only the tensor polarizations which would be present 

if the initial particles were not polarized, i.e., those'tensor polari- 

zations allowed by parity invariance, are non-zero. These are pzzI pxzS 

and (P, - pyy), and they could be measured without having a polarized 

electron beam. 

To our knowledge, the formulas for the vector polarization are new. 

The tensor polarizations have been discussed before.g The component p,, 

is the same as -fi T20, where T20 is the tensor polarization studied by 

Levinger et al.l* and by Moravcsik and Ghosh.ll (The formula for T20 is 

.sometimes quoted after doing an extrapolation in 8 to remove the G2 M terms.) 

The other tensor polarizations px, = .- fi T21 and (p, - pyy> = 2J!- T22 

have been recently studied by Haftel, Mathelitsch, and Zingl,12 who 

examined the sensitivity to different deuteron wave functions. 

We have calculated the polarizations over a range of angle and Q2 

for several different deuteron wave functions. Our calculations of GE, 

GMS and G 
Q 

follow Ref. 13, so that we have a fully relativistic calculation 

of the impulse approximation. This means that some corrections sometimes 

counted among meson exchange corrections, namely the pair currents, l4 are 

automatically included, although true meson exchange corrections such as 
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the photon coupling to a p-n current are not. The three deuteron form 

factors depend on the nucleon electromagnetic form factors as well as 

on the deuteron wave function. Our plots are all prepared using the 

nucleon form factors called "Best Fit" in Ref. 13. 

Results of our calculation for the deuteron are shown in Figs. 2 

through 4. Figure 2 displays the five non-zero polarizations vs. scatter- 

ing angle for several values of Q2 and one wave function, namely the HM3 

wave function from the Bonn group." Polarization p,, is large at most 

angles (so we should measure it where the event rate is high) and changes 

sign at a particular Q2 whose value we shall see is model sensitive. 

Polarization p, is larger for backward scattering, where the event rate 

is small, than it is for forward scattering, where the event rate is large. 

If one considers only statistical errors, the figure of merit for a 

measurement is proportional to the (event rate) 112 x (polarization), and 

for p, this number is not strongly angle dependent and in fact slightly 

favors forward directions. Hence one may expect that experiments will be 

done at forward angles. To reduce clutter on our graphs when we consider 

different deuteron wave functions, we shall fix 8 at a moderately forward 

angle like 40". 

In Fig. 3 we show the five polarizations vs. Q2 for a number of deuteron 

wave functions at 8 = 40'. Results from the Reid soft core16 wave function 

with the form factors calculated non-relativistically have been included 

as a benchmark. We then show results from four credible model wave func- 

tions calculated relativistically. These are the Reid soft core wave 

function, the HM3 wave function,15 the Lomon-Feshbach wave function with 

4.57% D-statel' and the X = 0.4 member of a family of relativistic wave 
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functions.18 The Lomon-Feshbach wave function is quite interesting in 

that it fits the deuteron parameters,and the potential that generates it 

fits the phase shifts well, but the results it gives for the quantities of 

interest here are rather different from the other wave functions. Note 

that measurements with 10% errors are sufficient to distinguish the models 

from each other. 

The ratio p,/p,, appears in Fig. 4 for 8 = 40" and the same deuteron 

models as in Fig. 3. The model sensitive point where p,/p,, is zero is 

due to, although somewhat displaced from, the zero and associated sign 

change of GG at Q2 Il(Gev/~)~. Polarizations p, and p,, individually 

also have zeros at Q2 of 1.4 to 1.6 (GeV/c)2 due to GM, but these cancel 

in the ratio. Since GG and GQ depend primarily on the isoscalar electric 

nucleon from factor (and not the magnetic), the ratio p,/p,, is insensitive 

to the nucleon from factor model. 

