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I. INTRODUCTION

An historic and central goal of physics has been the determination of the funda-
mental theory of the nuclear force. Incredibly, it appears that the search may
well be over: Quantum Chromodynamics [1] (QCD), the SU(3).p1or non-Abelian gauge
theory of quarks and gluons appears to be the theory of the strong and nuclear
interactions in the same sense that quantum electrodynamics accounts for electro-
dynamic interactions. QCD solves many crucial problems: the meson and baryon
spectra, quark statistics, the structure of the weak and electromagnetic currents
of hadrons, the scale-invariance of interactions at short distance, and most-
likely, color (i.e., quark and gluon) confinement at large distances. Many dif-
ferent and diverse tests [2] have confirmed the basic features of QCD although the
fact that the tests of quark and gluon interactions must be done within the con-
fines of hadrons, as well as various technical difficulties, have prevented truly
quantitative confirmation of the theory. The structure of the theory satisfies
all prerequisites of elegance and beauty.

Despite the evidence that QCD — or something close to it — gives a correct
description of the structure of hadrons and their interactions, it seems paradoxi-
cal that the theory has thus far had very little impact in nuclear physics. One
reason for this is that the application of QCD to distances larger than 1 fm
involves coherent, non-perturbative dynamics which is beyond present calculational
techniques. For example, in QCD the nuclear force can evidently be ascribed to

.quark interchange and gluon exchange processes. These, however, are as complicated
to analyze from a fundamental point of view as is the analogous covalent bond in
molecular physics. Since a detailed description of quark-quark interactions and
the structure of hadronic wavefunctions is not yet well-understood in QCD, it is
evident that a quantitative first-principle description of the nuclear force will
require a great deal of theoretical effort.

Another reason for the limited impact of QCD in nuclear physics has been the
conventional assumption that nuclear interactions can for the most part be analyzed
in terms of an effective meson~-nucleon field theory or potential model in isolation
from the details of short distance quark and gluon structure of hadrons. However,
in these lectures, I will argue that this view is untenable: in fact, there is mno
"correspondence principle' which yields traditional nuclear physics as a rigorous
large-distance or nom-relativistic limit of QCD dynamics. On the other hand, the
distinctions between standard nuclear physics dynamics and QCD at nuclear dimensions
are extremely interesting and illuminating for both particle and nuclear physics.
For example: '

(1) Meson and nucleon degrees of freedom are insufficient to describe nuclei in
QCD: mixed color configurations appear as Fock components of ground state nuclei
and as excited multiquark nuclear states. In fact, the hidden color wavefunction
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components contribute to basic properties of nuclei including magnetic and quadru-
pole moments, charge distributions, etc.

(2) The usual impulse approximation formula for elastic form factors of nuclei,

L2 2, _Body, 2
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which is conventionally used to separate nucleon size effects from nuclear dynamics
is incorrect in QCD because of off-shell and recoil effects. An alternative, QCD-
based formula is discussed in Section VIII. We also shall show (see Sec. IV) that
even so-called static properties such as the nuclear magnetic moment which are
derived in the limit Q2 - 0 receive non-trivial recoil contributions.

(3) Since quarks are the ultimate carriers of the electromagnetic current in QCD,
the identification of specific nucleon anti-nucleon pair production terms in the
analysis of the electromagnetic structure of nuclei cannot be justified.

(4) Conventional effective meson-nucleon field theories with nucleons coupled to
isovector p-mesons viclate unitarity in tree graph (Born) approximation. Since
such theories are not renormalizable they have no predictive content in higher
orders. A renormalizable theory requires tri-linear and quartic vector meson cou-
plings and a spontaneous symmetry breaking mechanism to provide meson masses.

The real conflict between quark and nuclear physics is at a very basic level:
because of Lorentz invariance a conserved charge must be carried by a local (point-
like) current; there is no consistent relativistic theory where fundamental con-
stituent nucleon fields have an extended charge structure.

The plan of these lectures is as follows. In Section II we review the basic
structure and features of QCD. Light-cone perturbation theory is then introduced
in Section III. This method can be regarded as an elegant relativistic generaliz-
ation of ordinary Schroedinger many body theory and it has many applications to
nuclear physics problems. Sections III through VII are intended as a general
introduction to QCD analysis and phenomenology with special emphasis on exclusive
and inclusive large momentum transfer reactions, and the structure of hadronic
wavefunctions.

The most dramatic and definitive area of application of QCD to nuclear physics
is the short distance structure of the nuclear force and large momentum transfer
nuclear reactions. We will discuss these applications in detail in Section VIII.
The importance of these predictions is not only the asymptotic large momentum
behavior, but also the analytic constraints placed on nuclear amplitudes. For
example, we give predictions for the power-law form of effective meson-nucleon
couplings as dictated by the underlying renormalizable gauge theory. In Section IX
we conclude with a list of experiments which could illuminate QCD dynamics within
nuclei. The eventual goal is the complete synthesis of nuclear, hadronic and
quark/gluon dynamics. Indeed, if QCD is correct, it must account for all the
features and interactions of nuclei as well as mesons and baryons.

IT. BASIC FEATURES OF QCD

In quantum chromodynamics the fundamental degrees of freedom of hadrons and their
interactions are the quanta of quark and gluon fields which obey an exact internal
SU(3) (color) symmetry. The spin-1/2 quarks are in the fundamental (triplet)
representation of SU(3)., the spin-1 gluons are in the adjoint (octet) representa-
tion, agd hadrons are identified with singlet states; e.g., mesons

|M> ~ Egllqiqi> and baryons |B> ~ ¥ Eijquiqjqk
singlet bound states of 2 and 3 gluons) should exist. As we discuss in Section VI,
new types of "hidden color" nuclear states are also predicted in QCD. The different
types of quarks, u,d,s,c,b,...are distinguishable by their flavor label and mass.

>. In addition, gluonium (color-
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It is well known that the general structure of QCD meshes remarkably with the
facts of the hadronic world, especially quark-based spectroscopy (including the
charm and beauty quark systems); current algebra; the dimensional-counting parton-
model structure of large momentum transfers reactions (up to computable logarithmic
corrections to scale-invariance). Experiments at large momentum transfer, both
exclusive and inclusive, are consistent with the QCD postulate that the electro-
magnetic and weak currents of hadrons are carried by point-like spin-1/2 quarks
which interact via a Dirac coupling to spin-1 gluons. The most important phenome-
nological evidence for QCD comes from inelastic lepton scattering, ete— annihilation
processes, and those high momentum transfer exclusive and inclusive reactions where
the structure of perturbative quark and gluon subprocesses can be studied in rela-
tive isolation from the bound state dynamics of the hadrons. From the thecretical
standpoint, the elegant structure of QCD makes it appear almost compelling as a
fundamental theory of hadronic and nuclear phenomena, even though many crucial
questions concerning quark and gluon confinement, and the effects of non-
perturbative phenomena remain unanswered.[3]

A critical feature of QCD is asymptotic freedom, [4] i.e., the logarithmic
decrease of the effective quark and gluon coupling constant as(Qz) with momentum
transfer which implies that the strong interactions become weak, and even cal-
culable in perturbative theory at short distance. The fact that the annihilation
ratio

-+ -
_co(e e ~ hadrons)
, (e = $ee = padro (1.1)
e e ~og(ee »uwu)

is empirically [5] close to the zeroth order QCD prediction, R® = 3 Z:ei for energies
q

above the heavy quark thresholds, is a crucial check of asymptotic freedom and the
color, charge, and spin assignments of the quark quanta in QCD. Critical features
of QCD are also confirmed by the observed logarithmic breaking of scale-invariance
in deep inelastic lepton-scattering [2] and the measurements of two-jet and three-
jet structure of ete™ annihilation final states. [5] The recent observations of

jet structure [6] in two-photon reactions (consistent with yy = qg subprocesses),
and measurements [7] of the photon structure function also provide fundamental
checks of predictions which are essentially unique to QCD. However, despite these
successes, there is no direct experimental evidence for (nmear) scale-invariant
quark-quark, quark-gluon, or gluon-gluon scattering amplitudes as predicted by QCD;
the cross section for large transverse momentum hadron production in hadron-hadron
collisions appears to reflect much more complicated dynamical mechanisms. On the
other hand, as we discuss in Section IV, the fact that the proton form factor

GM(QZ) scales as (Q2)-2 reflects the fact that the minimum Fock state in the nucleon
contains 3 quarks, and that the internal quark-quark interactions which control the
nucleon wavefunction at short distances are consistent with scale invariance. [8,9]
Thus far experiments are not sufficiently sensitive to distinguish a logarithmically
decreasing aS(QZ) from a constant; i.e., fixed point behavior. The sensitivity of
the nucleon form factors to the form of aS(Qz) is discussed in Section VI.

Although there have been remarkable technical achievements in perturbative QCD
calculations in the past few years, [1,2,10] there has also been the realization
that precise and detailed comparisons with experiment require comsideration of
effects and phenomena not readily computable with present methods. There are, in
fact, only a very few large momentum transfer processes which can be studied
rigorously to all orders in perturbation theory such as Re+e_(s), (1] the meson
form factors FM(QZ) [11] (and Fy-*M(Q2>)’ the two photon processes [121 yy -~ MM
at large momentum transfer, the photon structure function, [13] and the QZ-evolution
of the hadron structure functions. Although, in principle, these processes can be
calculated to arbitrary orders in perturbation theory, in practice, there are
serious complications involving the dependence of predictions made to finite order
on the choice of renormalization scheme and the scale parameterization chosen for

3



the argument of ag. [2,13] We shall discuss a new method [14] for avoiding these
ambiguities in Section II. Aside from this, there is always the question of the
radius of comnvergence of the perturbation expansion. Even for processes which can
be calculated to arbitrary orders in og, there are (presently) uncalculable power-
law suppressed (higher twist) contributions [15] which must be included in detailed
fits to experiment, especially at the edge of phase space. [16]

In the case of jet production, QCD-based predictions based on the elementary
features of ete™ + qq and qqg, Yy + qq, etc. must also take into account higher
twist contributions, model-dependent non-perturbative effects intrinsic to hadron
formation and decay, [5] and possibly dynamical effects due to quark confinement. [3]
In the case of some exclusive processes such as the baryon form factor there are non-
leading QCD contributions which are asymptotically suppressed by Sudakhov form
factors. [9,10] The precise evaluation requires an all orders resumption of pertur-—
bation theory. QCD predictions for elastic hadron-hadron scattering are complicated
by the presence of Landshoff [17] pinch singularity contributions which are only
partially suppressed by Sudakhov form factors. [10] Despite these complications,
we can still derive general properties for exclusive reactions such as hadron-
helicity conservation [18] and the leading power-law behavior. [19]

An even more interesting (and perplexing) situation occurs for all inclusive
high momentum transfer inclusive reactions involving hadronic initial states such
as Drell-Yan massive lepton pair production, direct photon production, and large
pr hadron production. As shown in Ref. 20, initial state interactions violate the
usual QCD factorization theorem order by order in perturbation theory and affect
the normalization and transverse momentum dependence of the inclusive cross sec-
tions. In addition, final state interactions also affect the associated multi-
plicity and transverse momentum dependence of the outgoing jets in deep inelastic
lepton scattering reactions. A detailed report on these effects is given in
Ref. 20.

Perhaps the most serious complication to QCD phenomenology is the presence of

higher twist subprocesses, since power-law suppressed contributions can often

mimic (and thus confuse the identification) of the logarithmic modifications pre-
dicted for the leading twist contributions. [16] Examples of this for deep in-
elastic structure functions and fragmentation distributions are discussed in

[21] and [22] and Section V. 1In the case of three-jet production in ete~ annihila-
.tion, higher twist terms give contributions [23] dN/dk? ~ (k_|2_)'2 for the hadron
transverse momentum distribution in quark and gluon jets. These hard components
can complicate the separation of the ete~ - qgg and ete™ » qq subprocesses. In the
case of hadron production at large transverse momentum, 'direct-—coupled' higher
twist subprocesses such as gq » Tq actually dominate [24] the leading twist

qq > gqq - gTq subprocesses at large X7 = ZPT//;: Evidence for direct~coupled

mq + Y*q subprocesses in mp ~ wtuTx reactions is discussed in Section V and Ref. 22.

Present QCD phenomenology is also incomplete in the sense that although much
attention is paid to the QZ evolution of hadron structure functions there is no
real understanding of the basic x-dependent form of the quark and gluon distri-
bution in hadrons, or how to relate them to other hadronic phenomena. The relation
of the x ~ 1 behavior of structure functions to the exclusive fixed WZ, high Q2
domain is only roughly understood. [25] The x ~ 0O behavior of structure functions
and the connection to the photoabsorption cross section at fixed Q?, high v, and
nuclear shadowing phenomena is also not well understood. [26]

The main purpose of these lectures is to begin to extend QCD phenomenology by
taking into account the physics of hadronic wavefunctions. [27] Our eventual goal
is to obtain a parameterization of the wavefunctions which will bridge the gap
between the non-perturbative and perturbative aspects of QCD. The lack of know-
ledge of hadronic matrix elements is the main difficulty in computing and normaliz-
ing dynamical higher twist contributions for many processes.

4



In Section ITII we emphasize the utility of a Fock state representation of the
meson and baryon wavefunctions as a means not only to parameterize the effects of
bound state dynamics in QCD phenomena, but also to interrelate exclusive, inclusive,

and higher twist processes. It is particularly convenient to choose a momentum
space Fock state basis [19,27]

n n
INC IR IR ) ;=15 i§=:l k ;=0 ’

i=1

gefined at equal "time'" T = t + z on the light cone. Here x{ = (ko + kB)i/(pO + p3),
k, i, and A{ specify the longitudinal and transverse momenta and spin projection S,
of each (on—mass shell) quark and gluon in the n-particle Fock state (n 2 2 for
mesons and n 2 3 for baryons). We also choose the light-cone gauge AT = A0 + A3 =10
so that only physical polarizations of the gluons occur. The color singlet wave-

functions are regulated so that they are finite in both the infrared and ultra-
violet regimes. [28]

There are a number of reasons why this representation of hadrons in terms of the
quark and gluon degrees of freedom is useful:

(1) In light-cone perturbation theory, the perturbative vacuum is also an eigenstate
of the total QCD Hamiltonian on the light-cone; perturbative calculations are enor-
mously simplified by the absence of vacuum to pair production amplitudes.

(2) All form factors, charge radii, magnetic moments, etc. have exact expressions in
terms of the Y.

(3) The structure functions Gq(x,Q) and Gg(x,Q) (and more general multiparticle dis-
tributions) which control large momentum transfer (leading and higher twist) inclu-
sive reactions, and the distribution amplitudes ¢(x,Q) which control large momentum
transfer exclusive reactions (and directly coupled inclusive reactions) are each
specific, basic measures of the yp. Examples of these calculations are schemati-
cally illustrated in Figs. 1 through 3.

(4) Other physical quantities such as decay amplitudes provide rigorous sum rule or
local constraints on the form of the valence components of meson and baryon wave-
functions. [2]

e
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x
4
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Fig. 1 Calculable large momentum transfer
meson processes in QCD, and their connec-

¢*(x0) Th ¢M(%Q tion to the meson Fock state wavefunction
Yqg and distributions amplitude ¢(x,Q).
(b} Only a representative diagram for the hard

scattering amplitude Tg is shown. (a) The

ki ' %:E)afﬁx y - 7m0 transition form factor (measurable
- in single tagged ee -+ ee 1° experiments),_
\y (b) the meson form factor, (c) the yy - MM

scattering amplitude. Details are discussed
in Sec. IV.
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Fig. 2 Baryon processes at large momen-—
tum transfer in QCD and the connection
to the baryon Fock state wavefunction.
(a) Baryon form factors, (b) heavy
quarkonium decay T - pp, (c) deep
inelastic lepton-baryon scattering.

Only representative contributions are

xp shown. The inclusive cross section and
. structure function Gq/B(x,Q) is computed
do (18 —1'X) Gq/g (x,Q) do{tq—=1tq) from the square of the baryon wavefunc-
tion summed over all contributing Fock
o - () Araase states.

Fig. 3 Examples of QCD-computable higher
¢(xo) twist "direct-coupled" subprocesses for
inclusive reactions. The subscript D
indicates that the hadronic wavefunction
QNM<?AL‘\ is involved directly in the high momentum
. Xg _€§i><_ transfer subprocesses. (a) Direct
pp—mpX: —;‘Eﬂ- . . .
production of high pt mesons in hadron-
hadron cross section. The predicted
cross section is proportional to the
() meson form factor FM(p ) times the lead-
. # ing twist cross sectlon. (b) Higher
7 p—ptu X _,_O: K&_%«_ twist contribution to meson-induced
0 ” Iox Hoxy p massive lepton pair production. The
predicted cross section is equivalent to
a contribution Fy(x,Q2) ~ ¢/QZ to the

longitudinal structure function of the
meson. (c¢) Direct meson production of

_ quark jets in meson-baryon collisions.
TP QG X: +<I: :éiw @"_ , All of the meson energy is used to
produce jets at large transverse momen-
¢, {x,0)  TulaG+g—=qg+3) Gg/plxpQ} tum. The cross section is proportional
to FM(p ) times the leading twist qq —
qq cross section. (d) Direct production
of anti-quark jets in BB collisions.

Ggp*a, @) Tulga—=ma)  GgplxpQ)

¢, (x,Q) TH(q6+q——r*q) Gg/p(xpQ)

{c}

_ i 7y xp The ross section is proportional to
ppp— @ak: AV —%zi:>;_ GM(pT) times the leading twist qg - qq
cross section. In each case the direct
¢(x0) Thlg+8a3—=—3aa) Gq/p(xp.Q) process dominates over the leading twist
. () - conFribution in a large x kinematic
region.
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In the remainder of this section we will give a brief introduction to QCD and
asymptotic freedom. We then discuss a new method to avoid scheme and scale ambi-
guities in perturbative QCD predictions. In Section III we give a detailed dis-
cussion of light-cone perturbation theory and the Fock state expansion of hadronic
wavefunctions. The QCD equation of motion is also discussed. 1In Section IV we
discuss measures of the hadronic and nuclear wavefunctions (form factors, magnetic
moments, etc.), and the QCD analysis of high momentum transfer exclusive processes.
We alsc show how meson distribution amplitudes can be measured in yy =+ MM reactions.
The connection of the Fock state basis to leading and higher twist contributions
to deep inelastic scattering is given in Section V. 1In Section VI we discuss how
many different QCD processes are interrelated (as in Figs. 1 through 3) through
the hadromic Fock states. We also discuss a novel type of QCD subprocess — direct
coupled hadron~induced reactions. [29] A new prediction for the proton form factor
is also given. In Section VI we also introduce a simple phenomenology of hadron
wavefunctions and discuss present constraints on the form and normalization of the
valence meson and nucleon Fock states. An important conclusion is that the valence
Fock state as defined at equal time or the light cone appears to have a signifi-
cantly smaller radius than that of the physical hadron; [27] higher Fock states
thus play an essential role in low momentum transfer phenomenoclogy. Applications
to quark jet diffraction excitation [30] and the hidden heavy quark Fock state
structure of hadrons are also discussed. [31] The effects of initial and final
state interactions on QCD inclusive reactions are discussed in Ref. 20.

A. The QCD Lagrangian

An essential feature of QCD is that SU(3). is an exact local symmetry: rotations
in color space can be made independently at any space-time point. The mathematical
realization of this is the Yang-Mills non-Abelian gauge field theory. The QCD
Lagrangian density is [1]

2

e 1
S?QCD = y@EPp - m) P 7 Tr Fuv (2.1)
ip" = 1 3" T + gA¥ (2.2)
Y = oMaY - 3VAY + gla¥,aV] ' (2.3)
~ Here
9p (%)
Y(x) = 4y ()
a5 (x)
is the color triplet of quark fields, and AM(x) = E: AaA:(X) is the color

a=1,8
octet gluon field summed over the 3 x 3 traceless matrices A, satisfying [Ag,x,] =
i fape Ao and Tr[A8xP] = 283D, @ cp is obviously a color singlet. Local gauge
invariance and color symmetry follows from the invariance of £qcp under the general
gauge transformation

P(x) > Ux) ¢(x)- (2.4)
A GO > U AM ) U () +-§ v (¥t m) : (2.5)

where the unitary matrix U(x) = exp i 2: Aaea(x) is an arbitrary function of space
a

and time. Note that the field strength Fuv(x) - U(x) FUV U_l(x) is not invariant
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since it is in the adjoint representation of SU(3).. The local gauge invariance of
the Yang-Mills is an essential ingredient in proving the renormalizability and con-
sistency of the theory. [1]

In general, a sum over quark flavors i = u,d,s,c,b... is understood in S?QCD.
(In fact, the mass matrix mjj is not diagonal when the weak and electromagnetic
interactions are taken into account. [321) The fundamental origin of the quark
flavors and their masses remains an outstanding problem in hadron physics.

In a sense QCD can be regarded as the non-Abelian generalization of QED:

L = y(x) (P - m) w-—pz

QED (2.6)

where iD" = i3" + eAu, F*Y = 3%AY - 3¥A". From the point of view of formal per-
turbation theory there are close similarities in the Feynman rules and treatment
of ultraviolet renormalization and infrared divergences. The Feynman rules for
QCD are given in Table I. In the case of covariant gauges one must formally in-
clude "ghost" scalar particles in loops, or else unitarity of amplltudes involving
the non-Abelian-couplings will be lost. In the case of axial gauges (n A =0
where nu is a fixed 4-vector) there are mo ghosts, but renormalization is™ somewhat
more complicated. The color trace algebra for any Feynman diagram can be done
almost automatically using the graphical rules given by CVITANOVIC. [33] The main
algorithm is that as far as color is concermned, the gluon propagator ~ in SU(N) is
equivalent to two quark lines Z minus 1/N times the identity (to remove the U(N)
singlet). The complete rules are given in Ref. 33.

Although QCD and QED perturbation theory have many similarities, there are non-
perturbative aspects of the non-Abelian theory which have no analog in electro-

Table I Feynman rules for quantum chromodynamics®

Fermion . a @ i
p

Propagator P-m+ie 8a8

oo 2ot i) 2

Propagator T - +ie

Ghost , 9__o b i 8ab
Propagator p pi+ic
B0 .
Fermion . ' a
Vertex /E\ 197 Xag
a B
Triple
Vertex 9 fabe [g;w(k'q‘)"' *avcla-rly
+ ggp(r-k),]
Quartic ., ~ K r _.z[
Vertex AN 19" fabe Tede (90 9up~FupIue)
. P q
v o *face fode (Guv9op~ updve)
e *fade fcbe(qﬂe’gvp‘gpvqa;)]
Ghost | *E* ;
Vertex * q,’ ‘\r 9 abe rF'
’ h Y
b c

ii *From A. J. Buras, Ref. 1.



dynamics, e.g., classical ("instanton") solutions to the pure gauge theory. These
solutions can have profound consequences for the QCD vacuum state. [34] Further-
more, the absence of asymptotic color states implies that, at best, the perturba-
tion rules are only valid in a far-off-shell short-distance regime.

Fortunately for many processes of experimental interest it is possible to prove
factorization theories which separate the long-distance dynamics associated with
the hadron wavefunction and color confinement from quark and gluon subprocesses
which only involve short distance propagation of color. [35] If this factorization
can be proved to all orders in perturbation theory, it is reasonable to assume
that the corresponding perturbative predictions are legitimate predictions of the
complete theory. In the case of predictions dependent on hadronic fragmentation
from quark or gluon jets one has to make an extra assumption that the essential
effects of color confinement are restricted to large distances. [3]

B. QCD Perturbation Theory

As in QED, one can sum the effects of vacuum polarization into a "running' coupling
constant (as =g /4ﬂ)

2
OLS(QO)
1 - a @) [r@) - 7))

2
cxs(Q ) = 2.7

where W(Qz) can be computed (in some gauges) from the single-particle-irreducible
contrlbutlons to the gluon propagator, Given the gluon propagator at any scale
Q , one can use Eq. (2.7) to determine the effective interaction at the scale Q
To lowest order in perturbation theory the quark and gluon loop insertions give
[QZ,Q% >> m%, i=1, 2...n ]

£
2
@) - 1) = & 10g 20, - 11] + 0 (2.8)
Q
0

i.e., for nf < 33/2, a (Q ) decreases with Q , exactly opposite to QED. More
generally, one can calculate the Q dependence of ag in higher orders

. -8
9 2 2
o % = 8fe_(®
5 1og Q° ° (@] (4m)

|
Q

5 02(Q") (2.9)

where [1] 83 = 11 - 2/3 ng, By = 102 - 38/3 nc. The solution for as(Qz) at large
Q2 to two loop accuracy then has the form

éw

a () - > (2.10)
80 log Q_ + —= log log Q2

72 8o A

where A is introduced as a constant of integration. The fact that as(Qz) decreases
at large momentum transfer [asymptotic freedom] is am extra-ordinary feature of QCD
which in prlnc1ple allows a systematic computation of short distance processes. A
graph of o (Q ) showing the effect of the By/Bp term is shown in Fig.4. It should
be empha51zed that perturbation theory does not determine the form of ag at small
Q where its magnitude becomes large. As noted by PARISI and PETRONZIO, [36] con-
sistent calculations of perturbative loops demand that a5(Q?) remains finite at

all values of the loop integratiomn. Thus far there is no direct experimental evi-
dence that « (Qz) decreases logarithmically.
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0.8 T 1 T T
(A =100 MeV)
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< ' 41
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g 04 (I-2/3n,)n Q%2 -
le]
Fig. 4 The QCD coupling constant
02 - Two Loop o (Q ) for ng = 4 to one- and two-
loop accuracy. Empirical specifi-
cations of A in a given scheme
1 | ! ] should use the two-loop formula
0
2 4 6 8 10 (Eq. (2.10),
LOG(Q2/A?)

If we choose Qg to be the ultimate ultraviolet cutoff scale of QCD then us(Qo) =
ad is the "bare charge" of the theory. We can then identify aS(Q ) as the effective
coupling constant whlch takes 1nto account all vacuum polarization contributions of
1nvar1ant mass°4{ Q2 < M2 Similarly, we can define the running quark mass
m(Q ) which takes into account al? self-energy insertions in the range Q2 <¢47 < Q2.

Let us now define a cutoff Lagrangian s?KED density for QCD by excluding all
intermediate states with _#2 > «k%. The fact that the theory is renormalizable
implies that

2

Zoep = VA + 8(Oh = mG0)) p - F e F (2.11)

+ 6ﬁj§ m(x) Oquuv

K

v+ ...

i.e., all effects of very high mass states M2 > k% are completely contained in the
_effective coupling constant g(K) the quark runniné mass m(x), and "higher twist"
power-law suppressed l/|<2 l/K etc. terms. If kx4 is taken at the ultimate cutoff
scale Q8 then éfQCD is the bare Lagrangian. If k2 is chosen sufficiently large then
the higher twist terms are negligible in (2.11).

The classic perturbative calculation in QCD is that of the annihilation cross

section 0 4 . which can be computed from the hadronic absorptive part of
e"e” »hadrons

the forward ete™ » ete” amplitude to order az. Since there are no external color
charges there can be no gluon—mass infrared divergences or quark mass singularities.
Thus the only relevant scale is Q2 s Eg m.» and we can compute perturbatively from

S?SCD with 2 = Q2. The result to order az(Qz) is
M5, 2 2,2
2 2 aS Q™) QS(Q)
R+_(Q)—_3E e 1+ - + 7 B+ An) + ... (2.12)
e e g m

where the A ng term arises from virtual quark loops. An essential and unique pre-
diction of asymptotic freedom is that Q%lm R(Q2) = 3 z:ez = RO, the free quark

prediction. The specific values of B and A in Eq. (2.12) depend on the method of
implementing the ultraviolet cutoff. In the MS scheme (a particular dimensional
regularization scheme) one finds [37] B = 1.98, A = -0.115. However, in analogy
to QED, it is clear that the A n¢ term should be identified with the fermion loop
vacuum polarization contribution to the running coupling constant in the ag(k)/m
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term; the particular numerical value for A is rather arbitrary since we could have
chosen any scale k2 = f2Q2 for the perturbation expansion. In QCD, ag is essentially
a function of By = 11 - 2/3 ng. Thus we write B + A ng = -3/2 BgA + C, where C =
(33/2)A + B= 0.0825 must be scheme independent (since to the order of interest the
cutoff schemes can only differ by the definition of the scale constant A2). We thus
have the QCD prediction: [14]

MS, _2 .2 2

a (£°Q7) a
R, (Q2)=32 e’ |1+ 2 4 o0.0825 S+ ... (2.13)
- q m 2
e e ™
q
where f = fo= = e3® = 0.71 in the MS scheme. Let us imagine that eventually

measurements of Ot will be sufficiently accurate that we can

9 > (QZ) hadrons
choose R(Q”) to define a "canonical" measurement of the QCD running coupling
constant:

2 o v o M3
R R

Our goal is then to show that all observables in QCD which have a perturbative ex-
pansion in ag can (in principle) be expressed in terms of ag(Qz) without any scheme
or scale ambiguity. We will define the scale parameter A = AR using Eq. (2.10) for
R
ag.
We thus propose the following prescription for making scheme and scale indepen-
dent perturbative QCD predictions: [14] For any observable 0(Q2) which has a
perturbative expansion in aS(Qz) one can compute in a given renormalization scheme

, o @) o2 (%)
D(Q)='—‘—TT——+(AO nf+Bp)"'—2‘——+... (2.15)

m

As in the case of R(QZ), we identify (—-3/2)BOAp as the vacuum polarization correc-
tion to the running coupling constant in the og/m term. Thus

, @ .<as 2
D(Q)=—"T—“+Cp T> + ... (2.16)
where
34 - 3
Qi —e ° ARQ2 (2.17)
and
c =34 +3B (2.18)

are scheme-independent. The leading order prediction for p(Qz) can thus be written
unambiguously in terms of ag. If C, ag/7m is reasonably small, then we can expect
that Eq. (2.16) gives a meaningful perturbative QCD prediction. An important task
will be to carry out the above procedure to higher orders in oag.

As an example of the above method, let us consider the decay rate for pseudo-

scalar quarkonium states which is computed in terms of QQ + gg plus higher order
subprocesses. In the MS scheme: [29] (C is a known color factor)
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== 2 a
aMS<M2 14 = 17.13—§n)+ (2.19)
= Ne m 9 °f

2 aR
' =c [aR<(.37M >2>:' 1+ 2.46 24 ...
S ﬂc 7 T

i.e.: the effective scale in the vacuum polarization contributions is ~0.37 My
relative to the scale in ete™ + hadrons. If ag = 0.2, then the correction term®
in Eq. (2.19) gives only a 7% correction to the determination of ag. In the case
of the hadronic decays of JCP = 1-- heavy quarkonium states, the correction to the
QQ ~ 3g decay amplitude appears to be very large so that the leading order expres-
sions may not be meaningful. One finds [40]

I'(n - hadrouns)
c
T(n, > vy) C[
c

R
o

3
) R 2 s
az [as ((.ZZMT) )] 1 - 13.94 7r-+ ce. (2.20)

I'(T > hadrons) _ 10(1r2
(T » u+u_) 8l me

T NI

For ag = 0.2, the correction term gives a correction of order 30% to the determina-
tion of ag. Note that even in QED, the radiative corrections to orthopositronium
decay are very large:

_ (e}
Iy =14
Y Y

{1 - 12,61 3) 2+ ] (2.21)
so this appears to be an intrinsic problem to this type of decay process. Addi-
tionally, the QCD prediction for quarkonium decay is complicated by some uncertain-
ties from relativistic and higher Fock state components in the quarkonium
wavefunction.

One of the most important predictions from QCD is the logarithmic variation of
structure function moments, M, (Q2) —_[]'dx xPF3(%,Q). Using the above renormaliza-
tion procedure we find [14]

: R
-y a
—-—d———ilogM(QZ) naR<f2Q2>[1-—Sc +}
n 8 s n T n
d log Q

where the y, are known anomalous dimensions (see Sec. IV). The coefficient C,
varies from ~0.27 to 1.1 for non-singlets moments n = 2 to 10, thus giving reason-
ably small corrections to the lowest order predictions. The monotonic decrease of
f, with n reflects the fact that the momentum scale for gluon emission becomes
1ncrea51ng1y restricted at large n (<1 - x> ~ 0(1/n)) due to phase-space

effects. [41] Further applications and discussions will be given in Ref. 14. We
also note that in processes with several large momentum transfer scales, the effec-
tive argument for ag in the leading order predictions can be very complicated. For
example in the case of large pr jet production due to gqq -+ qq scattering, the sub-
process scattering amplitude involves ag evaluated at the subprocess invariants t
and u, whereas the evolution of each hadronic structure function is sensitive to
its respective x-dependent phase-space boundary as well as the quark momentum
transfer.

III. HADRONIC WAVEFUNCTIONS IN QCD [27]

Even though quark and gluon perturbative subprocesses are simple in QCD, the com-
plete description of a physical hadronic process requires the consideration of many
different coherent and incoherent amplitudes, as well as the effects of non-
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perturbative phenomena associated with the hadronic wavefunctions and color con-
finement. Despite this complexity, it is still possible to obtain predictions for
many exclusive and inclusive reactions at large momentum transfer provided we make
the ansatz that the effect of non-perturbative dynamics is negligible in the short-
distance and far-off-shell domain. (This assumption appears reasonable since a
linear confining potential V ~ r is neglibible compared to perturbative 1/r contri-
butions.) ¥For many large momentum transfer processes, such as deep inelastic lepton-
hadron scattering reactions and meson form factors, one can then rigorously isolate
the long-distance confinement dynamics from the short-distance quark and gluon
dynamics — at least to leading order in 1/Q2. [35] The essential QCD dynamics can
thus be computed from (irreducible) quark and gluon subprocesses amplltudes as a
perturbative expansion in an asymptotically small coupling constant a (Q ).

An essential part of the QCD predictions is the hadronic wavefunctions which
determine the probability amplitudes and distributions of the quark and gluons
which enter the short distance subprocesses. The hadronic wavefunctions provide
the link between the long distance non-perturbative and short-distance perturbative
physics. Eventually, one can hope to compute the wavefunctions from the theory,
e.g., from lattice or bag models, or directly from the QCD equations of motioms,
as we shall outline below. Knowledge of hadronic wavefunction will also provide
explicit connections between exclusive and inclusive processes, and will allow
the normalization and specification of the power law (higher twist) corrections to
the leading impulse approximation results. As we shall discuss in Sec. VI, there
are a number of novel QCD phenomena associated with hadronic wavefunctions, includ-
ing the effects of intrinsic gluons, intrinsic heavy quark Fock components, dif-
fraction dissociation phenomena, and ''direct'" hadron processes where the valence
Fock state of a hadron enters coherently into a short-distance quark-gluon
subprocess.

The most convenient representation of a wavefunction in a relativistic field

theory is to use a momentum space Fock state basis defined at equal "time"
T =1t + z on the light cone (see Fig.5a): [42]

|

an ' "nF’J_ Kin»An

% (xin uin A)
(o)

Fig. 5 (a) the n-particle Fock state amplitude
defined at equal t. The state is off the p~
light-cone energy shell (see Eq. (3.12)).