There is a need for more experimental measurements of the analyzing 

powers A 
Y' 

AZ=, Axz and (A= - Ayy) at energies of interest here (deuteron 

lab energies 150 to 450 MeV). Some data do already exist.5r6 For Q2 = 

1.6 (GeV/c)2 we can use the analyzing powers reported in Ref. 5, taking 

O2 = 6" to 10" for definiteness, to estimate the size of effects that can 

be obtained for various electron scattering angles 0. For example, taking 

0 = 40° and pi and p.. 
1J 

from the Lomon-Feshbach wave function, we get 

1 + $ a pxAy sint$2 + i pzzAzz 

2 
+?j PxzAxz cos+2 

+-$ (pxx - p,,)(A= - Ayy) ~0~24~ 1 - 0.1 a sin+, - 0.23 

- 0.88 cosj2 - 0.01 cos2$J2 
> 

(10) 



Effects from (pxx - pyy) are small. However, the amplitude of the 

sinusoidal variation is not small, and a good determination of its phase 

as well as its amplitude will yield both p, and p,,. 

c. The Neutron 

The goal is to learn about the neutron form factors. They are in 

general difficult to measure because'there are no free neutron targets 

and recoil neutrons are difficult to detect. The magnetic form factor 

GMn is the best known because it is relatively large and can be determined 

from the slope in the Rosenbluth plots of cross section vs. electron 

scattering angle; it has been measuredlg up to Q2 of 2..7 (GeV/c)2 in quasi- 

free electron-deuteron scattering with uncertainties ranging from 10% to 

40%. The electric form factor GEn is very small, and therefore is generally 

very poorly known, except for the slope at Q2 = 0, which has been obtained2* 

to 2% accuracy by scattering neutrons from atomic electrons. Away from 

Q2 = 0, GEn is obtained from electron-deuteron elastic and quasi-elastic 

scattering, but has until now only been measured out to Q2 of 1.5 (GeV/c)2 

with errors from 30% to 50%. In that region there are quasi-free measure- 

mentsl' dominated by large statistical errors, with GEn extracted from the 

intercepts of the Rosenbluth plots consistent with 

measurements 21 with G En ranging from iero to about 

uncertainty from deuteron model dependence. 

GEn = 0, and elastic ed 

0.10 with the largest 

The electric form factor of the neutron is a particularly important 

quantity for our understanding of nucleon and nuclear structure. The Q2 

dependence of GEn is related to the charge distribution of the neutral 

neutron, and is a sensitive test of the symmetry of the ground-state quark 

wave function.22 Knowledge of the neutron electric form factor is 
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Y 

D 

essentiai for accurate calculations of electromagnetic interactions of 

nuclei, especially the deuteron, which serves as the laboratory for our . 

investigations of the short range nuclear force, meson currents, and 

relativistic effects.13 For all these investigations our present knowledge 

Of GEn is highly inadequate. It would even be important to know only if 

G En were not strictly zero above Q2 = 0. To this end we suggest that 

measuring the polarization of recoil neutrons following (quasi) elastic 

scattering of polarized electrons might offer a better possibility to 

determine GEn than the previous methods. 

The neutron is easier to study (at least theoretically) than the 

deuteron because there are no tensor polarizations, only vector polari- 

zations. Similarly, instead of there being four analyzing powers there 

is only one, the one called A . 
Y 

The formula for the full cross section for scattering longitudinally 

polarized.electrons from unpolarized neutrons, including both the first 

and second scatterings is: 

da= 
dQdQ2 1 + a p A 

XY 
sin@2 (11) 

where a is the electron polarization, da 
----I dL?dR2 o is the double scattering 

cross section with unpolarized electrons, and $2 is again as indicated 

in Fig. 1. The only non-zero polarizations are:23 

IoPx = IOSS = -2 d'r(l + r) GMnGEn tan 

(12) 
Iopz = IOKIL = 2r G&sec ($8) tan(iCl) 

=E-+E' J 
M t(1 + r> G&tan 

, 
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Here 

2 10=GEn+rGm 2 [l + 2 (1 + r> tan2($0)], 

T = Q2/4M2 
(13) 

and M is the neutron mass. The recoil polarizations p, and p are the 
Z 

same as the spin transfer coefficients 5s 5L and familiar from nucleon- 

nucleon scattering,24 and we have indicated above this alternate notation. 