(b,c) Examples of light-cone time-ordered per-
turbation theory calculations. The frame is
chosen so that kT > 0. (d) QCD equation of
motion for the meson wavefunction.
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{wn&ii,x.; Ai)} , (3.1)

1

Momentum conservation requires

D >
3k
i=1 *

n
0, :E: X, = 1, 0 < X, < 1 . (3.2)
i=1

The k_Ll are the transverse momgntum of the (on—mass shell) constituents relative
to the bound state 3-momentum P = P3, The x4 are the light-cone momentum frac-
tions (ki = ko + k3, A-B = 1/2(A+B + A"BT) - A ‘B )

x° + k3)i
N @2

X, =
1

+IHF4

(In a frame where P3 + @, the x4 are the longltudlnal momentum fractions.) The
mass shell condition is k m, or k (k? + m )/k As we shall see, the
equal-T1 formalism is equivalent to the usual Schroedinger equal-time theory in the
non-relativistic limit.

A unique and remarkable advantage of quantizing a relativistic theory at equal Tt
is the fact that the perturbative vacuum state |0> is also an eigenstate of the full
Hamiltonian. Matrix elements where particles are created out of the vacuum are
excluded because of the fact that all particles must have k > 0. Furthermore, the
charge operator and the current J' = JO + J3 are diagonal 1n the Fock state basis.

It is particularly advantageous to choose the light-cone gauge At =a2+ a3 =0
since unphysical degrees of freedom do not appear. A comparison between time-
ordered and t-ordered perturbation theory is given in Table II.

Thus at a given "time" we can define the (color singlet) basis
|0> (3.4)

lqq> = a b . 0>
+ >

The pion state, for example, can be expanded as

T = > V¥~ + > - o+ ... (3.5)
| laa> ¥ o + faagd> ¥ o
where Y, = <n|m> is the amplitude for finding the Fock state [n> in |n> at time t.
The full Fock state wavefuncglon which describes the n-particle state of a hadron
with 4-momentum P* = (P ,P7 Pl) and constituents with momenta
> > 2 2
P + k) +m
Mo (L) = (xp+, SR , B+ % (3.6)
Sod X L 1

and spin projection Ai is
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Table 2 Time-ordered perturbation theory

Equal t Equal 1 = t + 2
2 2
x° = §2 + m2 particle K = kl tm particle
mass shell k+ mass shell
2: X conserved z:ﬁ},k+ conserved
V”ab - vab '/”ab = Vab
1 1
+) Vv \Y + v — —V
AN S Ve TAL e Ty v
a C a C
. . +
n! time-ordered contributions k > 0 only
-
Fock states wn(ii) Fock states wn(kli’x')
pas + n n
:z: X, = P=0 x = E—y :E: x. =1, :E: k,,.=0
4 i + i — 1i
i=1 P i=1 : i=1
(0 < x, <1)
i
o L + [ 5 xo-
(5’=P-Ekl £=P<P-zki>
i=1 i=1
n 5 2 n ki + m2
=M- 2: k;y +m =M - 2‘ - '
i=1 i=1 i
+ > > -
u(xPx P+ k.Li)Ai
y =9 (x.,k .3 A - (3.7)
o n i1 ) fermions f;;

<+ > -
+
e(xiP ’XiPl kLi)ki

gluons

i,

Note that wn(xi,ﬁli; 21) is independent of pt

tion is

Zf[dzki]f[d"]wn(xi

AL

i

%=1

X
» .Li’

where by momentum conservation

[2*.]

and

dzk .
11

3

632 (S & )T
' <i=l li) /!

i=1l 16 w

/5

- . 0] 3
» P,. The general normalization condi-

(3.8)

(3.9)



n n ’ :
[ax] = < - Z ) ﬂ dx, (3.10)

In the non-relativistic limit the equal T = t + z/c and equal time t theories

coincide. For example, for the Fock state wavefunction in the rest system we can
identify

o) 3 3
K+ K o K
M - M T (3.11)

g =]

and the off-shell light-~cone energy is

" _ n _ 2 0 k2 + m2
& =P [P ‘Zk] =M —Z s (3.12)
i=1 i i

X
i=1 i

. n 2 2 1
=~ M [6’ - E : (———*kl ’ k3) ]
- NR et 2m .

i=1 i

Thus, in the non-relativistic limit, the hydrogen atom wavefunction is

B . C
Y1s = (3.13)

2
[kf + (me>— xM)2 + azmi]

Light-cone perturbation theory rules can be derived by either evaluating stan-
dard equal-~time time-ordered perturbation theory for an observer in a fast moving
Lorentz frame (the "infinite momentum" method), [431 or more directly, by quantiz-
ing at equal t1. The LCPTh rules are: [19,44]

(1) For each Feynman diagram assign particle 4-momentum k" such that k¥ ﬁ. is con-

served at each of the n vertices. (This is the analogue of 3—momentum conservation.)
Since all particles are on the (positive energy) mass shell (k2 = m2) we have
_ kf + m2
k =——— >0 ) (3.14)
k+

(2) Construct all time orderings (up to n!) such that k+ > 0 for all particles.

(3) For each intermediate state assign a propagator

1

(3.15)
Z k. - Z k. + e "

initial intermediate

and a factor 1/k+ for each internal line. (This is the analogue of

1/( L E. + 15:) and 1/(2E) in TOPTh.)
1n1t1al intermediate +

(4) For each loop integrate

/ f ax’t (3.16)
2(2@)
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and sum over intermediate state spins and polarization.

(5) The vertex factors depend on the theory. In the case of g¢3 interaction, assign
a factor g at each vertex. In gauge theories the gluon—fermion vertices are

gugu, -gvgv, gugv, -gvfu . (3.17)

The tfigluon and quartic-gluon vertices are given in Table I.

(6) Finally, there are instantaneous gluon contributions in A+ = 0 gauge:
(3.18)

. . . + ot
{analogous to Coulomb interactions) and instantaneous fermion contributions vy /2k
(the remnant of backward-moving "Z-graph' fermion lines). For example, the
electron-electron scattering diagrams of Fig.5b give

-~ U -V + +
e2 uy uuyu o 2 uy uuy u

= e (3.19)
ee > ee k+D uv (k+)2
where the polarization sum is
uv YRR + _ _
d" " = :E: €y €45 € = 0, k+e=0 (3.20)
A=1,2
and the light-cone and energy denominator is
D = P, - k - P, + ie . (3.21)
Similarly, the Compton scattering diagrams of Fig.5c give
G u, U.¢ u ¢ Y+¢ u
‘/ﬂye—+Ye = e2 Z : >\+ b ey 92 < T = : (3.22)
A=1,2 pD 2p
D = ka + Py~ P + ie

(This is analogous to the decomposition of the Feynman propagator (p-m + ie)”
into positive and negative frequency components.)

Calculations in light-cone perturbation theory are often surprisingly simple
since one can usually choose Lorentz frames for the external particles such that
only a few time-orderings need to be considered. All the variables have a direct
physical interpretation. The formalism is also ideal for computing helicity
amplitudes directly without trace projection techniques. A list of all the gluon
fermion vertices which are required as gauge theory calculations is given in
Tables I and II of Ref. 19.

It is straightforward to implement ultraviolet renormalization in light-cone
perturbation theory. We define truncated wavefunctions ¥ and a truncated
Hamiltonian H¥ such that all intermediate states with |&] > k2 are excluded. [45]
Thus k=1 is analogous to the lattice spacing in lattice field theory. Since QCD
is renormalizable the effects of the neglected states are accounted for by the
use of the running coupling constant « (K2) and running mass m(x2), as long as k

is sufficiently large compared to all phy51cal mass thresholds. Completeness
implies
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K

2
) 2 K 2 | m
z f [d kl]/[dx]{wn(xi,kli; Ai)L =1 - &(—2) (3.23)
n,Ai

The equation of state for the meson or baryon wavefunction in QCD is a set of
coupled multiparticle equations (see Fig.5d):

n 2 2
kT o+
2 L K _ K K
M - E <}——;;.—_>i. b, = zy Vnn' wn' (3.24)

i=1

where M2 is the eigenvalue and Vap' is the set of diagonal (from instantaneous
gluon and fermion exchange) and off-diagonal (from the 3 and 4 particle vertices)
momentum—-space matrix elements dictated by the QCD rules. Because of the x cutoff
the equations truncate at finite n,n’'. In analogy to non-relativistic theory, one
can imagine starting with a trial wavefunction for the lowest |qa> or !qqq> valence
state of a meson or baryon and iterating the equations of motion to determine the
lowest eigenstate Fock state wavefunctions and mass M. Invariance under changes in
the cutoff scale provides an important check on the consistency of the results.
Note that the general solution for the hadron wavefunction in QCD is expected to
have Fock state components with arbitrary numbers of gluons and quark-antiquark
pairs.

The two-particle '"valence" light-cone Fock state wavefunction for mesons or
positronium can also be related to the Bethe-Salpeter wavefunction evaluated at
equal T:

> . - >
& ) = u(xy k) vixy,=k )
2n TBS P

1 xy

w(xi,fl) (3.25)
X

+ negative energy components,

where Y satisfies an exact bound state equation [19]

2 2 2 2
k¥ + m k" 4+ m
MZ _ 4 1 4 2 w(Xi,E ) (3.26)

X X
1 2
a“e
1~ > > 2 ->
= dy[ 3 K(Xi’kn’ viok g M ) Viygaty )
0 16 =

The kernel K is computed from the sum of all two-particle~irreducible contributions
to the two-particle scattering amplitude. For example, the equation of motion for
the |ete™> Fock state of positronium reduces in the non-relativistic limit to

kl,ll ~ @{am), x = Xp = Xy ™ O(af) M2 = 4m? + 4me
kf + x2m2
- — .27
£ o ‘P(xi:kl) (3 )

1 a’e 2
= (4x.x.) dy m > ¥(y.,2)
1%2 j:l | @ )+ wemlat |
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The non-relativistic solution is (B = am/2) [19]

rU*V¢ - 'U"LV¢
Y2 x.xX
1%2
’mﬁg 641 B xlxz
bk ) = NI 73 53 77 ) v
[kl + (x) = x,)n" + 8 J U4V,
\ xlx2

for para and ortho states respectively.

(3.28)

More generally, we can make an (zpproximate) connection between the equal-time
wavefunction of a composite system and the light-cone wavefunction by equating the

n

off-shell propagator & = Mz-(
i=1

) in the two frames:

r 2 n 2 n
o
DI D DR RS (3.29)
i=1 i=1l
€ = ¢
2 2
kK +m >
2 L 1 = = .
w2 - Z , Zkli 0, in 1[L.c.]
. X .
. i=1 *
In addition we can identify
+ o 3
_ kl (q ta )i T > =
P .
j; 4(3)

For a relativistic two particle state with a wavefunction which is a function of

- the off-shell variable & only, then we can identify (ml =

2 2
kl + m

1 - x2

- 2
YL.c. < Yo (@D

m

2=m’x=

X

1 xz) (271

(3.31)

En thg non-relativistic limit, this corresponds to the identification

q = k., q% = X2m2.
IV. MEASURES OF HADRONIC WAVE FUNCTIONS
A. Form Factors of Composite Systems

If we could solve the QCD equation of motion Eq. (3.24)

for the light-cone wave-

functions yp of a hadron then we could (in principle) calculate all of its electro-

magnetic properties.
of a hadron we choose the Lorentz frame [46]

2
u + - = + M >
p=(p,p,pL)=<P,—+,OL>
' P
+ - > 2p -
" = (q,9 ,q9) = (o,—"‘—ﬁ,aj)
P i

For example, to compute the elastic form factors <p|J¥(0)|p+ q>

(4.1)



where p2 = (p-i—q)2 = M2 and —q2 = Q2 = q2. Then the only time ordering which con-

tributes to the <pﬂJ+1p+-q> matrix element is where the photon attaches directly to
the ejujY uqy currents of the constituent quarks. The spin averaged form factor
is [46,19] (see Fig.6a)

2 _ . 2 xK >y < >
F(Q%) -anj: ejf[dx] [d kl] ;wn CINIER I INCFR PR (4.2)
i

> ! >L

where kj = kJ + (1 - x4 )q _for the struck quark and kl - xi9q (1 f j) for the
spectator quarks. (The —xlq terms occur because the arguments ¥'' are calculated
relative to the direction of the final state hadron.) We choose k2 >> QZ,MZ. We

note here the special advantage of light-cone perturbation theory: the current Jt+
is diagonal in the Fock state basis.

Because of Eq. (3.23) the form factor is normalized to 1 at zero momentum trans-
fer. We can also compute the helicity flip form factors in the same manner. [19,47]
For example, the anomalous moment a = F(0) of any spin 1/2 system can be written [47]

2. % ? .3
—§= - %: ejf[dxj [d kl]wpi ij <——l+ 1——2> w; . (4.3)

i#] aki Bki

Explicit calculations of the electron anomalous moment in QED using this result are
given in Ref. 47. We notice that in general all Fock states wﬁ contribute to the
anomalous moment of a system, although states with «2 much larger than the mean off-
shell energy <> are not expected to be important. The general result (4.3) also
includes the effects of the Lorentz boost of the wavefunction from p* to (p+ q)H.

In partlcular, the Wigner spin rotation contributes to Fz(qz) and the charge radius
Fl(q ) in the q2 > 0 limit and can only be neglected in the limit of non-relativistic
binding <&> << M This effect gives non-trivial relativistic correctlons [48] to
nuclear magnetic moment calculations based on simple additivity 7 <§: W,

B. TForm Factors of Mesons

Results such as Egs. (4.2) and (4.3) are formally exact but useless unless we have
complete knowledge of the hadronic or nuclear wave function. However, by making

use of the impulse approximation and the smallness of the QCD running coupling con-
stant, we can calculate features of elastic and inelastic large momentum transfer
processes [19] without explicit knowledge of the wavefunction. For example consider
the iqq> Fock state component contribution to the pion form factor. Choosing

KE = Q , we have

1 Q .2
d k *Q
F“(Qz) =fdxf 3 b (x k R (x K +(1-x)q ) (4.4)
167
0 .
+ higher Fock state contributions .

The bound state wavefunctions are peaked at low transverse momentum, i.e., small
off—ihell energy &. Thus the leadlng contribution at large Q come from the regimes
(a) k2 << 32 and (b) (k + (l-—x)q )2 << q2 Thus
1 L
1 -
2 P
PP @) T fax 66,0 $9(x 1-07)) (4.5)
0

where [19]
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p p+q
q
™
p p+q  Q%>m?
% § % Fig. 6 (a) Calculation of current ma-
y trix elements in light-cone perturba-

n
4
A
(@]
+
(o]
AV

tion theory., (b) Valence Fock state

I-x TH(X y'Qz) l-y contribution to the large momentum
- T transfer meson form factor. Ty is com—
¢:(x,Q) ¢..(y,Q) puted for zero mass quarks q and §
\281 (b) 4235A0 parallel to the pion momentum.
Q a%k
$(x,Q) zf sl k) (4.6)
16w .

If we simply iterate the one-gluon exchange kernel Vi in the equation of motion
for ¢, then for q% >> <lf>

1 Q.2 Q
d"e V. (x,(1-x)q,5y,2 )V (y,4))
\bQ(x,(l-X)qL) ;fdyf g 1( 5 = l) 2 (4.7)
0 16m - q, (1-x)/x
_f v (x(-0q,33,0,)
= jdy 2 ¢(Y;Q) .
0 - q;(1-x)/x
Thus we can write the gluon exchange contribution to the form factor in the
form; [11,19] (see Fig.6b)
2 1 *
FLQ) = axdy ¢ (5,0 T,(055 Q) 65,0 (4.8)
0
where
1671C. o (Qz) e e
T = F s 1 +£] (4.9)
H o2 (1-y)(1-%)  xy '

is the "hard scattering amplitude' for scattering collinear constituents q and
from the initial to the final direction. The color factor ig Cp = (ng--l)/znC
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4/3. The "distribution amplitude" ¢(x,Q) is the amplitude for finding the [q3>
Fock state in the pion collinear up to the scale Q. (It is analogous to the wave-
function at the origin in non-relativistic calculations.) The distribution ampli-
tude enters universally in all large momentum transfer exclusive amplitudes and is
a process-independent measure of the valence quark distribution in each hadron;
its (logarithmic) dependence on Q2 can be determined directly from the operator
product expansion or the light-cone or from an evolution equation, as we discuss
below.

Thus the simplest estimate for the asymptotic behavior of the meson form factor
is F (Q2) ~ as(Qz)/Qz. To see if this is correct we must examine the higher order
corrections: [19]

(1) Contributions from higher particle number Fock states |q3g>, |qgqg>, etc. are
power-law suppressed since (in light-cone gauge) the numerator couplings cannot
compensate the extra fall-off in Q2 from the extra energy denominators.

(2) All infrared singularities and contributions from soft (2, -~ 0) gluons cancel
in color singlet matrix elements. (It is interesting to note that the quark
(Sudakov) form factor falls faster at large Q2 than F;(Q2).)

(3) Vertex and vacuum golarization corrections to the TH are higher order in aS(QZ)
since we choose k2 = Q4. The effective argument of ag in Ty is Q2 = xyQ+ or
(1-x)(1-y)q2 corresponding to the actual momentum transfer carried by the gluon.

(4) By definition, ¢(x,k2) sums all (reducible) contributions from low momentum
transfer gluon exchange in the qf wavefunction. Hard gluon contributions with
léﬂ > k2 and the irreducible (cross—graph, etc.) give contributions to Ty which
are higher order as(QZ). By analyzing the denominators in Ty one can show that
the natural & cutoff for ¢(x,x) which minimizes higher order contributions is

2 _ 2 _ .2 . X 1-x
K = QX Q" min {l—-x s & }

(5) Although Ty is singular at x + 0,1, the endpoint behavior of ¢(x,Q2) ~ xe,

(1-x)® (e > 0) is sufficient to render this region harmless.

C. The Meson Distribution Amplitude

The essential prediction of QCD for the pion form factor is the power-law be-
~havior [8] F,; ~ l/Q2, with logarithmic corrections from the explicit powers of
as(Qz) in Ty and the Q2 dependence of the distribution amplitudes ¢(x,Q2).