The polarization component p, is the most interesting because it is 

directly proportional to the sought after GEn and it alone appears in the 

cross section Eq. 11 for double scattering. The component p, is less 

interesting from the point of view of form factors because it is proportional 

to G Ml-l' and it is not directly observable in the second scattering. We will 

study both components here, however, because under certain experimental 

conditions, both may be important. The neutron detection system would 

almost certainly include magnetic fields between the first and second 

scatterings to sweep away charged particles, and the recoil neutron spins 

would precess through large angles due to the large neutron magnetic moment. 

Therefore it would be necessary to know both p, and p, emerging from the 

first scattering to calculate the component p, entering the second scatter- 

ing. We shall see below that one might arrange the necessary magnetic 

fields to actually take advantage of the unavoidable large precession to 

help reduce the systematic errors. 

We have evaluated the formulas for p, and p, for several choices of 

neutron form factors and a range of Q2 and scattering angle 0. Figure 5 

shows the results as a function of 8 for fixed Q2 for one of the Hijhler 

et al. fits.25 The fact that p, -t 0 and p, * 1 at large angles is a 

general kinematical feature evident from Eqs. 12 and 13. While p, grows 
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with increasing 8 at small 8, the figure of merit (event rate) l/2 x 

(polarization) decreases with increasing 8. Therefore the choice of 8 

would tend toward forward angles. 

In Fig. 6 is plotted the polarization vrs Q2 at a given electron 

scattering angle 8 = 50" for several different form factor models. The 

results for the fit we13 called "Best Fit" with GEn from Galster et al.,21 

the Hzhler et al.25 fit 8.2, and the Blatnick and Zovko fit26 are all quite 

similar. These correspond to values for GEn consistent with the slope at 

Q2 = 0 and rising to approximately 0.05 at Q 2 8.1 (GeV/c)2 in the middle 

of the large experimental errors. The IJL fit from Iachello, Jackson, 

and Lande27 is determined entirely from a model fit to nucleon form factor 

data excluding GEn and gives quite different results, with GEn and p, 

passing through zero near Q2 = 1.4 (GeV/c)2. The form "Dipole + GEn = 0" 

yields p, = 0 and p, indistinguishable from the other phenomenological 

fits. Finally, the curve labeled "Dipole + Fin = 0" employs standard 

dipole forms with the Dirac form factor of the neutron set to zero.13 This 

is consistent with a quark model for nucleon structure with the valence 

quarks in a spatially symmetric ground state, and gives 

GEn 
x--cG = 1.91 r 

Mn (1 + 0.71 Q2)2 
(14) 

for Q2 in (GeV/c)2. This GEn is at the upper edge of the large experi- 

mental error bars on the existing data. 

All five models that we used are plausible estimates for GEn spanning 

the range covered by the present large errors, and these estimates give 

wide variations in the predictions for p,. 

dominated by the better known .GM, there is 

models for this component. 

Since the polarization p, is 

less divergence among the 
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The most likely candidate for the analyzing reaction would be np 

elastic scattering for which the cross sections are relatively large and 

the analyzing powers fairly well measured.li It seems possible that an 

analyzer-detector system could be built with an efficiency of 10 -4 
to 

lo-5 with an effective analyzing power of 0.2 to 0.3. <To achieve signifi- 

cant count rates with such low detection efficiency would require large 

beam currents. The signal-to-background ratio would be enhanced by 

detecting the scattered electrons in cofncidence if accidental rates are 

low. These requirements are nicely matched to the projected capabilities 

of the next generation of high-duty-factor, high-current electron acceler- 

ator in the several-GeV region. 