The variation of ¢ with Q2 comes from the upper limit of the ﬁl integration
(since ¢ ~ l/kf) and the renormalization scale dependence:

vx, %) = Al wqo(x ) (4.10)
T Z,(Qy) g .

due to the vertex and self-energy insertions. Thus

2
* 25 500 = 25 0%, 3) + —F 108 2,0D) ¢ (4.11)

3Q 167 ’ d log Q
To order aS(Qz) we can compute sz from one-gluon exchange (as in Eq. (4.7)), and

d log 22(Q%)/d log Q% = ag(Q?)yp/4m. Setting ¢(x,Q) = x(1-x) $(x,Q) = x1x4, we
obtain an "evolutional equation” [19]

2 1
Q> —— ¥x.,0) %@ f [yl V( ) $(y,Q) (4.12)
XX o (x., = dyl Vix_,v,) ¢(y,Q .
172 3 log Q2 i 2% it i

o
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where

4}
V(x.,y.) = 2C 8 - — } + (1 2 4.13
Gpoy) = 20 fryyy 80y - %)) ( hh, 1”‘1) 1+ 2| (4.13)

(6h152 = 1 when the q and q helicities are opposite) and

() = 3,0 - §x,,0 | (4.14)

The ¢(x1 Q) subtraction is due to the Yg$ term — i.e., the infrared dependence at
yi = %i 1is cancelled for color singlet hadrons. Thus given the initial condition
¢(x1,Qq), perturbation theory determines the evolution of ¢$(x,Q) for Q > Qp. The
solution to the evolution equation is [19]

= -y
6(x,,0Q) = x %, nz=(:) an(Q(z)) Ci/z(xl—xz)(log Q?/ny ™ (4.15)

where the Gegenbauer polynomials ¢3/2 (orthogonal on f [dx]xlxz) are eigenfunctions
of V(x4,y{). The corresponding eigenvalues are the ' 'non-singlet' anomalous
dimensions:

n+1

h h
E 1
1+4 - P (n%—l)(n+-2) >0 . (4.16)

=<
1
ml'_rj

These results can also be derived by using the operator product expansion for the
distribution amplitude. [49] By definition

$0,Q) = A+f%r ™2 12 10013 (2)v(0) |1>° (4.17)

z =0, z -2 - @(—I/Qz)

(A+ is the positive energy spinor projection operator). The relative separation
of the q and q thus approaches the light-cone z2 = 0 as Q2 - ». Equation (4.16)
then follows, by expanding ¥(z)y(0) in local operators.
The coefficients a; are determined from ¢(x4,Qg):
lo QE o = 2(Zn+3) ' d(x, -x.) C3/2(x -x,) ¢(x.,Q.) (4.18)
"n \" 2 G+ T+n) J_, "T1TR e iR i7vg7

For Q2 + @, only the leading Yo = 0 term survives

Q2lim00 $(x,Q) = aoxlx2 (4.19)

where

a, o . 1 Q dzkl 9
< = dx ¢(x,Q) = dx 5 v (k) (4.20)
0 0 167 :

is the meson wavefunction at the origin as measured in the decay 7 -+ uv:

Q9 _
YN £ (4.21)
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More generally, the leptonic decay (p~ + e e » etc.) of each meson normalizes
its distribution amplitude by the "'sum rule"

1 £y
f dx ¢, (x,Q) = , (4.22)
0 2/

independent of Q. The fact that fr # 0 implies that the probability of finding
; the !qﬁ) Fock state in the pion is non-zero. In fact all the Fock states wave-
functions WE(xi,kli)(lgﬁ < KZ) are well-defined, even in the infrared limit

Xy + 0 (since !61 ~ <kf>/xi and <kf> is non-zero for a state of finite radius).

The pion form factor at high Q2 can thus be written [11,19,50]

1
F_(Q%) A b DT 6y Q) 60,0 (4.23)
e 9 (=0 (- 3¢%)
Ty =3 3 :
(1-x)(1-y)Q
Thus
2 o 2 2|? 165 %@
F“(Q ) = Zan log ™ Q7/A _31__7* (4.24)
n=0. Q
2
a_{(Q7) 2
x [1 + @(iw> + é<3—>:‘
™ QZ

where 62 = <(l-—x)(1-—y)>Q2. Finally, for the asymptotic limit where only the
leading anomalous dimension contributes: [51]

2 2 5, (@)
lim F (Q7) = 1671 f° ———o . (4.25)
2 m T 2
Q"+ ‘ Q
The analysis of the Fny(Qz) form factor, measureable in ee -+ een® reactions,
proceeds in a similar manner (see Fig.la). An interesting result is [19]

2 2
F QD) a_(Q7)
a_(@%) = 5 [1 + ﬁ(—‘S-—>J (4.26)
s 4mQ°[F, ()] T

which provides a definition of %y independent of the form of the distribution
function ¢,. Higher order corrections to FW(QZ) and FWY(QZ) are discussed in
Ref. 50.

D. Large Momentum Transfer Exclusive Processes [19]

The meson form factor calculation which we outlined above is the prototype for

the calculation of the QCD hard scattering contribution for the whole range of
exclusive processes at large momentum transfer. Away from possible special points
in the x4 integrations (see below) a general hadronic amplitude can be written to
leading order in 1/Q2 as a convolution of a connected hard-scattering amplitude Ty
convoluted with the meson and baryon distribution amplitudes:

2%
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& <Q” 2
¢(xQ)=t_l/ X U x, B (4.272)
m 16,2 Yag k) ’
and )
&
1< (4.27b)

0G0 = [ rah 3w ok

The hard scattering amplitude Ty is computed by replacing each external hadroB line
by massless valence quarks each collinear w1th the hadrons momentum pﬁii X4 PH.

For example, the baryon form factor at large Q2 has the form [9,19] (See Fig.2a and
Fig.7.)

GM(QZ) = f Lax3lay] ¢*(yi,6) T, (%, Q® #(s,0) (4.28)

where Ty is the 3q + vy » 3q' amplitude. (The optimal choice for Q is discussed in
Ref. 19.) For the proton and neutron we have to leading order (Cy = 2/3)

128ﬁ2 Cg , )
T = ———2_ T 4,29
P (2 - Mg)z 1
12872 2
_ _ 4.
Ts (2 + Mz)z (7, - 15] (4.30)
o B A

Fig. 7 (a) Leading contributions to Ty for the baryon
form factors corresponding to the four terms of Eqs. (4.31)
and (4.32), respectively. (b) Contributions to the kernel
for the evolution of the baryon distribution amplitude.

where
5, (537,00 o ((1-x) A~y a_(x,9,0D) o (AL-x)A-y)0°
T = __S 373 s( 1 Y1 )+ s %272 s 1 Y1 ) (4.31)
1 . 2 2 2 2 ‘
x3(1-xl) y5(1-y) xz(l-xl) yz(l-yl)
i as(x2y2Q2> as(xzyzQz)
X2X3(1-X3) Y2Y3(l‘yl) ’
and
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2 2
_ OLs(XlYlQ ) as(x3y3Q )
Ty " " xx (1-x.) (1-v.) : (4.32)
1%3 1’ Y1Y3M T,

Ty corresponds to the amplitude where the photon interacts with the quarks (1) and
(2) which have helicity parallel to the nucleon helicity, and Ty corresponds to

the amplitude where the quark with opposite helicity is struck. The running coupl-
ing constants have arguments Q¢ corresponding to the gluon momentum transfer of
each diagram. Only large Q2 behavior is predicted by the theory; we utilize the
parameter Mgy to represent the effect of power-law suppressed terms from mass in-
sertions, higher Fock states, etc.

The Q2-evolution of the baryon distribution amplitude can be derived from the
operator product expansion of three quark fields or from the gluon exchange kernel,
in parallel with the derivation of (4.12). The baryon evolution equation to lead-
ing order in a is [191]

; 2 3x.,0) +§E§N< B l[d 1 v( ) 3(y.,Q (4.33)
Xlx2X3 BC ¢ Xi,Q 2 BO ¢ XiaQ) - BO y xi!yi ¢ yi,Q . .
0

Here ¢ = XlX2X3$, z = log(log QZ/AZ) and (see Fig.7b)

8
: V. h.h,
= _ _ i i'g A '
V(xgnyy) = 2xyxp%q :E:e(yi %) S0x =y x,<;,-+x, + y,—}<,> (4.34)
i#j L] i i
= V(y %)
The infrared singularity at x, = y, is cancelled because the baryon is a color
singlet. The evolution equat%on has the general solution
5 e (10 2) "
¢(xi,Q) = X XXy L a_ ¢n(xi) log XE . (4.35)

The leading (polynomial) eigensolution $n(xi) and corresponding baryon anomalous
dimensions are given in Refs.19 and 52. Thus at large Q2. the nucleon magnetic
form factors have the form [9,19]

B B

2,2 -y -y
a_(Q7) 2 n 'n 2
GM(QZ) 4'—E~Z—— 2 :bnm <;og 9§,> [1 + ¢7<aS(Q2),~E§>} . (4.36)

Q n,m A Q

We can also use this result to obtain results for ratios of various baryon and
isobar form factors assuming isospin or SU(3)-flavor symmetry for the basic wave-
function structure. Results for the neutral weak and charged weak form factors
assuming standard SU(2) x U(1l) symmetry are given in Ref. 46.

As we see from Eq. (4.28), the integration over xi and y; have potential endpoint
singularities. However, it is easily seen that any anomalous contribution (e.g.,
from the region x2,x3 ~ O(m/Q), x1 ~ 1 - O{m/Q)) is asymptotically suppressed at
large Q2 by a Sudakov form factor arising from the virtual correction to the gyq
vertex when the quark legs are near-on-shell (p2 ~ €(mQ)). [19,54]1 This Sudakov
suppression of the endpoint region requires an all orders resummation of perturba-
tive contributions, [57] and thus the derivation of the baryon form factors is not
as rigorous as for the meson form factor, which has no such endpoint singularity.
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The most striking feature of the QCD prediction (4.36) is the l/Q4 power—law
behavior of G as Gjj. The power-law dependence [8] reflects:
(1) The essential scale-invariance of the qq scattering subprocesses within Ty.
(2) The fact that the minimal Fock state of a baryon is the 3~quark state.

We will discuss the phenomenology of the baryon form factors and the resulting
constraints on the baryon wavefunction in Sec. VI.

In the case of hadron scattering amplitudes A+ B - C+D, photoproduction, Compton
scattering, etc., the leading hard scattering QCD contribution at large momentum
transfer Q2 = tu/s has the form [19] (helicity labels and suppressed)(see Fig.8)

Fig. 8 QCD contributions to
meson-meson scattering at large

i momentum transfer. Diagram (c)
TH = + ;é § + Ti, § + oo corresponds to the Landshoff
4 pinch singularity which is sup-
pressed by quark form factor
1261 () (b) (c) 4239A11 effects.
My s s cap@s8en) = [Taxdo G, ® 630, ® TG Qhe, ) (4.3D)

x ¢, (x Q) 65 0x,, Q)

The essential behavior of the amplitude is determined by Ty, computed where each
hadron is replaced by its (collinear) quark constituents. We note again that Ty is
"collinear irreducible,"” i.e., the transverse momentum integrations of all reducible
loop integration are restricted to k > 6KQ2) since the small k, region is already
contained in ¢. If the internal propagators in TH are all far-off-shell @(Q2%) (as
in Fig.8a) then a perturbative expansion in aS(Q ) can be carried out. However,
this is not true for all hadron-hadron scattering amplitudes since on can have
multiple quark-quark scattering processes which allow near-on-shell propagation in
intermediate states at finite values of the xj. [17] The classic example is meson-—
meson scattering, where two pairs of quarks scatter through the same angle (see
Fig.7c). However, the near-on-shell region of integration is again suppressed by
Sudakov factors. (Physically this suppression occurs because the near-on-shell
quarks must scatter without radiating gluoms.) A model calculation by MUELLER [10]
for n- 1 scattering in QCD (using an exponentiated form of the Sudakov form factor)
shows that the leading contribution comes in fact from the off-shell region
|k2| 0(Q2)1-¢ where e = (2¢+1)~ 1 ¢ = SCF/(ll - 2/3 ng) (for four flavors

= 0.281). This region gives the contribution [10]

/2 - cn (2¢+1/2¢)

ohH™3 (4.38)

T -+ T

(Q2)—l.922

e

compared to (Q )-_2 from the hard scattering ]kzl ~ 6WQ2) region.
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Thus, even when pinch singularities are present, the far-off-shell hard scatter-
ing quark and gluon processes dominate large momentum transfer hadron scattering
amplitudes. Given this result, we can abstract some general QCD features common to
all exclusive processes at large momentum transfer:

(1) All of 'the non-perturbative bound state physics is isolated in the process-
independent distribution amplitudes.

(2) The nominal power-law behavior of an exchange amplitude is (l/Q)n_4 where n is
the number of external elementary particles (quarks, gluons, leptons, photons in Ty).
This immediately implies the dimensional counting rules: [8]

ég (A+B C+D -3; o
dt - )~ 2 f(ec m ) (4.39)
Q L.

= + +
where n nA nB nC + nps and

nH-l
FH<Q2) ~ (%) (4.40)
Q

where Fy is the helicity-conserving [18,19] form factor. These power-law predic-
tions are modified by (a) the Q2—dependence of the factors of ag in Ty, (b) the
Q2-evolution of the distribution amplitudes and (c) a possible small power associ-
ated with the almost complete Sudakov suppression of pinch singularities in hadron-
hadron scattering. The dimensional-counting rules appear to be experimentally
well-established for a wide variety of processes (see Ref. 19 and Fig.9):

10°

10!
Proton, n=3
10!
Neutron, n=3 =
T Ton _
- Deuteron, n=6 E
= -
N -
= 107 . El
¥ Helium 3, n=9 =
102 L . -
= 4 Helium 4, n=12 3
C x0. 1 i
107 & .
g4 E T S B R N
0 2 4 6 Fig. 9 HadroniczforT factors
multiplied by (Q4)~L. (From
10-77 q2 (Gevz) 331184 Ref. 1.) -
6, @) ~ @, F@) ~ @) (4.41)
and
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g% (yp » wp) ~ @™’ (4.42)

%% (rp > 1p) ~ (@)

r

?1'06 (op + pp) ~ (@210

o do . 2
3¢ (P +Yp)/dt (yp > 7p) ~Q

at fixed 6. - The application to yy - MM processes is discussed in Sec. IV-E.

(3) Since the distribution amplitudes ¢y and ¢p are L = 0 angular momentum pro-
jections of the hadromic wavefunctions, the sum of the quark spin along the hadron's
momentum equals the hadron spin: [18]

E 5% = (4.43)

i€H

(In contrast, in inclusive reactions there are any number of non-interacting quark
and gluon spectators, so that the spin of the interacting constituents is only
statistically related to the hadron spin — except possibly at the edge of phase-
space x ~ 1.) Furthermore, since all propagators in Ty are hard, the quark and
hadron masses can be neglected at large Q? up to corrections of order ~m/Q. The
vector gluon interactions conserve quark helicity when all masses are neglected.
Thus total quark helicity is conserved in Ty at large Q2. Combining this with
(4.43), we have the QCD selection rule:

AH = Z >‘H (4.44)

initial final
i.e., total hadron helicity is conserved up to corrections of order 0(m/Q).

Hadron helicity conservation thus applies for all large momentum transfer
exclusive amplitudes involving light meson and baryons. Notice that the photon
spin is not important: QCD predicts that yp - mp is proton helicity conserving
at fixed 6., ., 8 * », independent of the photon polarization. Exclusive ampli-
tudes which involve hadrons with quarks or gluons in higher orbital angular
momentum states are also suppressed by powers of the momentum transfer. An im-
portant corollary of this rule is that helicity-flip form factors are suppressed,
e.g.:

2 2 2,.2
Fpp@) /F @) ~ o@®/eD . (4.45)

The helicity rule, Egq. (4.44), is one of the most characteristic features of
QCD, being a direct consequence of the gluon's spin. A scalar or tensor gluon-
quark coupling flips the quark's helicity. Thus, for such theories, helicity may
or may not be conserved in any given diagram contributing to Ty, depending upon
the number of interactions involved. Only for a vector theory, like QCD, can we
have a helicity selection rule valid to all orders in perturbation theory.

The study of timelike hadronic form factors using ete colliding beams can pro-_
vide very sensitive tests of this rule, since the virtual photon in ete~ ~ v > hAhB
always has spin *1 along the beam axis at high energies. Angular momentum conserva-
tion implies that the virtual photon can 'decay" with one of onlg two possible
angular distributions in the center of momentum frame: (1 + cos<8) for \XA-KB‘= 1,
and sinZé for {XA - kBl = 0 where AA p are the helicities of hadron hp . Hadronic
helicity comservation, Eq. (4.44), a$ required by QCD greatly restricts the
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possibilities It implies that Ag + AR = 0 (since the photon carries no ''quark
helicity"), or equivalently that Xp - Ag = 2hp = -2Ag. Consequently, angular
momentum conservation requires ‘AAl-lkBl = 1/2 for baryons, and |Ap] TAB|

for mesons; furthermore, the angular distributions are now completely determined:

v

, .o _

E—gggg (e'e - BB) «1+ cosze (baryons) : (4.46)
+ - -

E—%%;g (e e »MM) « sin26 (mesons) (4.47)

We emphasize that these predictions are far from trivial for vector mesons and for
all baryons. For example, one expects distributions like 1+ acosze, -1 <a <1,
in theories with a scalar or tensor gluon. So simply verifying these angular dis-
tributions would give strong evidence in favor of a vector gluon.

The power-law dependence in s of these cross sections is also predicted in QCD,

using the dimensional counting rule. Such "all orders'" predictions for QCD allowed
processes are summarized in Table III.

Table III Exclusive channels in ete~ annihilation. The hAhBY couplings in allowed
processes are -ie(py - pB) F(s) for mesons, —1ev(pB)Y G(s)u(pA) for baryons, and
-ie €vpoPME PYFM (s) for meson-photon final states. Similar predictions apply to

decays of heavy quark vector states, like the y,y',..., produced in ete collisions.
+ - _ . O(e+e_ -+ hA}-\B)
ee - hA()\A) hB()\B) Angular Distribution F TN
- a(e e Uy )
( efem o 1\'+1[— KK sinze LK!F(S)IZ ~ c/s2
- 2
o (007 (0) K K" sin%o W F(s)|? ~ /s
2 2
Allowed 2%y (1) ,ny.n'y 1 + cos”@ (1ra/2)s|FMY(s)| ~ c/s
in QCD e+e- + pe¥)p(¥%) ,nm,. .. 1+ coszev IG(s)l2 ~ c/sA
p(xi) a(F%) ,na,. .. I + cos’e IG(S)I2 ~ c/34
- 2
\ B EGEY ,y ", ... 1 + cos’e le(s)|% ~ e/s®
( e o p+(0)p_(t1),ﬂ+p_,K+K*_,... 1+ cosze < C/s3
p+(il)p_(tl),... sinze < c/s3
Suppressed
+.- LY n(+) A AR 2 5
in QCD e'e > p(tl)p(sls),pa,a4,... sin’ <c/s
p () a(+%) ,A8,-.. 1 + cos’e < /s’
\ ARG, ... ) sinze < ¢:/s5

Processes suppressed in QCD are also listed there; these all violate hadronic
helicity conservation, and are suppressed by powers of m /s in QCD. This would not
necessarily be the case in scalar or tensor theories.

The exclusive decays of heavy quark atoms (V,¥' .) into light hadrons can also
be analyzed in QCD. [18]1 The decay ¥ - pp for example proceeds via diagrams such
as those in Fig.2b. Since ¢'s produced in ete™ collisions must also have spin #1
along the beam direction and since they can only couple to light quarks via gluons,
all the properties listed in Table III apply to ¢, ¥', T, T',... decays as well.
There are considerable experimental data for the ¢ and ¢' decays. [55]
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Perhaps the most significant tests are the decays y,y' - pE,nﬁ,... . The pre-
dicted angular distribution 1 + 82 cos?8 is consistent with published data. [35]
This is important evidence favoring a vector gluon since scalar or tensor gluon
theories would predict a distribution of sinZe + @(us). Dimensional counting
rules can be checked by comparing the ¥ and y' rates into pp, normalized by the
total rates into light-quark hadrons so as to remove dependence upon the heavy-
quark'wavefunctions, Theory predicts

e (M)

BR(Y' - pp) <Mw) (4.48)
where

BR(y + pp) = I(y > pp) . (4.49)

I'(y - light-quark hadrons)
Existing data suggest a ratio (va/Mw)n with n ~ 6 £ 3, in good agreement with QCD.

Many more examples of exclusive reactions which test the basic scaling laws and
spin structure of QCD are discussed in Refs. 18 and 19. The essential point is
that exclusive reactions have the potential for isolating the QCD hard-scattering
subprocesses in situations where the helicities of all the interaction conmstituents
are controlled. In contrast, in inclusive reactions the absence of restrictions on
the spectator quark and gluons allows only a statistical correlation between the
constituent and hadronic helicities.

E. Two-Photon Processes [12]

One of the most important applications of perturbative QCD is to the two~photon
processes do/dt (yy ~+ MM), M = 7,«,p,w at large s = (k1 + k2)2 and fixed 6. p..
These reactions, which can be studied in ete~ + ete MM processes, provide a par-
ticularly important laboratory for testing QCD since these "Compton' processes are,
by far, the simplest calculable large-angle exclusive hadronic scattering reactions.
As we discuss below, the large-momentum-transfer scaling behavior, the helicity
structure, and often even the absolute normalization can be rigorously computed for
each two~photon channel.

Conversely, the angular dependence of the yy -~ MM amplitudes can be used to
determine the shape of the process-independent meson "distribution amplitudes,"
¢M(x,Q), the basic short-distance wavefunctions which control the valence quark
distributions in high momentum transfer exclusive reactions.

A critically important feature of the yy - MM amplitude is that the contributions
of LANDSHOFF [17] pinch singularities are power~law suppressed at the Born level —
even before taking into account Sudakov form factor suppression. There are also
no anomalous contributions from the x ~ 1 endpoint integration region. Thus, as in
the calculation of the meson form factors, each fixed-angle helicity amplitude can
be written to leading order in 1/Q in the factorized form [Q2 = p% = tu/s; Qy =
min(xQ, (1~ x)Q)1 (see Fig.9):

1 1 . .
Y Jg. dx ‘j; dy ¢R(Y’Qy) T35 8,8, ) 6, (x,Q) (4.50).

where Ty is the hard-scattering amplitude vy - (qq)(qq) for the production of the
valence quarks collinear with each meson and ¢y(x,Q) is the (process-independent)
distribution amplitude for finding the valence g and q with light-cone fractions
of the meson's momentum, integrated over transverse momenta k, < Q. The contribu-
tion of nonvalence Fock states are power~law suppressed. Further, the spin-
selection rule (4.44) of QCD predicts that vector mesons M and M are produced with
opposite helicities to leading order in 1/0Q and all orders in ag(QZ).
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Dimensional counting [8] predicts that for large s, s% do/dt scales at fixed
t/s or 8. m, up to factors of fn s/A2,

Some forty diagrams contribute to the hard-scattering amplitudes for yy - MM
(for nonsinglet mesons). These can be derived from the four independent diagrams
in Fig,10b by particle interchange. The resulting amplitudes for helicity zero
mesons are:

' r 2
T-H—l _ 16nas 3270 ,(7el - ?2> & ‘] (4.51)
l“J s X1l-x)yd-y) 1 - cosze J
L M.
T 1léma r(e -e )2(1-a) e e a( (1-v) + x(l-—x))
+1 s 327a 1~ % I i St (4.52)
T_+ 3s x(1-x)y(l-vy) 1= éoszec a2 N b2 coszec .

where 2} = (1-x)(1-y) * xy, the subscripts ++,~-,... refer to photon helicities,
and ej, e; are the quark charges (i.e., the mesons have charges *(e; - ep)).

() Pa

)
@)
Pg Fig. 10 (a) Factorized structure of the

k; P
XpA
(1=x)py
=>
(l-y)pB
)’DB
k2 P2 \

(b) YY > MM amplitude in QCD at large momentum
transfer, The Ty amplitude is computed
with quarks collinear with the outgoing
mesons. (b) Diagram contributing to
Tg(yy > MM) to lowest order in ag.

40BEA1

To compute the YY + MM amplitude Ay, (Eq.(4.50)), we now need only know the x-~
dependence of the meson's distribution amplitude ¢y(x,Q); the overall normalization
of ¢y is fixed by the 'sum rule' (n, = 3)

J[l £y
dx 9,(x,Q) = —— (4.53)
0 M 2/3

where fy is the meson decay constant as determined from leptonic decays. Note that
the dependence in x and y of several terms in Tyx, is quite similar to that appear-
ing in the meson's electromagnetic form factor (4.23):

* ~ * ~
16ma 1 ¢ (x,Q.) ¢,.(v,Q)
= f dx dy ¥ M 777 (4.54)
0

FM(S) T T3s x(1=-x) y(1-y)

when ¢y(x,Q) = ¢y(1<*x,Q) is assumed. Thus much of the dependence on ¢(x,Q) can be
removed from &), by expressing it in terms of the meson form factor —i.e.,
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My i (e, -e )2

= 167a By (s) ey x ) (4.55)
M 1 - cos ®

5 c.m
M i 2
+_ ey -ep)™) :

= 16ma F _(s) + 2<e.e > g[® ;¢ (4.56)

A _y M 1 - cos’o_ 1827 8[%c.m.5 %]

up to corrections of order ag and mz/s. Now the only dependence on ¢y, and indeed
the only unknown quantity, is in the 6-dependent factor

! ¢;(x,5) ¢;(y,5) aly(l-y) + x(1-x)]

x(1-x%) y(l-y) az--b2 cosze
c.m

N :
e %] I FED G0 ' (57
j; R ATE Ry T

dx dy

The spin-averaged cross section follows immediately from these expressions:

do 2 do _ 1 1 2
dt s d cos® - 24 :E: I‘AZAA'I (4.58)
- C.m. 167ms A
)2 [ ( NI YO
- M° (e1-2y) &%) (el e,)
= 16'ﬁd s 5 5 + 5
(i - cos 8 ) 1l - cos 8
c.m. c.m

. 2 2 .
x g[éc.m.’ q>M] * 2<6162> & [ec.m.’ ¢M}

In Fig.1ll the spin-averaged cross sections (for yy = mn) are plotted for several
forms of ¢M(x,Q). At very large energies, the distribution amplitude evolves to
the form

¢M(x,Q) Q—:o /3 £y x(1-x) , ' (4.59)

and the predictions (curve (a)) become exact and parameter-free. However, this
evolution with increasing Q2 is very slow (logarithmic), and at current energies
¢M could be quite different im structure, depending upon the details of hadronic
binding. Curves (b) and (c) correspond to the extreme examples oM = [x(1-x)1L
and ¢y = 8(x - 1/2), respectively. Remarkably, the cross section for charged
mesons is essentially independent of the choice of ¢y> making this an essentially
parameter-free prediction of perturbative QCD. By contrast, the predictions for
neutral helicity-zero mesons are quite sensitive to the structure of ¢y Thus we
can study the x-dependence of the meson distribution amplitude by measuring the
angular dependence of this process.

The cross sections shown in Fig.8 are specifically for yy - mm, where the pion
form factor has been approximated by F (s) ~ 0.4 GeV2/s. The 771~ cross section
is quite large at moderate s:
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to leading order in QCD. The results

assume the pion form factor param-

eterization F (s) ~ 0.4 GeVz/s.

Curves (a), (b) and (c) correspond

to the distribution amplitudes ¢y =

| (b) x(1-x), [x(l-—x)]l/a, and

§(x-1/2), respectively. Predic~

| | 1 | tions for other helicity zero mesons
. are obtained by multiplying with the

0 0.2 0.4 0.6 0.8 1.0 scale constants given in Ref. 15.
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do
dt
do
dt

Gy » 7n0) 4|F_(s) 2 4

~ 9.6 geV at ec.m. =1/2 (4.60)

~

¥ - L
(yy >uu) 1- cos ® m. s

Similar predictions are possible for other helicity-zero mesons. The normalization
of yy - MM relative to the yy - m7m cross section is completely determined by the
_ratio of meson decay constants (fM/fﬂ)4 and by the flavor-symmetry of the wavefunc-
tions, provided only that ¢y and ¢; are similar in shape. Note that the cross
section for charged p's with helicity zero is almost an order of magnitude larger
than that for charged 7v's.

Finally notice that the leading order predictions (Eq. (4.58)) have no explicit
dependence on og. Thus they are relatively insensitive to the choice of renormali-
zation scheme or of a normalization scale. This is not the case for either the
form factor or the two-photon annihilation amplitude when examined separately.
However, by combining the two analyses as in Eq. (4.58) we obtain meaningful results
without computing O(ag) corrections. The corresponding calculations for helicity-
one mesons are given in Ref. 12. Hadronic helicity conservation implies that only
helicity-zero mesons can couple to a single highly virtual photon. So Fy,, the
transverse form factor, cannot be measured experimentally. For simplicity we will
assume that the longitudinal and transverse form factors are equal to obtain a
rough estimate of the yy -+ po,p, cross section (Fig.12). Again we see strong depen-
dence on ¢y, for all angles except 8e.m. ~ m/2, where the terms involving g,
vanish. Consequently, a measurement of the angular distribution would be very

sensitive to the x-dependence of ¢y, , while measurements at 8, n = m/2 determine
Fy, (s). Notice also that the number of charged p-pairs (with any helicity) is
much larger than the number of neutral p's, particularly near 6. . = 7/2. The

cross sections are again quite large with
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da/dt (yy oIpI) A

(4.61)

do/dt (vy > u+u_) 6 b3
c.m. 2

Results for other mesons are given in Ref. 12.

The yy - MM and Y*Y + M processes thus provide detailed checks of the basic Born
structure of QCD, the.scaling behavior of the quark and gluon propagators and inter-
actions, as well as the constituent charges and spins. Conversely, the angular
dependence of the yy - MM amplitudes can be used to determine the shape of the
process-independent distribution amplitude ¢M(X,Q) for valence quarks in the meson
qq Fock state. The cos8,  -dependence of the yy » MM amplitude determines the
light cone x-dependence of the meson distribution amplitude in much the same way
that the xp: dependence of deep inelastic cross sections determines the light-cone
x-dependenceé of the structure functions (quark probability functions) Gq/M(x,Q).

The form of the predictions given here are exact to leading order in as(Qz).
Power-law (m/Q)2 corrections can arise from mass insertions, higher Fock states,
pinch singularities and nonperturbative effects. In particular, the predictions
are only valid when s-channel resonance effects can be neglected. It is likely
that the background due to resonances can be reduced relative to the leading order
QCD contributions if one measures the two-photon processes with at least one of the
photons tagged at moderate spacelike momentum g, since resonance contributions are
expected to be strongly damped by form factor effects. In contrast, the leading
order QCD Y1Y2 MM amplitudes are relatively insensitive to the wvalue of q% or g,
for ]q%’ << s,

Finally, we note that the amplitudes given above have simple crossing properties.
In particular, we can immediately analyze the Compton amplitude yM - yM in the
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0 n

region t large enough with s >> It] in order to study the leading Regge behavior in
the large momentum transfer domain. In the case of helicity *1 mesons, the leading
contribution to the Compton amplitude has the form (s >> |t|)

- 2 . 2
My = 16TE (E) (el +ey) (4.62)

'

(AY=X;, A, = A))

which corresponds to a fixed Regge singularity at J = 0. [56] 1In the case of
helicity zero mesons, this singularity actually decouples, and the leading J-plane
singularity is at J = -2.

V. DEEP INELASTIC LEPTON SCATTERING

The crucial evidence that the electromagnetic current within hadrons is carried by
point-like spin 1/2 quarks comes from deep-inelastic electron, muon and neutrino
scattering. At large momentum transfer, Q2 > 2 GeVZ the lepton-nucleon inelastic
cross section displays a scale-invariant behavior consistent with the simplest
type of impulse approximation — where the electron scatters directly against point-
like quark constltuents of the target. [57] The deviations which are observed at
very large Q are consistent w1th the color radiative corrections predicted by QCD
In addition at low values of Q2, there is evidence for power law "higher twist'
corrections associated with coherent multiquark processes, interference effects,
and final state corrections — quite in analogy to the corrections to impulse
approximation. expected in nuclear physics inelastic breakup calculations.

The Fock state representation we discussed in Sec. III provides a particularly
simple and elegant basis for calculating the deep inelastic cross section in QCD.
We first comsider the forward Compton amplitude Y*p > v*p with virtual photon mass

= —Q2 < 0, and then calculate the ep - eX cross section from the absorptive
part An ideal Lorentz frame is

2
+ + M 2
p=(p,p ,pL)=<p T 0¢> (5.1)
o .
+ - 2p > !
q = (q »q ’ql) = (0: _P—+'9 ’ q_L> (5.2)
P

. 2 , , ,
with q2="Q and p*q = Mv. For the diagram 13b which has no final state inter-
actions, the (light-cone) energy denominator between the photon interactions is
|

q q
= ——{) + -
Fig. 13 Calculation of the for-
P p

(| 0 ) ward virtual Compton amplitude.
e Diagram (b) gives the impulse
approximation, neglecting final

tat d ltiquark inter-
v (@) - (b) 2239A20 iciisnz? multiquark inter
2 & +3)% +n’ K2 4+ m? .
D=M + 2Mv - bt _ _ + ie .
X z : % "
i#1



where m is the struck quark mass, and the sum over 1 # 1 gives the spectator quark
and gluon contributions. For states with

k2 + m2
2 i 2 2
& = |M° - :;: <———;;———>i | << 2Mv and K << Q
we can write
Q.
D = 2Mv - —— + ie (5.4)
TmD + = 2 a(x - ll_\ (5.5)
o 2Mv T\’ 2Mv/ AR
i.e., the electron scattering on a quark with light~cone momentum fraction
o 3 2
Sk +k L Q
X E——"7= = X (5.6)
o 3 2Mv B
p +p J
The corresponding impulse approximation cross section is (x - XBj)
d .
T (pT> 20 = D6, (x,Q 2% (2q > 2'Q) (5.7)
2 q/p 2
dQ ™ dx q dqQ 3
P, = Xp
q
where [21]
Qros Q 2
G (x,Q) = d k.][dx]lw (x,k )l S(x-x) (5.8)
q/p 4 L n L q

gives the probability distribution for flndlng the quark with fractional light-
cone momentum collinear up to the scale k2 < q?, €] < 2Mv. Unlike large momentum
“transfer exclusive amplitudes, all Fock states contribute to the inclusive cross
section. The subprocess cross section do/dQ (Kq -+ 2'q) is evaluated for a quark
collinear with the proton momentum p+ = xpt k.s'O Since all the loop corrections
to the subprocess cross section are hard (k2 > "0(Q2)), it can be developed as a
power serles in a. (Q ). Thus the only correctlon to perfect scale-invariance of
do/dx dQ at large Q and fixed ¥pj comes from the Q2 dependence of the probability
distribution G(x,Q?). This in turh can only arise from the wavefunction renormali-
zation or from contributions Yy, ~ €(l/k,) at large k,. In QCD these occur only
from the perturbative processes q -~ qg, and g -~ gg, g + qq, as illustrated in Fig.1l4.

12-81 . 4239A16

Fig. 14 Contributions to the hadron Fock state wavefunction
which give ¢ ~ l/k at large kl and thus structure function
evolution.