Since the neutron target (probably deuterium) would, also inevitably 

contain protons, a sweeping field between the first and second scattering 

would be necessary to remove background. With a vertical sweeping field 

charged particles are swept sideways in the lab and do not introduce a 

possible spurious asymmetry in the analyzer measuring the up-down asymmetry 

from the p x component. The neutron spin then precesses around the vertical 

direction as shown in Fig. 7. This precession rotates the large initial 

pz component into the x direction at the second scattering, thus increasing 

the up-down asymmetry in the analyzer. Horizontal sweeping fields would 

not be optimum because p, would precess into the y direction introducing 

an unwanted left-right asymmetry, and the charged particle background would 

be highly asymmetric in the up-down direction. 

To indicate the possible sensitivity of such a measurement to the 

predicted Ggn and G&, we show in Fig. 8 for 'a scattering angle 8 = 50" 

the variation of the component p, vrs precession angle w, as in Fig. 7, 

for the neutron models described in Fig. 6. In principle, data with 
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sufficient accuracy and range of precession angle w could be used to 

separate G En and G Mn from the phase and amplitude of the curve as in 

Fig. 8. If the precision or range were too limited, it may still be pos- 

sible to extract G En from the intercept at h = 0. One could either calcu- 

late the effect of the sweeping field assuming knowledge of GMn, determined 

more precisely from the angular distribution, to extract the desired initial 

PX, or alternatively, one could measure large up-down asymmetries with 

4 sweeping fields and determine p, at $ = 0 by extrapolation. While this 

technique would not directly increase the sensitivity to G . En' because the 

increased asymmetry is due to Gm, it would be advantageous for establish- 

ing confidence in the method by increasing the size of the asymmetry signal 

in a controlled way, and for reducing the systematic errors by averaging 

over symmetric measurements. From Fig. 8 we see that for analyzing power 

of 0.2 to 0.3 an experiment with the capacity to measure lo3 to lo4 counts 

could distinguish between some of the models for GEn, assuming that 

systematic errors are not dominating. 

While such double scattering experiments with neutrons would be diffi- 

cult,..we think they merit serious consideration because of several advan- 

tages they offer. First, the desired small quantity GEn is directly 

proportional to the up-down asymmetry signal(extrapolated to 3 = O),and 

is not buried in strong competition with the larger GM, as in the 

Rosenbluth method, or available only after a model dependent analysis, as 

in elastic ed scattering. Also the quantity of interest is extracted 

directly from a ratio measurement (up-down/up-Mown) which provides the 

additional advantage that the result does not depend on any knowledge of 

absolute normalizations of the beam-target-analyzer system. All that is 
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required is adequate counting rates and knowledge of the effective analyz- 

ing power A 
Y 

to extract p,. Finally, measurements with opposite electron 

polarization and with unpolarized electron beams can be used to eliminate 

spurious asymmetries. The compelling physics interest in GRn should pro- 

vide strong motivation to attempt even a difficult experiment. 

D. The Proton 

The value of G 
RP 

is much better known than GEn - particularly at very 

low Q2 where it dominates elastic scattering from free protons.28 However, 

for Q2-21(GeV/c)2, G 
MP 

dominates the cross section, and our knowledge of 

G 
RP 

fades out at Q2 2 3(GeV/c)2, where the current2' experimental uncer- 

tainty is of the order of 100%. Better measurements of G 
RP 

in the Q2 

region between 2 and 4 (GeV/c)L would be of great value to both nuclear 

and particle physics. 

In Fig. 9 are plotted the vector polarizations p, and p, of the re- 

coiling proton for various Q2 versus electron scattering angle for the 

Hzhler et al. model fit 8.2. There we see the same kinematical feature 

as for the neutron that p, + 0 and pz + 1 for large angles. 

In Fig. 10, p, and p, are given as a function of Q2 for a fixed 

angle of 40" and five different models: the dipole form (which, on the 

graph, cannot be distinguished from the model of Blatnik and Zovko26), the 

IJL model of Ref. 27, and two models of ISohler et al.25 Note that the 

models differ significantly in the region of Q2 = 2 to 4 (GeV/c>2, and 

that the polarizations are large. 

The analyzing powers for protons are also somewhat larger than for 

neutrons' varying between 0.4 and 0.3 in the region of Q2 < 4(GeV/c)2. 