In parallel to the derivation of the evolution equation for the dlstrlbutlon ampli-
tude, we then can derive evolution equations for the distributions Gq/H(x Q ) and
g/H(X ,Q%) of the form [58,59]
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3 as(Q ) / x dy
— G(x,Q) = —— P(=) G(y,Q (5.9)
3 log QZ 27 X (y) y

For example, for the "non-singlet' distribution

/H(x D =G (0 = Gy (x,Q) : (5.10)
we have to lowest order in as(Qz), (CF = 4/3)
1
. 2 2 2
- _ 1+ z _ 1+ 2 1+ x
Pe® = O <_—1 . z> = o | T -5 - 2 f dx S5 (5.11)
+ 0
(The subtraction term, which ensures finite behavior at x = 0, arises from the

wavefunction renormalization, as in Eq. (4.14)). The Q dependence can be displayed
most simply by taking moments:

2 1 2 n
M (Q7) = f G(x,Q7) x dx (5.12)
o 0
Then
2,2\ -y
MNS - NS(QZ) log Q /A n (5.13)
n " \1og @¥/1”

where the v, are defined in Eq. (4.16). The higher order corrections to the Q2-
evolution of M, are discussed in Refs. 1 and 2. A critical feature [21] is the
fact that the higher loop corrections (e.g., from the higher Fock states) are con-
strained kinematically to kf < (1- y)Q2 < (1- X)Q , where y is labelled in the
figure; i.e., the evolution is reduced at large x and for large n. A detailed
discussion is given in Ref. 41.

Equation (5.7) displays an essential feature of the QCD predictions for inclu-
sive reactions: the factorization of the physical cross section into a hard-
scattering subprocess cross section, controlled by short-distance perturbative QCD,
convoluted with structure functions G(x,Q2) which contain the long distance hadronic
bound state dynamics. Notice that the Q2-evolution of G(x,Q) is also completely
specified by the perturbative QCD processes and is independent of the nature of the
target.

All the corrections to the perturbative QCD impulse approximation from final
state interactions, finite k% effccts, interference contributions, mass corrections,
etc. are of higher order in l/Q at least when analyzed using perturbative methods.
In the operator product analysis these contributions correspond to matrix elements
of "higher twist" operators which have non-minimal dimensions. The most important
higher twist terms for deep inelastic lepton scattering are expected to correspond
to processes where the lepton scatters on multiparticle clusters in the target

(qq, qq, virtual mesons, qg, etc.). We thus obtain a sum of contributions (see
Fig.15): [151]

—1%1— (H > 2'X) = }E: e 49 (ea > ea) : (5.14)
dQ%dx £t dQ p, = XPy

where, in general doa/dQ2 falls in Q2 according to the compositeness of a:
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Fo(x, Q2) ~(1-x)3
+ QCD evolution

7 =
+ 0 [a4(2)]
I-x)
F (x,02)~-(-—-
+ 2 04
Fig. 15 QCD contributions to in-
elastic electron~nucleon scatter-
(=) ing, including radiative and
+ Fa(x,Q2) ~ ——:%—— higher twist (diquark, triquark)
i:” Q corrections.
do 4na2 2,12
=% (g2 » 'a) ~ 27 IFa(Q ) (5.15)
dqQ Q

For example, the "diquark" eqq - eqq gives a contribution to ep » eX of relative
order (m2/Q2)2. Since the qq can carry a large fraction of the proton's momentum,
this contribution can be significant at large x. For a guide to this effect one
can use the spectator counting rule: [60,8]

2ns—l
Ga/H(x) ~ (1 - %) (5.16)
x+1

where ng is the minimum number of spectator quarks (or gluons) in the Fock state
required to stop at x - 1. The minimal Fock states containing a gives the dominant
contribution.

The simplified rule (5.16) can be derived from minimally comnected tree graph
diagrams, ignoring spin effects, or from simple phase space considerations if one
ignores the spectator quark masses [61] (see Sec. VI). Using this simple counting
we can then classify the contributions to the hadron structure functions, as illus-
trated in Fig.l5. The diquark contribution is expected to give a large contribution
to the longitudinal structure function since it acts coherently as a boson current.
The order GS(QZ) contribution from the hard gluon radiative corrections with
k_L > (1-x%)Q2 also gives a significant contribution to oy.

A detailed derivation of the behavior of structure functions at x ~ 1 from per-
turbative QCD is given in Ref. 21. At x ~ 1 all of the hadron's momentum must be
carried by one quark, and each gquark and gluon quark and gluon propagator which
transfers this momentum becomes far off-shell:

Perturbative QCD predictions thus become relevant. An important result is that at
large x the struck quark tends to have the same helicity as the target
nucleon: [21,62] ‘

5

~ (1% ~ (1-x%) (5.17)

G G
qt/pt q+/pt

This type of spin correlation is consistent with the SLAC-Yale polarized electron/
polarized target data. Combined with the SU(6) symmetry of the nucleon wavefunction

39



this implies that the leading quark in the proton is five times more likely to be

an up quark than a down quark, and thus [62] (FZ = z: eiqu/n)
q

2 2
an(X,Q )/FZP(X,Q ) g 3/7 (5.18)
For the case of mesons, the perturbative QCD gluoh exchange prediction is [63]

2 ,
Gq/m ~ (1-x%) (5.19)

In addition, the same QCD analysis predicts a large C/Q2 contribution to the meson
longitudinal structure function (see Fig.3b): [22,64]

2
20 2x? : 2 2 2
FE(X,Q )y = —’52— Cp dk” o (k) F (k%) ‘ (5.20)

Q ~m2/ (1 - x)

. . . 2 . . . , , , .
which numerically is Fp ~ x /Q2 in GeV2 units. This contribution, which can domi-
nate leading twist quark distributions in mesons is normalized in terms of the
meson distribution amplitude, which in turn is normalized by the pion form factor.

The dominance of the longitudinal structure functions in the fixed W limit for
mesons 1s an essential prediction of perturbative QCD. Perhaps the most dramatic
consequence is in the Drell-Yan process mp + £Y27X; one predicts [22] that for
fixed pair mass Q, the angular distribution of the %7 (in the pair rest frame) will
change from the conventional (1 + cosze+) distribution to sin2(6+) for pairs pro-
duced at large X1. A recent analysis of the Chicago-Illinois~Princeton experi-
ment [65] at FNAL appears to confirm the QCD high twist prediction with about the
expected normalization. Striking evidence for the effect has also been seen in a
Gargamelle analysis [66] of the quark fragmentation functions in vp - nu~X. The
results yield a quark fragmentation distribution into positive charged hadrons
which is consistent with the predicted form: dN‘t/dzdy ~ B(1-2)2 + (c/Q2) (1 - y)
where the (1-y) behavior corresponds to a longitudinal structure function. It is

.also crucial to check that the ete™ + MX cross section becomes purely longitudinal
(sinZ8) at large z at moderate QZ, [62]

The results (5.17) and (5.19) for Gq/B and Gq/M give the behavior of the lead-
ing QCD contribution to the structure function before QCD evolution is applied;
e.g., the results are valid for Fz(x,Qz) at Q2 of order of <k%>H. The large Qé
behavior is determined by the evolution equations (5.9), taking account of the
phase space limits of the radiated gluons at x ~ 1. [41]

VI. THE PHEROMENOLOGY OF HADRONIC WAVEFUNCTIONS

Thus far, most of the phenomenological tests of QCD have focused on the dynamics

of quark and gluon subprocesses in inclusive high momentum transfer reactiomns. The
Fock state’wavefunction wé(xi,ﬁli; A1) which determine the dynamics of hadrons in
terms of their quark and gluon degrees of freedom are also of fundamental importance.
If these wavefunctions were accurately known then an extraordinary number of phe-
nomena, including decay amplitudes, exclusive processes, higher twist contributions
to inclusive phenomena, structure functions, and low transverse momentum phenomena
(such as diffractive processes, leading particle production in hadron-hadron col-
lisions and heavy flavor hadron production) could be interrelated. Conversely,
these processes can provide phenomenological constraints on the Fock state wave-
functions which are important for understanding the dynamics of hadrons in QCD.

In addition, as we discuss in Sec. VII, the structure of nuclear wavefunctions in
QCD is essential for understanding the syntheses of nuclear physics phenomenology

with QCD.
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A, Measures of Hadron Wavefunctions

As we have shown in Sec. III the central measures of the hadron wavefunctions are
the distribution amplitudes

Q.
- 2 Q T
000 = [ 4] 9208, | (6.1)
which control high momentum transfer form factors and exclusive processes:

M= H¢®TH (6.2)

and the quark and gluon structure functions

Q 2
2
Gq/H(x,Q) = Z} .]~ [d kl][dlewn(xi’kli)l d(x-xq) (6.3)

which control high momentum transfer inclusive reactions
A= 16 ® do (6.4)

Examples are shown in Figs.l through 3. A summary of the basic properties,
logarithmic evolution, and power law behavior of these quantities is given in-
Table 1IV.

The exclusive formula (6.2) also includes applications to large momentum trans—
fer multiparticle production [68,8] ete” » Hj...Hp with PPy~ 0(Q?), and the
elastic and inelastic weak and electromagnetic form factors. ~We also note that
hard scattering higher twist subprocesses to inclusive reactions such as yq -+ Mq,
gq +~ Mg, q3 -~ MM, qq » Bg., etc. are absolutely normalized in terms of the distri-
bution amplitudes. [69] In particular, some amplitudes such as yq + mq, qq + 7g
and gq + 7mq can be rigorously related to the pion form factor since the same
integral :

fl 4 (x,Q) (6.5)
0 1-x ¢ﬂ %,Q ‘ .

enters in each of the quantities. [70] The pT6 processes [24] gq - Mq (see Fig.3a)
and qq - Mq are particularly interesting and important in high-pr meson production
processes such as pp - MX since the meson is produced directly in the subprocess
without the necessity for quark or gluon jet fragmentation. 1In fact, the contribu-
tions of standard pT4 scaling processes such as qq +~ qq, gq - gq, and gg + gg to
hadron production are strongly suppressed by two to three orders of magnitude
because of the suppression of jet fragmentation Dy/q(z) at large momentum fraction
z and the fact that the subprocesses must occur at a significantly larger momentum
transfer than that of the triggered particle. [71]

Despite much effort there is at this time no systematic understanding of high
pr hadron production in QCD. A comprehensive attack must take into account not
only the leading twist subprocesses and directly coupled higher twist contributions
such as those listed above, but also the effects of initial state multiple scat-—
tering effects. One of the most important experiments which could clarify the
nature of these effects is the measurement of the ratio of direct photon to meson
at high pp: (xr + 2pT//E)

do do
R (%X,.,8,0 ) = {pp + vX) (pp » 1X) (6.6)
v/ T c.m. d3p/E ///d3p/E
4



Table IV Comparison of exclusive and inclusive cross sections

Exclusive Amplitudes Inclusive Cross Sections
M~ T ¢(xi,Q) ® TH(xi,Q) do ~ 1 G(xa,Q) ® d&(xa,Q)
6 (x Q>=fQ a% | Q- Gxk ) G(x,Q) = ) * a2 Cax]' [pd¢x,k ) |2
? il wval xa Xy i ~ L U (K,
Measure ¢ in vy + MM Measure G in p - X
YA = A 2 h # A
iem * B {fem * B
EVOLUTION
2 s 3G
_¢(3<__Q)_2 = o f[dy]V(x,y)¢(y) ’—3—2912— = a fdy P(x/y)G(y)
3 log Q 3 log Q
e, = ] x, - o VT 6(x,0) = 8(x) €
Qro ? i i flavor Q> ?
POWER LAW BEHAVIOR
2n -1
(1-x.)
do T
da 1 (AB » CX) = E = (6.
ax (ATB > CHD) = 5 £(8 ) a%o/E 2, Mact™? o
s Q"
n = nA + nB + nC =+ nD nact = na + nb + nC + nd
. . 2 - . . 2
TH: expansion in aS(Q ) do: expansion in as(Q )
COMPLICATIONS
End point singularities Multiple scales
Pinch singularities Phase-space limits on evolution
High Fock states Heavy quark thresholds

Heavy twist multiparticle processes
Initial and final state interactions

For example, if leading twist QCD processes dominate these reactions then Ry/n ~
f(xr) ~ (L-x7)"2 at bc.m. ~ 7™/2. If directly-coupled processes such as gq + 7q
dominate the meson production then one predicts Ry/n ~ pf at fixed xq and 8, . [72]
Measurements of this ratio in nuclear targets are important for clarifying the con-
tribution of final state multiple scattering processes. .

The photon probe plays a crucial role in high~-pt hadron reactions since the
photon couples directly to the quark and gluon subprocesses at short distances.
The most dramatic example of these point-like phenomena is the recent observations
at PETRA [6-8] of high transverse momentum hadrons in Yy collisions. The results
at py 2 3 GeV appear to be consistent with the scale invariant QCD prediction [73]
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do(yy > jet + jet) _ 3 }E:e:, q = u,d,s,c (6.7)

do(yy > uu7)
2
[]_ + ﬁ(ﬂ)]
mw

These results also indicate that, unlike typical meson-induced reactions, an inci-
dent photon often produces high pt hadronic jets without leaving hadronic energy
in the beam fragmentation direction. [74] One also expects analogous results for
directly coupled photons in yp -+ HX and yp + Jet + X reactions. The point-like
behavior of on-shell photons is in direct contrast to the predictions of vector
meson dominance models.

A surprising feature of QCD is that even a hadron can produce jets at large PT
without beam fragmentation. [70] For example, the existence of high twist sub-
processes such as Mg + gq and Mg + qq leads to high pT jet events in meson—induced
collisions Mp + Jet + Jet + X where there is no hadronic energy left in the meson
beam fragmentation direction (see Fig.3c). The inclusive cross section, which
scales as pp° at fixed x7 and 6, ., is absolutely normalized to the meson form
factor. As in the case of the photon-induced reactions, the directly coupled meson
has no associated color radiation or structure function evolution. An experimental
search for these unique and highly kinematically constrained events is very im-
portant in order to confirm the presence of these subprocesses which involve the
direct coupling of meson qq Fock state to quarks and gluons at short distance.

In general, we can replace any direct photon interaction by a direct-coupled
meson interaction in the subprocess cross section by the replacement a ¥ Fﬂ(p%).
Furthermore, one can compute direct~coupled processes which isolate the valence
Fock state of baryons, e.g., pp - pX (production of isolated large py protons via
the qq -+ pq subprocesses), and reactions pp -~ qqX (from gp -+ qq) (see Fig.3b),
pp > qqqX (from gq - qqq) etc., each of which produce jets at high pr without beam
spectators or fragmentation.

B. Constraints on the Pion and Proton Valence Wavefunction [27]

The central unknown in the QCD analysis of hadronic matrix elements is the hadron
wavefunction in the non-perturbative domain k2 > 1 GeVZ2, TFor illustration we shall
“assume that in this region the Yp fall off exponentially in the off-shell energy:

" b éh
Vo (xppk g) = A e (6.8)
n 2 2
kK" +m
& =M2—Z<—L———~> <0 (6.9)
Il . X .
i=1 i

The parameterization is taken to be independent of spin; the full wavefunction is
then obtained by multiplying by free spinors u/v/kt . The form (6.8) has the advan-
tage of analytic simplicity: for example, the resulting baryon distribution
amplitude at small « is

o (x;,x) = Aqb XX X, e - ' (6.10)

At large x, ¢ is determined from che evolution equation (4.33). At very large kJ
the ¥, for non-valence Fock states should match onto the power law fall-off krl ~
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predicted by perturbative QCD. It should be emphasized that the form (6.8) is
chosen just for simplicity. An equally plausible parameterization is yn ~ A,&LP
with p = 3, which is suggested by the Schroedinger equation assuming a linear
potential and the correspondence given in Eq. (3.41).

In the case of the pion we can derive two important constraints on the valence
wavefunction from the 7 - pv and 7% -+ yy decay amplitudes:

dzkl 1 ) ; 2
3 dx y°(x,k ) = T l1+0 —72' (6.11)
16m 0 - 2/5; K
and [27]
2 —_—
Z,(m") vn
W,k =) AT - ¢ (6.12)
1 2 f
ZZ(K ) b

The derivation of the second constraint assumes that the radius of the pion is
much smaller than its Compton length:

2 2 6
mq,mTT << — (6.13)
R
m
Let us now assume the form
<k2'+ m2>
—b2 L
VU« e VAx(-x) , (Kz <1 GeVZ) (6.14)
qq
where
d v,2 1 (.qq\ _ .2 :
__Z—FTT(Q ) 2 =-€ R-n— ) = bV (6-15)
dQ Q =0

is the contribution to the slope of the meson form factor from the valence Fock
state (see Eq. (4.2)). The two conditions (6.11) and (6.12) then determine
R#q = 0.42 fm, and [27]

. /K dzkl fl
P _ = dx
qq/m 16n3_ 0

Thus the probability that the pion contains only the valence Fock state at small
k2 is less than 1/4. Furthermore, the radius of the valence state turns out to be
smaller than that of the total state: RﬁXpt ~ 0.7 fm. One can also verify that
the bound an/ﬂ < 1/4 is also true for power law wavefunctions ¢ ~& P, p > 2.

2 2.\2
ZZ(K )

&~

K > 1
wqq/ﬂ(x,kl) A (6.16)

Zz(mi)

The existence of other Fock states at equal 1 in the pion is to be expected
considering the fact that its quark and gluon constituents are relativistic. The
existence of large mp/m1T and mp/my spin splittings (due to transverse-polarized
gluon exchange) also implies that there is a non-zero gluon component intrinsic
to both meson and nucleon bound states.

In the case of the baryon wavefunction, one can obtain non-trivial constraints
on the form of the 3~quark valence wavefunction by making a simultaneous analysis
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of the proton and neutron form factors and the ¢ - pE decay amplitude, assuming

the ¥ decays via a 3-gluon intermediate state (see Fig.6). The observed angular
distribution [53] for ¢ - pp is in fact consistent with the predicted form

1 + B2 cos?6 (where B is the nucleon velocity) and is a non~trivial check of hadron
helicity conservation for exclusive processes in QCD.

The ¢ ~ pp ratio is given to leading order in ag by (Fig.1lb) [18]

->
- 2
r(y ~ 3g -+ pp) 6 3 [Peul (T
T0 5 e > ally T 302 x 10 o (s) — (6.17)
where lpCM\//g'm by, s = 9.6 GeVz, and
* +
{T> = . [dx1ldy] i <yi,S) (1-v.) + (1}—(1}73) Xx3y(ll— ) + vy, (1=-x%x5)
0 1993 [% yp) + oy =% [x3(-v3) + vy 5]
¢(x;,8)
N (6.18)
X. X, X
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is a well defined function of the baryon distribution amplitude. In the case of
the nuclear form factors (see Eqs. (4.31, 4.32)) it is important to use the cor-
rect argument for each ag in the hard scattering amplitude Ty corresponding to
the actual momentum transfer which flows through each exchanged gluon in Fig.7b.
This effect is expected to yield the most important contribution to next to leading
order in ag and is an integral part of the QCD predictions. It is interesting to
note that if ¢p = A¢xlx2x3 and if all the ag have the same argument (which is, in
fact, the situation in the asymptotic Q2 - « limit [9,191) then Eqs. (4.28-4.32)
lim
Q2=
different arguments for each diagram in T; allows one to obtain empirically con-
sistent results for the normalization [75] of Gﬁ(Qz), Gﬁ(Qz) and the ¢ - pp decay
rate. To first approximation one requires [27]

P, L2 .
give GM(Q )/G;(QZ) = 0. However, the fact that ag is not a constant and has

RN a (@°/9) )

~ = s— ~1.5 to 2.0 at 92 = 10 GeV
o (@-x)a-y)Q) o 40%/9)

(6.19)

The QCD predictions (4.28-4.30) for the proton and neutron form factors are only
valid at large Q% where the effects of mass corrections, higher Fock states and
finite transverse momentum can be neglected. In order to understand these effects
we extend the parameterization of the 3 quark valence Fock state contribution by
using (QZ + M2)=2 in the denominators of (4.29, 4.30) and replacing aS(QZ) -
cxs(Q2 + M2) = 4m/Bpy log ((Q2 + M2)/A2) to reflect the fact that at low Q2 the trans-
verse momenta intrinsic to the bound state wavefunctions flow through all the
propagators.

Although we have not tried to optimize the parameterizations, a typical fit
which is compatible with the proton and neutron form factors (see Fig.l1l6) and
Y > pp decay data are Mg = 1.5 GeV, u = 450 MeV, mg = 300 MeV, and A = 280 MeV, so
that aS(Q2 = 10 GeVz) = 0.29. (Analyses [50] of higher order QCD corrections to
the meson form factors suggest that one can identify the A used here with Apem =
2.16 Ajg.) The computed radius of the 3-quark valence state (computed from G via
Eq. (4.2)) is, however, quite small: Ry = 0.23 fm, and the valence Fock state
probability is Pqqq/p 2 1/4. 1If this preliminary analysis is correct, then, as in
the meson case, the valence state is much smaller in transverse size than the
physical hadron (which receives contributions to its charge radius from all Fock

states). éff;
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Fig. 16 Fit to nucleon form factor
data described in the text. (From
Ref. 27.)

The most crucial prediction from this analysis is that Q4GM(Q2) should decrease
= 40 GeVZ, a trend not at all indicated by the

a factor of 2 for Q2

10 to Q

Further measurements of GM(Q ) are clearly crucial in order to check this
essential prediction of asymptotic freedom.

Given the above parameterization of the nucleon valence Fock state we can use
(5.8) to compute the 3-quark non-perturbative contribution to the proton struc-
_ture function at large x (see Fig.1l7)
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Fig. 17 Predicted valence quark
contribution to the proton struc-
ture function. Evolution and
higher Fock states are not in-
cluded. (From Ref. 27.)



Since 4 mzb ~ 0.05, the exponential factor is not very important away from the edge
of phase space and so it is difficult to distinguish between the non-perturbative
and (1-x)3 perturbative contributions at large x (see Sec. V). Higher Fock states
‘qqqg), Iqqq qq> are expected to give the dominant contribution at lower x. Despite
the freedom in this parameterization it is reassuring that one can simultaneously
fit a number of diverse nucleon properties with QCD formulae and parameters which
are in the expected range.

At low Q2 the exact formula (4.2) can be used as a further constraint on the
baryon Fock states. Eventually one hopes to extend the predictions to other domains
of baryon phenomenology such as the baryon decay amplitude in grand unified models
and the normalization of higher twist subprocess contributions to inelastic lepton-
nucleon scattering.

C. Quark Jet Diffractive Excitation [30]

The fact that the wavefunction of a hadron is a superposition of (infrared and
ultraviolet finite) Fock amplitudes of fixed particle number but varying spatial
and spin structure leads to the prediction of a novel effect in QCD. [30] We first
note that the existence of the decay amplitude m - uv requires a finite probability
amplitude for the pion to exist as a quark and diquark at zero transverse
separation:

w(x,’r*L = 0) = Var /ﬁc“x(l—x)fTT (6.22)

In a QCD-based picture of the total hadron-hadron cross section, the components of
a color singlet wavefunction with small transverse separation interact only weakly
with the color field, and thus can pass freely through a hadronic target while the
other components interact strongly. A large nuclear target will thus act as a
filter removing from the beam all but the short-range components of the projectile
wavefunction. The associated cross section for diffractive production of the
inelastic states described by the short range components is then equal to the
elastic scattering cross section of the projectile on the target multiplied by the
probability that sufficiently small transverse separation configurations are
present in the wavefunction. 1In the case of the pion interacting in a nucleus one
computes the cross section '

do ~

7 ;
dx d T, rf’vo

oni 127w fi x?‘(l--x)2 (6.23)

corresponding to the production of two jets just outside the nuclear volume. The
x distribution corresponds to do/d cos® ~ sinZ6 for the jet angular distribution
in the qq center of mass. By taking into account the absorption of hadrons in the
nucleus at rl # O one can also compute the k, distribution of the jets and the
mass spectrum of the diffractive hadron system. Details are given in Ref. 30.

D. The "Unveiling" of the Hadronic Wavefunction and Intrinsic Charm

The renormallzablllty of QCD implies that all of the dynamics of the hadron wave-
functions wn(xl,* i) at scales k2 much larger than mass thresholds is completely
contained in the structure of the running coupling constant aS(K ) and running
mass m(x2) and the guark and gluon external line renormalization constants.
Nevertheless, the fact that there are different hadronic scales and thresholds in
QCD does imply non-trivial dynamical structure of the wavefunctions. In the case
of Compton scattering, yp - yp, the energy denominators (see Eq. (5.3)) are a
function of 2Mv - éh, so that the cross section is sensitive to wavefunctions up
to the scale k2 ~ 2Mv.
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As an example of the change of wavefunction physics with the resolution scale
let us consider a deuteron target. For very low k2 << 2Mepg g. the deuteron acts
as a coherent object. At the scale x2 >> 2Mep_ ., the wavefunction corresponds
to a n-p bound state. As the scale increases to k2 >1 GeVZ, the quark degrees of
freedom become relevant and the deuteron wavefunction in QCD must be described in
terms of six, quark (and higher) Fock states: [76]

‘D> = a[(uud)l(ddu)l> + b{(uud8(ddu)8> + c[(uuu)l(ddd)l> + d{(uuu)g(ddd)8>

+ ... . (6.24)

The first component corresponds to the usual n-p structure of the deuteron. The
second component corresponds to "hidden color" or "color polarized" configuratioms
where the three-quark clusters are in color-octets, but the overall state is a
color-singlet. The last two components are the corresponding isobar configura-
tions. If we suppose that at low relative momentum the deuteron is dominated by
the n-p configuration, then quark-quark scattering via single gluon exchange gener-
ates the color polarized states (b) and (d) at high k,; i.e., there must be mixing
with color-polarized states in the deuteron wavefunction at short distances. [67]

The deuteron's Fock state structure is thus much richer in QCD than it is in
nuclear physics where the only degrees of freedom are hadroms.

It is interesting to speculate on whether the existence of these new configura-
tions in normal nuclei could be related to the repulsive core of the nucleon-
nucleon potential, [76] and the enhancement [77] of parity-violating effects in
nuclear capture reactions. One may also expect that there are resonance states
with nuclear quantum numbers which are dominantly color-polarized. The mass of
these states is not known. It has also been speculated [78] that such long-lived
states could have an anomalously large interaction cross section, and thus account
for the JUDEK [79] anomaly in cosmic ray and heavy ion experiments. [80] Indepen-
dent of these speculations, it is clearly important that detailed high-resolution
searches for these states be conducted, particularly in inelastic electron scat-
tering and tagged photon nuclear target experiments, such as yd > yd scatter at
large angles.

The structure of the photon's Fock states in QCD is evidently richer than that
expected in the vector meson dominance model. [81] For example, consider the one-
gluon exchange correction to the y + qq vertex. For RE > @ (x2) the vertex cor-
rection renormalizes the point-vertex. For the soft domain 2% < 0(K2) one expects
large corrections which eventually by dispersion theory correspond to the usual p,
w, ¢, ... interpolating fields. The soft corrections thus give the usual hadron-
like component of real photon interactions. Nevertheless, the point-like component
survives at any momentum scale, [81] producing point-like corrections to photon
shadowing, J = 0 fixed pole phenomena in the Compton amplitude, and the "anti-
scaling" QCD structure function of the photon. [13] As the resolution scale <2
increases past the heavy quark thresholds, one adds the y - cc, bb, etc. components
to the photon's wavefunctions.

It is also interesting to consider the dynamical changes to the nucleon wave-
function as one passes heavy quark thresholds. For k2 > émg the proton Fock
state structure contains charm quarks, e.g., states ‘p) ~ luud cc>. We can dis-
tinguish two types of contributions to this Fock state. [31] (1) The "extrinsic"
or interaction~dependent component generated from quark self energy diagrams as
shown in Fig.18b — a component which evolves by the usual QCD equations with the
photon mass scale Q2; and (2) the "intrinsic" or interaction-independent component
which is generated by the QCD potential and equations of motion for the proton,
as in Fig.18a — a component which contributes to the proton Fock state without
regard to QCD evolution. Since the intrinsic component is maximal for minimum off-

shell energy
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& = M2 - Z [(kf + mz)/x]i
i

the charm quarks tend to have the largest momentum fraction x in the Fock state.
(This also agrees with the physical picture that all the constituents of a bound
state tend to have the same velocity in the rest frame, i.e., strong correlations
in rapidity.) Thus, heavy quarks (though rare) carry most of the momentum in the
Fock state in which they are present — in contrast to the usual parton model as-
sumption that non-valence sea quarks are always found at low x. One can also
estimate using the bag model and perturbative QCD that the probability of finding
intrinsic charm in the proton is ~1-2%. [82]

Ic

P — - Fig. 18 Intrinsic (a) and

' | extrinsic (b) contributions to
1082 {a) {b) 236 the proton |uudcE> Fock state.

The diffractive dissociation of the proton’s intrinsic charm state [30,31]
provides a simple explanation why charmed baryons and charmed mesons which contain
no valence quarks in common with the proton are diffractively produced at large xy,
with sizeable cross sections at ISR energies. Further discussion may be found in
Ref. 31.

VII. THE SYNTHESIS OF QCD AND NUCLEAR PHYSICS

In this section we will discuss applications of quantum chromodynamics to nuclear
physics where the basic quark and gluon substructure of hadrons plays an essential
role at the nuclear level. [83] Because of asymptotic freedom we can make detailed
predictions for nuclear form factors and nuclear scattering processes at large
momentum transfer, as well as predict the asymptotic .short-distance features of

the nucleon-nucleon interaction and nuclear wavefunctions. [84,85] We shall also
_discuss areas where QCD places constraints on or actually conflicts with standard
nuclear physics models. In particular, the fact that the nuclear wavefunction has
"hidden color" Fock components [86] implies that the conventional meson and nucleon

degrees of freedom of nuclear physics are not sufficient to fully describe nuclei
in QCD.

A. The Deuteron Form Factor and Nuclear States at Short Distances

The most direct application of perturbative quantum chromodynamics to nuclei is
the structure of the Fock state wavefunctions and the form factors of nuclei at
large momentum transfer. In analogy with the meson and nucleon form factor calcu-
lations discussed in Secs. IIT and VI we can write the deuteron form factor at
large momentum transfer in the factorized form (see Fig.19): [85]

1 1
2 KA 1 .
FD(Q ) = j(; [dX:] L [d}’] ¢6(X19Q) TH(Xi,Yi, Q) ¢D(Y,Q) (7-1) :

where Ty ~ [05(Q2)/Q215 is computed from the sum of hard scattering diagrams
6q + Y* > 6q where the initial and final quarks are collinear with the initial
and final deuteron momentum p and p+q, respectively. The distribution amplitude

!
= 2‘
oy @ = f [afi ] g 0k, (7.2)
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Fig. 19 QCD factorization of the deuteron form factor at
large momentum transfer. Ty is computed for six quarks
collinear with the incident and final directions.

is defined in terms of the deuteron's six-quark valence wavefunction evaluated at
equal time on the light cone. As in the case of the meson and baryon distribution
amplitudes, the log Q2 dependence of ¢p is determlned from an evolution equation
of the form (4.33) where to leading order in as(Q ), the interaction kernel is
determined from the sum of single gluon exchange amplitudes.

Because of the helicity-selection rules, the leading form factor of the deuteron
corresponds to the helicity zero — helicity zero electron deuteron scattering
amplitude:

F, QD) =\a,(@")

The other deuteron form factors are suppressed by at least one extra power of Q2.
As in the case of the meson form factors, the leading deuteron form factor is not
affected by endpoint singularities in the xl and yi{ integration. Thus asymptoti-
cally, to leading order in m2/Q2 and o (Q ) we have

o D D

9 aS(Q ) QZ Y, Ym

F Q) = |——| - d log == (7.3)
Q° n2n:=0 o %

where the deuteron anomalous dimensions YE can be computed from the eigenvalues of
the evolution equation for ¢p(xi,Q) or the operator product expansion for six fer-
mion fields near the light cone.

The nominal QCD power law prediction Fp(Q2) ~ (Qz) at large Q2 is consistent
with the dimensional counting rule [8] F(Q2) ~ (Q2)0~1 where n is the minimum
number of elementary constituents in the Fock state. The prediction thus reflects
the QCD substructure of the nucleus and the essential scale-invariance of the
renormalizable quark interactions in the tree graphs for Ty. A comparison with
data [87] for =, p, m, D, Hg and Hé is shown in Fig.9.

As we have indicated in Fig.20, the deuteron form factor receives contributions
from six quark wavefunction components which are in both the standard color
| (uud) 1 (udd)1> and "hidden color” |(uud)g(udd)g> configurations (see Sec. VI).
It should be emphasized that the QCD equation of state for Ygq automatically leads
to mixed color components, at least at short distances. For example, if we impose
the boundary condition that the deuteron is effectively an n-p bound state at large
distances then the one gluon exchange kernel in the evolutlon equation for ¢p(x,Q)
automatically leads to hidden color components at large Q
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ing amplitude.

The perturbative strcture of the QCD equation of state for yp at large k; also
determines the power law and anomalous dimension structure of the valence wavefunc-
tion. [47] For example, if one quark has large k, relative to the deuteron, then
yp(xi, k) ~ (kf)'l. On the other hand, if we consider the deuteron as two nucleon
clusters, then at large transverse separation we have

L\
Up(xgak )~ <T> (7.4)

kLN

This power law reflects the fact that the effective nucleon-nucleon interaction

large momentum transfer is Tnp—*np ~ (1/Q2)%4, which is again consistent with
dimensional counting.

The specific comnection of the asymptotic deuteron form factor to the nucleon~
nucleon interaction is as follows: [84] the deuteron form factor is the probability
amplitude for the deuteron to remain intact after absorbing a large momentum trans-—
fer p ~ p+q. If we consider the deuteron to be a loosely bound n-p system, with
each constituent sharing almost equally the deuteron-four momentum, then each
nucleon scatters from ~p/2 to ~(p+q)/2. The coupling of the electromagnetic
current to the struck nucleon is effectively point-like as in the case of deep
inelastic scattering at large q2, since the intermediate nucleon state (p/2 + )2 ~
q2/2 is far-off-shell. The required n- p scattering amplitude (evaluated at t =
q2/4 = u, with one leg space-like at p§ = q2/2) scales at Tpp+np ™ (1/Q2)%.  This
scaling, combined with the off-shell propagator then gives the results FD(QZ) ~
(Q2)-5. The normalization of Fp(Q2) can then be related to the non-relativistic
deuteron wavefunction at the origin (see Ref. 84). It should be emphasized that
the relativistic calculation of the deuteron form factor is incompatible with the
conventional nuclear physics parameterization [88]

2

Body (@) (7.5)

2 2
F Q%) = F (%) F
In the case of (static) non-relativistic models this form removes the structure
of the struck nucleon. Equation (7.5) is, however, incorrect in the large Q2

domain since the struck nucleon cannot be on-shell both before and after the inter-
action with the electromagnetic current. )

B. Reduced Form Factors [84]

For a general nucleus, the asymptotic power behavior for the minimal helicity-
conserving form factor' is FA(QZ) ~ (Q2)1"3A reflecting the fact that one must pay
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a penalty of as(Qz)/(Qz) to move each quark constituent from p to p+q. The fact
that the momentum transfer must be partitioned among the constituents implies that
the asymptotic domain increases with the nuclear number A.