For higher Q2 (i.e., higher energy protons) the analyzing powers and ep 
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cross sections begin to fall off, so that the experiment proposed here 

becomes increasingly difficult. Also, if the recoil proton detector.- 

analyzer employs magnetic fields, then, as for the neutron, there will be 

large precession due to the large g-2 factor. Determination of the recoil 

p, and pz by variation of the precession angle would be somewhat more 

complicated in this case, however, because the precession is correlated 

with the bend angle, which for a given geometry and field, is fixed by 

the recoil proton momentum or Q2. 

A 10% measurement of p, at a Q2 of 4 (GeV/c)2 would just be sufficient 

to distinguish the IJL, Dipole, and HZhler models from each other. Since 

the analyzing power at the appropriate momentum (about 3 GeV/c) is known 

to about the same accuracy, better measurements of the analyzing power 

would be helpful but are not essential. The expected asymmetry at 

Q2 = 2(GeV/c)2 for a 100% polarized electron beam would be about lo%, and 

a 10% measurement of this asymmetry requires about lo4 counts. 

II. THEORETICAL CALCULATIONS 

We shall describe the polarization calculations for spin-l particles. 

The calculation of cross sections from current matrix elements is standard 

and will merit only a few remarks at the beginning, and the remainder of 

the section will be devoted to defining and calculating the polarizations 

and analyzing powers.. 

The momentum and helicity of the incoming and outgoing electron are 

(k,T) and (k',r') respectively, and the corresponding quantities for 

the deuteron are (D,A) and (D',X'). The matrix element is 

UK- ie2 G(k'T') yu u(k,T) 4 (D'A']jPIDh) 
9 

(15) 
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The electromagnetic current for the deuteron is t* 
(D'X'ljPIDX) = - Gls'* l 5 - G3 (' l 2z;' l ') (D + D')P 1 d 

(16) + G2 5,(5 ‘* l q> - 5;* ts l q)] , 

where 

GQ = G1 
- G2 + (1 + n) G3 

I 

GC = Gl +$G 
Q 

(17) 

and 5 = E(A) and 5' = E'(A') are the polarization four-vectors of the initial 

and final deuteron and satisfy 5 l D' = 5' l D' = 0. If the initial electron 

is longitudinally polarized, then the cross section will be proportional to 

(for m e = 0) 

LV” = 
c ti(k'r') Yl-( u(kT) ii Yv u(k'r') 
T' 

= -$ Tr k' y' (1 + aY5) k Yv (18) 

= 2 [k"lk' + k'k'",- k l k' q" -I- ia ~"or kok: 1 
where a is the electron's polarization (a.= 51 for the pure helicity state 

implied by the first line above, and Ia/ f 1 if one does the weighted sum 

appropriate for a partially polarized beam). 

When we calculate the cross section for producing final state deutrons 

in some definite polarization state 
1 

5 = 
c 

x = -1 
bh E’(X) (19) 
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we get 

1 

where 

daAA' do -=- 
dR dG 

do 
5 

do 
-= 
dQ c b; bA, -+ 

AA' 
(20) 

Here p aB is a relativistic version of the density matrix and completely 

describes the polarization of the outgoing deuteron. Note that both 

E'(A') and 5' *w refer to the outgoing deuteron. The normalization of p 

iS 
1 

x 
+ <;*(A’) pa@ $(A’) = 1 , 

A'=-1 

(22) 

which leads to the correct cross section for the case when the final polar- 

ization is not measured. 

The vector and tensor polarizations are defined from the density 

matrix. aB Note that six p 5; is a covariant object, so that we may study 

it in a reference frame of our choosing. In the rest frame of the deutron, 

the polarization vectors have only spatial components, and p can be treated 

as a 3 x 3 matrix. We then use the standard non-relativistic conventions 

as recorded below to define the vector and tensor polarizations. If one 

wishes, the 3 x 3 matrices below can be thought of as the space parts of 

4 x 4 matrices with the unwritten components being zero, and their form 

in an arbitrary frame can be obtained by boosting. We choose our coordinate 

axes as shown in Fig. 1, and write p in terms of Cartesian tensors,8 
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,=I+; (px’gx + pypy + pz pz) + $ pzz 9zz 

2 
-+ 3 PxzPxz + + p,.- Pyy ( >( 9xX - gyy ) 

(23) 

0 0 -1 

9 =~(~xz+i+~z9x)=~ ( 0 0 0 ) * (24) 
xz 

10 0 

For example, consider calculating the cross section for producing a 

final state polarization in the +x direction. This means that the polari- 

zations are eigenstates of Sx with eigebalues +l, 

sx 5,, = 2 St -x ’ 

so 

5 4X 
= -j$~ (0, '1, -i) 

in the rest frame of the final deuteron or 

is = 
+X 

- $ c'(0) + 
2 

+ (5'(+1) + 5'G1)) 

(25) 

(26) 

(27) 

in general. We then get 

da+x da 
----= 

dix %INS ‘0 ‘x l 

(28) 
dSl 
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. , 

The quantity on the left is straightforward to calculate,,and leads .to the 

expression for px quoted earlier. Similar exercises yield the other vector 

and tensor polarizations. 

Incidentally, the symmetric and antisymmetric parts of L l.lv induce 

terms of corresponding symmetry in the density 

tensor polarization matrices are symmetric and 

matrix. The facts that the 

that the part of L that 
!JV 

depends on the electron polarization is antisymmetric leads to the state- 

ment made earlier that the tensor polarizations are not changed by the 

electron polarization. 

To measure the polarizations pi and p.. 
iJ 

we must do a second scattering 

from another target which is called the analyzer. The dependence of the 

cross section upon the polarization of the entering deuteron can be studied 

with a formalism like the density matrix given above. If the entering 

deuteron is in a pure polarization state 5, then 

da 
c 

daA 'A -= 
dn2 xx' bhk' bA -Xi-- 

where 

dah’h= 
dR 

(29) 

(30) 

In the rest frame of the entering deuteron, Z may be treated as a 3 X 3 

matrix, with, 

c =+A 9 ++AzzPzlz, 
Y Y' 

+ ?- A 3 xz ?x'z' 

1 
+-g ( Axx - Ayy >( 9xvxt - @ytyv > 

Components of A not listed above are zero by parity invariance. 

(31) 

The primes remind us that the two scatterings are not in the same 

plane. The unprimed coordinates axes are shown in Fig. 1; the z-axis is 
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along the direction of the deuteron exiting the ed scattering and the 

x-axis is in the ed scattering plane. The primed coordinates are for 

the second scattering, so the z' and z-axis are the same, but the x'-axis 

is in the plane of the analyzing scattering. The primed axes are related 

to the unprimed axes by a rotation about the z-axis* through angle I$ 
2' 

Thus, if ( > 9 
Y' i'j' 

and ( > 9 , Y ij are the components of 9 , in the primed 
Y 

and unprimed coordinates, respectively, we have 

( ) qpyt ij = Rii’ Rjji (9y’) ilj 1 (32) 

with 

9 
Y' 

in the primed coordinates has the same form as 9 in the unprimed co- 
Y 

ordinates, so that 

9 
Y' 

= gy ~o.s$~ + px sin$2 . (34) 

The other 3 x 3 matrices can be rotated similarly. 

Of course, the entering deuteron is in a linear combination of polari- 

zation states given by its density matrix. The overall cross section is 

obtained from 

da da -=- 
dRdf12 dSEdQ2 10 x Tr 

which yields the result given in Eq. 4. 

Acknowledgements 

This research was supported principally by the National Science 

Foundation (Grants PHY78-09378 and PHY79-19071) and in addition by the 

(35) 

Department of Energy (Contract No. DE-AC03-76SF00515). 



- 24 - 

REFERENCES 

1. M. J. Alguard, et al., NIM I+, 29 (1979), Phys. Rev. Lett. 37, 1258 

(1976). 

2. C. K. Sinclair et al., in AIP Conference Proceedings No. 35, Particles -- 

and Fields Subseries No. 12; High Energy Physics with Polarized Beams 

and Targets, Argonne, 1976, Ed. M. L. Marshak (American Institute of 

Phys., New York, 1976), p. 424; and C. Prescott et al., Phys. Lett. -- 

D, 347 (1978). 

3. C. K. Sinclair, SLAC, private communication. 

4. See, for example, R. Diebold, et al., Phys. Rev. Lett. 35, 632 (1975), 

and references therein. 

5. J. Button 'and R. Mermod, Phys. Rev. 118, 1333 (1960). 

6. J. Baldwin et al., Phys. Rev. 103, 1502 (1956). 

7. Transversely polarized electrons give effects of order me/E, where E 

is the incident electron lab energy. All our formulas are given with 

m e = 0 and in the one photon exchange approximation. 

8. G. G. Ohlsen, Rep. Prog. Phys. 35, 717 (1972); G. G. Ohlsen and 

P. W. Keaton, Jr., Nucl. Instrum. Methods 109, 41 (1973); 

G. C. Salzman, C. K. Mitchell and G. G. Ohlsen, ibid, _ 61 (1973). 

9. D. Schildknecht, Phys. Lett. 10, 254 (1964); M. Gourdin and C. A. 

Piketty, Nuovo Cimento 32, 1137 (1964). 

10. J. S. Levinger, Acta Phys. Hungaria 33 -.) 135 (1973); T. Brady, E. 

Tomusiak, and J. S. Levinger, Can. J. Physics 52, 1322 (1974). 

11. M. 3. Moravcsik and J. Ghosh, Phys. Rev. Lett. -32, 321 (1974). 

12. M. I. Haftel, L. Mathelitsch, and H.F.K. Zingl, Graz preprint 

UNIGRAZ-UTP 10/79. 



- 25 - 

13. R. G. Arnold, C. E. Carlson, and F. Gross, Phys. Rev. C&, 1426 

(1980). 

14. D. 0. Riska and G. E. Brown, Phys. Lett. x, 193 (1972). 

15. K. Holinde and R. Machleidt, Nucl. Phys. A247, 479 (1976), and private 

communication. 

16. R. Reid, Ann. Phys. (N.Y.) 50, 411 (1968). 

17. E. Lomon and H. Feshbach, Ann. Phys. (N.Y.) 48, 94 (1968). 

18. W. W. Buck and F. Gross, Phys. Rev. g, 2361 (1979). 

19. W. Bartel et al., Nucl. Phys. m, 429 (1973); K. Hansen et al., 

Phys. Rev. s, 753 (1973). 

20. V. E. Krohn and G. R. Ringo, Phys. Rev. 148, 1303 (1966); D8, 1305 

(1973) 

21. S. Galster et al., Nucl. Phys. z, 221 (1971). 

22. See, for example, R. T. Van de Walle, Subnuclear Physics Series, Ed. 

A. Zichichi, Vol. 17, "Pointlike Structure Inside and Outside Hadrons," 

Erice, Sicily (1979), to be published; and references therein. 

23. N. Dombey, Rev. Mod. Phys. 41, 236 (1969); J. Scofield, Phys. Rev. 113 --9 

1599 (1959) and 141, 1352 (1966); A. I. Akhiezer and M. P. Rekalo, 

Fiz. Chast. Atom. Yad. A, 662 (1973) [translation: Sov. J. Particles 

Nucl. 4, 277 (1974)]. 

24. F. Halzen and G. Thomas, Phys. Rev. E, 344 (1974), and A. Yokosawa, 

in AIP Conference Proceedings No. 41, Nucleon-Nucleon Interactions - 

1977, Vancouver, Ed. H. Fearing et al. -- (American Institute of Physics, 

New York 1978), p. 59. 

25. G. Hahler et al., Nut. Phys. B114, 505 (1976). 

26. S. Blatnik and N. Zovko, Acta Physica Austriaca, 2, 62 (1974). 



- 26 - 

27. F. Iachello, A. Johnson, and A. Lande, Phys. Lett 43 B, 191 (1973). 

28. F. Borkowski, et al., Nucl. Phys. B93, 461 (1975). 

29. J. Litt, et al., Phys. Lett. 31B, 40 (1970). 



- 27 - 
I 

FIGURE CAPTIONS 

1. Definition of electron scattering, recoil particle, and second 

scattering coordinate systems. The recoil coordinates xz are in the 

electron scattering plane. 

2. Recoil deuteron polarization components a) p,, b) p,, c) pxz, d) pzz, 

and 4 (p,, - pyy) at selected values of Q2 versus electron scattering 

angle 8 for one choice of deuteron yodel, HM3 (Ref. 15). These results 

were calculated relativistically using the formulas of Ref. 13 and the 

nucleon form factors we call Best Fit. The electron polarization is 

1.0. Note, the vertical scale for component p,, is a factor of five 

larger than that for the other components. 

3. Recoil deuteron polarization components a) p,, b) p,, .c) pxz, d) pzz, 

and e> (p,, - pyy) at electron scattering angle 0 = 40" versus Q2 for 

various deuteron models. The curve labeled RSC-NR is the Reid soft 

core model (Ref. 16) calculated nonrelativistically. The curves 

labeled Relativistic were calculated using the relativistic formulas 

of Ref. 13 and the following deuteron models: RSC -- Reid soft core; 

HM3 - one of the Holinde-Machleidt Bonn potentials (Ref. 15); 

LF-4.5% - Loman-Feshbach boundary condition model with 4.5% D state 

(Ref. 17); X = 0.4 - a 4-component relativistic model (Ref. 18). The 

electron polarization is 1.0. Note, the vertical scale for components 

P xz and Pzz is a factor of ten larger than that for the other com- 

ponents. 
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4. Ratio of recoil deuteron polarization components px and p,, at 

electron scattering angle 8 = 40" versus Q2 for the same deuteron 

models as in Fig. 3. 

5. Recoil neutron polarization components a) p, and b) p, at selected 

Q2 versus electron scattering angle 0 for one choice of nucleon form 

factors, fit 8.2 from H6hler et al. (Ref. 25). 

6. Recoil neutron polarization components a) p, and b) p, at electron 

scattering angle 8 = 50" for various nucleon form factors. The 

solid curve is for G Mn of dipole form with GEn set to zero, which 

yields p, = 0. The results for the two fits labeled Best Fit (Ref. 

13) and H'cihler 8.2 are indistinguishable. The dotted curve labeled 

BZ is from Blatnick and Zovko (Ref. 26), and IJL is from Ref. 27. 

The curve labeled Dipole + Fin = 0 was first suggested in Ref. 13 as 

an example for GEn consistent with the present data for 'A(Q2) and 

the quark model for nucleon structure with valence quarks in a 

spatially symmetric ground state. 

7. Definition of the precession angle w for neutrons with polarization 

components p, and p, recoiling along the z direction through a 

magnetic field z oriented along the y axis. 

8. Recoil neutron transverse polarization p, at Q2 = 1.0 (GeV/c)2 and 

6 = 50" versus precession angle w as defined in Fig. 7. The various 

nucleon form factors used are the same as in Fig. 6. 
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9. Recoil proton polarization components a) p, and b) p, at selected 

values of Q2 versus electron scattering angle 0 for one choice of 

nucleon form factor, fit 8.2 from Hijhler et al. (Ref. 25). 

10. Recoil proton polarization components a) p, and b) p, at electron 

scattering angle e = 40" for various nucleon form factors. The 

results for Dipole and the fit BZ of Blatnick and Zovko (Ref. 26) 

are indistinguishable. The Hzhler et al. fit 8.2 (Ref. 25) is a 

fit to both neutron and proton data, while their fit 5.3 is a fit to 

proton data only. The IJL curve is from Ref. 27. 
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