However, as we shall now show, the introduction of the reduced form factor FA(QZ)
will allow interesting QCD predictions to be made even at relatively low momentum
transfers. The basic idea is as follows: the deuteron from factor Fp(Q2) is the
probability amplitude for the nucleus to remain intact after absorbing momentum
transfer Q. Clearly Fp(Q2) must fall at least as fast as Gﬁ(Qz/a) . Gﬁ(Q2/4) since
each nucleon must change momentum from p/2 to (p+q)/2 and stay intact. Thus we
should define the "reduced form factor" fD(Qz) via

2
2y _ .2(Q 2
F(Q) = FN(_—A) NG (7.6)

Note that fD(Qz) must itself decrease at large Q2 since it can be identified as
the probability amplitude for the n-p system to remain a ground state deuteron.
In fact, the dimensional counting rules FD(QZ) ~ (Qz)‘5, FN(QZ) ~ (Q2)'2 implies
the asymptotic behavior fp(Q2) ~ (Qz)’l. This is precisely what one expects for
a composite of two elementary systems once the nucleon structure has been removed.

We can also understand the origin of the simple result for fD(QZ) from Ty
diagrams such as Fig.20c where a gluon immediately transfers momentum 1/2 gH to
the other nucleon. Such diagrams give contributions of the form

2(Q2> a_(Q%/4)

2
FOQ) = Fo -~
D N l-FQz/mz

4 (7.7)

The mass parameter can be estimated from the corresponding parameters in the meson
and nucleon form factors and is expected to be small, m2 = 0.3 GeVZ. The compari-
son of the data for fD(Qz) with the prediction (Q2 + 0.3 GeV2) fD(Qz) - const. ig
given in Fig.21. Remarkably, the predicted flat behavior for QZfD(QZ) appears to
be accurate from Q2 below 1 GeVZ out to the limits of the data. The prediction is
also verified at larger Q2 when one uses inelastic deuteron form factor data at
fixed mass (p+q)2,
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Fig. 21 Comparison of deuteron form factor data with
the QCD prediction (l%-QZ/mZ)fD(QZ) + const. at large
Q2. The data are from Ref. 87.
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In general, we can define reduced nuclear form factors [84]

) F, (@)
fA(Q ) = [ (7.8)

2,,2,1A
ry@/ad)]

QCD then predicts the power behavior fD(QZ) ~ (Qz)l_A (as if the nucleons were
elementary), Comparisons with data for Hg and Hé are given in Ref, 87. The defini-~
tion of the reduced form factor takes into account the correct partitioning of the
nuclear momenta, and thus to first approximation represents the nuclear form factor
in the limit of point-like nucleon comstituents. One can also extend the definition
to reduced elastic nuclear scattering amplitudes

2
T, (Q%)
£, Q%) = [ A (7.9)

2,214
Fe@’ /)]

e.g., in meson-deuteron elastic scattering at large momentum transfer, It should
be of interest to see whether a consistent parameterization of nuclear amplitudes
can be obtained if in each nuclear scattering process, reduced "point" amplitudes
are defined by dividing out all of the constituent nucleon form factors at the cor-
rect partitioned momentum. Again, we emphasize that the standard method based on
Eq. (7.5) is invalid in a relativistic theory. The measurements of hadron-nucleus
elastic scattering are also interesting from the standpoint of testing basic QCD
scattering mechanisms. [84] For example, the Kt - A scattering amplitude should
scale as A+Z at large momentum transfers if the scattering is dominated by u-quark
interchange.

C. The Nucleon-Nucleon Interaction at Short Distances

The basic measure of the nuclear force is nucleon-nucleon scattering. As we have
discussed in Sec. IV, two general features of the N-N amplitude at large momentum
transfer can be predicted from perturbative QCD: hadron helicity conservation and
power law scaling at fixed angle. In general there are five independent parity-
conserving and time reversal invariant helicity amplitudes. The QCD selection
rules [18] hinjitial = hfina] implies that o# (++ + +-) and M (-- + ++) are power
law suppressed relative to H(++ + ++), M (+- » +-), M(~+ + +-). The helicity
conserving amplitudes.thus are predicted in first approximation to scale as
°47Ah==0 ~ (Qz)‘A, yielding the dimensional counting prediction

10 do _
s EE'(S’ecm) = F(ecm) (7.10)

for nucleon-nucleon scattering at fixed angle and s >> M2. More precisely, the
nominal power-law is slightly modified by the Landshoff pinch singularity contribu-
tions and the logarithm factors from 10 powers of aS(QZ) and the anomalous dimen-
sions of the distribution amplitudes. Remarkably, the pp - pp data is consistent
(within a factor ~2) with the fixed angle scaling predicted by (7.10) as the cross
section falls more than 4 decades in the range 4 < p% < 12 GeV2, 380 < 8em < 90°.
(See Fig.22.) The simplest interpretation of the results is that the variation

of a4(Q2) is very slow in this domain, as in the case of the Q4GM(Q2) scaling of
the nucleon form faectors. The presence of the Landshoff pinch singularities,
however, could act to compensate for the fall-off of ag. In addition, there is
some evidence [90] that the data is systematically oscillating about the s1O0do/dt
const prediction, possibly suggesting the presence of an interfering subasymptotic
amplitude.

The computation of the angular dependence and normalization of each of the
helicity—conserving N-N amplitudes in QCD is a formidable task since, even to
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Fig. 22 Differential cross sections for pp » pp scattering at
large center of mass angles. The straight lines correspond to
the predicted power-law fall-off at 1/sl0., The data compilation
is from Ref. 89.

lowest order in ag, there are of the order of 3 x 106 connected Feynman diagrams in
which five gluons interact with six quarks; [91] in addition a detailed representa-
tion of the Sudakov suppression is needed in order to integrate over the Landshoff
singularities. [92] Considerable phenomenological progress has, however, been made
simply by assuming that the dominant diagrams involve quark interchange; [15] i.e.,
exchange of the common valence quarks. This ansatz seems to yield a good approxi-
mation to the observed large angle meson~baryon and baryon-baryon scattering
amplitude angular distributions, as well as the correct crossing behavior between
the hadronic amplitudes, including pp - pp to pp - pp. A useful analytic form

for the interchange amplitude in terms of light-cone Fock state wavefunctions is
given in Ref. 93. A simple model for the quark interchange amplitude for pp + pp
which has such properties is A « GM(t)GM(u)

The most sensitive tests of the hard scattering QCD prediction involve the
polarization effects. The spin asymmetry Ayy is defined as

Lo+ 82 0 - L ¢y - Ly
- t dt (7.11)
S do (+4) + 92 (4yy 4 d0 (e + 39 4y .
dt dt ac at

which measures the difference of cross sections when both nucleons are polarized
parallel to the normal (%) of the scattering plane or are anti-parallel. Similarly
A1y, refers to the polarization asymmetry where the initial spins are polarized
along the laboratory beam direction (Z) versus anti-parallel spins, and Agg refers
to initial spins polarized (sideways) along the third direction (3).

For the scattering of identical particles at 90° all amplitudes involving a
single helicity flip vanish, e.g., (++ > +-). This implies the sum rule [97,98]

— -— = = O
A T AL T Agg T (B =909 (7.12)

If in addition the double-flip amplitude (++ =+ --) vanishes, as in the case of the
perturbative QCD predictions, then we have Ayy = -Agg (all angles) and the above
sum rule becomes :
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ZANN - ALL =1 (ec.m‘ = 90°) (7.13)

The striking CRABB et al., Argonne measurements for Aygy (see Fig.23) can now be
combined with preliminary results [96] for Ary at 90° and pygp = 11.75 GeV

(pr = 2.4 GeV): 2ANN - App = 2(0.58 + 0.04) - (0.18 + 0.09) = 0.98 # 0.17, which
is consistent with helicity comservation. On the other hand, it should be noted
that the change of Ayy is very rapid: Agy = 0.05 at 6c.m. < 60° to Agy = 0.60 at
Oc.m. 2= 70°, which is in marked comtrast to the generally smooth behavior predicted
from calculations of Ty for proton-proton scattering. For example, hard scattering
diagrams with only quark interchange (see, e.g., Fig.20b) between the nucleons
(which gives a good representation of the pp - pp angular distribution and crossing
to pP - pP) leads to the simple predition [97,98]

ANN - _ALL B —ASS = 1/3 (ec.m. = 909 ’ (7.14)

with a very slow variation (<2%) over all 6, . . Diagrams with quark interchange
plus gluon exchange between nucleons give a smaller value for Ayy. [99] The angular
distribution predicted for diagrams with only gluon exchange is incompatible with
the large angle data; furthermore, if these amplitudes are normalized to the small
angle regime then they are negligible at 90°. [19]
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At this stage, there does not seem to be a convincing explanation of the nucleon-
nucleon polarization effects at large angle. [100] It seems possible that whatever
interference of amplitudes causes the oscillation of dg/dt around the smooth s—10
behavior can also lead to striking interference effects in the polarization
correlations. [90,97] One possibility is that the quark interchange amplitude is
asymptotically dominant, but that in the present experimental range there is sig-
nificant interference with multi-Regge exchange contributions. [97] An important
point is that the Landshoff pinch contribution for pp + pp scattering includes
three sequential qq -+ qq scatterings each at approximately the same momentum trans-
fer t ~ 1/9. Since'|E| < 1.1 Gev2 is not very large, ordinary Reggeon exchange
could still be playing a role in the quark-quark scattering amplitude. Unfortunately,
the introduction of such contributions necessarily includes extra parameters and
considerable model-dependence. Nevertheless, a simple estimate of the rotating
phase associated with triple Regge exchange is consistent with the interference
pattern indicated by the pp + pp large angle data. [91]
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D. Continuity of Nuclear Physics and Quantum Chromodynamics

The syntheses of nuclear dynamics with QCD is clearly an important and fascinating
fundamental problem in hadron dynamics. The short distance structure of the
nucleon-nucleon interaction as determined by perturbative QCD must join smoothly
and analytically with the large distance constraints (meson-exchange dynamics) of
the N- N potential. The length scale of QCD is comparable with the inverse nucleon
radius so it 1s difficult to find a specific domain where nuclear physics can be
studied in isolation from QCD.

The grand goal of QCD would be to actually derive the nuclear force from funda-
mental QCD interactions. The difficulty is that the nucleon-nucleon interaction
in QCD is a remnant of the color forces and is analogous in complexity to calculat-
ing the molecular force between neutral atoms, e.g., positronium. The basic
ingredients are quark interchange which is evidently related at long distances to
pion and other meson exchange, and multiple gluon exchange, which despite the zero
mass of the gluon must have an inverse range shorter than the mass of the lowest
lying gluonium state. It is possible that numerical results for the N- N potential
will eventually be obtained from lattice gauge theory calculations. Model calcula-
tions of these exchange forces have also been given in the context of bag [101] and
potential models. [102]

The constraints of asymptotic QCD behavior, especially its power-law scaling and
helicity selection rules have only begun to be exploited. For example, dispersion
relations and superconvergent relations for the nuclear-nuclear helicity amplitudes
should yield sum rules and constraints on hadronic couplings and their spectra.

One could try to enforce a form of duality which equates the g-g-g exchange ampli-
tudes with the sum over meson-exchange degrees of freedom. However, this cannot be
strictly correct since the existence of hidden color configurations — whether mixed
with ordinary nuclear states or appearing as resonance excitations — implies that
duality in terms of the low-lying hadrons cannot be a true identity.

One missing ingredient in nuclear physics model calculations of meson exchange
amplitudes and currents is the form of the effective off-shell meson-nucleon-
nucleon vertices. In principle, the effective form factors of these couplings is
determined by QCD. Let us return to the form of the ultraviolet regularized QCD
Lagrangian density discussed in Sec. II. If the cutoff k2 is comparable to hadronic
scales then extra contributions will be generated in the effective Lagrangian:

S?SCD = S?g + EE%;l aouv cle wAim (7.15)
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where & ., is the standard contribution and the higher twist terms of order « 2,

, ... are schematic representations of the quark Pauli form factor, the pion and
nucleon Dirac form factors, and the m-N-N coupling. The pion and nucleon fields
represent composite operators comstructed and normalized from the valence Fock
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amplitudes and the leading interpolating quark operators. Our main point for
writing down Eq. (7.15) is just to estimate the effective asymptotic power law
quark 2 o 202 o 2,0
FPaull 1/Q ,2 6f /Q°, GM fp/Q and the
coupling: F (Q2) ~ MNf f /Q The net pion exchange

behaviors of the couplings, e.g.,
effective 7 NYSN F TN 5
amplitude thus falls off very rapldly at large momentum transfer MNN NN ~ Q") 7,
much faster than the leading quark interchange amplitude M§§-+NN ~ (Q2)~ 4,

Similarly, the vector exchange contributions give contributions Mé%->NN ~ (Qz)—6.

Thus, meson exchange amplitudes and currents, even summed over their excited
spectra do not contribute to the leading asymptotic behavior of the N-N scattering
amplitudes or deuteron form factors, once proper account is taken of the off-shell
form factors which control the meson-nucleon-nucleon vertices.

There is a further difficulty extending nuclear physics models based on an
effective nucleon-nucleon-meson field theory. If one uses pointlike N¢N isospin
invariant couplings of the nucleons to the rho meson then the theory is not
renormalizable without the full apparatus of non-Abelian gauge theories, including
triple p and four-point p meson couplings, and a spontaneous symmetry breaking
mechanism to generate the p mass. We emphasize that a non-renormalizable field
theoretic model requires a new cutoff in each order of perturbation theory and
thus is not predictive.

In addition to the above problems, it is difficult to understand within the
context of QCD the role of NN pair production contributions as conventionally used
in nuclear physics model calculations of electromagnetic exchange currents, etc.
Nucleon pair (i.e., qqqqqq) terms are far-off-shell and hlghly suppressed by off-
shell form factors in QCD. On the other hand, anomalous 'contact" terms are auto-
matically generated in QCD time~ordered perturbation theory for the Z-graph term
in the quark electromagnetic current. In the case of light-cone perturbation

theory these are the instantaneous quark propagator terms described in Sec. IIT.

E. Structure Functions of Nuclei

If the nucleus were simply a loosely bound collection of nucleons, then the nuclear
structure functions should reflect simple additivity:

Gq/A(X,Q) Z Gq/p(x,Q) + (A-12) Gq/n(x,Q) (7.16)

Gg/A(x,Q) = /N(x Q

where x = A(ko+~k3/pA-kpA) is the quark light-cone momentum fraction scaled to the
nucleon momentum. The interesting physics is the derivation from simple additivity,
which arises from the following sources:

(1) The nuclear structure functions Gq/a and Gg/p do not vanish at x = 1 but extend
kinematically all the way out to X = A where one quark or gluon has the entire
available light-cone momentum of the nucleus. For x 5 1 this is related to ordinary
fermi motion. At larger x the structure functions are sensitive to far-off-shell
QCD dynamics. [84,103,104] Modulo logarithms, the power behavior of perturbative
QCD contributions to the inclusive distributions is given by the spectator counting
rule [60] (see Fig.24)

2n
dN -
S9N - o a-xy o
G = a/A a
a/A dx

a - A

(7.17)
X
a

where ng is the number of spectator (quark) constituents in the bound system A
forced to carry small light-cone momentum fraction: =xg = 0. The power law is
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A — Fig. 24 Application of spectator counting rule to
' }'n' general composite or nuclear systems. The subsystem a
has light-cone momentum fraction x, = k}/p}. There
1-82 4253425 are ng quark spectators.

derived by simply counting the minimum number of off-shell propagators (& -~ -« as

X * Xpax) which are required to transfer all the momentum of A to a. Since the

end result only depends on the number of spectators, it is easily shown that the
system a can be a quark, gluon, or multiparticle cluster of constituents. However,
the rule (7.17) holds only for the case where the helicities of a and A are
identical; otherwise there are additional power-law suppressions. Examples of the
spectator counting rule are dN/dx ~ (1-x)3 for q/p, (3-x)15 for q/Hg and (3-x)11
for p/Hg. These rules can be tested not only in deep inelastic lepton-nucleus
scattering, but also in forward inclusive nuclear scattering reactions where had-
rons are produced with large longitudinal momentum fractions; e.g., dN/dx (A]+Ap >
p+X) ~ dN/dx (P/Ay). [103,105] The data for large x for these reactions does
appear to be generally consistent with the power-law fall-off predicted by QCD
spectator counting. Further discussions and tests can be found in Refs. 83, 103,
and 105. 1In the case of the deuteron (and other even spin nuclei) the mismatch
between the quark and nuclear helicity implies that the deuteron structure function
vanishes at the kinematic limit as [106] Fyp ~ Gq/D(x) ~ (2-%x)10 rather than
(2-%x)9. (In each case, the power is logarithmically increased by QCD evolution.)
One also expects an anomalous contribution to Fyp at x ~ 2 analogous to the pion
longitudinal structure function. Such contributions cannot be obtained from
simple convolutions of the nucleon structure functioms with nuclear distributions.
The testing of these predictions is, of course, difficult because of the rapid
fall-off of the structure functions, and the necessity for high Q2 in order to
avoid higher twist contributions. As we have discussed in Sec. V, we expect, in
general, a sum of impulse approximation contributions [84,107]

d Na/A

dx

d
—w—fl—— (24 > 2'X) = :E: —Q%Z(Za + 2'a)

dQ“ dx - Faq

(7.18)

representing incoherent contributions, each of which correspond to lepton scatter—
ing on one quark or clusters of quarks in the nuclear target. We also note that
the transverse momentum distributions dNa/A/del can also be predicted from the
perturbative QCD processes which control the high momentum tail of the bound state
wavefunctions.

(2) The deviations from simple additivity of Gy/p at x ~ 0 are related ‘to the impor-
tant question of whether the leading twist nucleon structure functions are

shadowed; 1i.e., FZA(X,QZ) ~ Aa(X’QZ)FZN(x,Qz) at large QZ, with u(x,QZ) < 1 (see
Fig.25). A simple duality argument [109] based on the assumption of continuity of
the structure function at x = XBj = QZ/2Mv+Q with the photoabsorption cross section -
UyA(V) (which is shadowed because of coherent vector meson photoproduction processes)
obviously implies shadowing of FzA(x,QZ). However, as emphasized in Ref. 110, the
QCD momentum sum rule then implies that a region of x must exist (probably at

X ~ my/My) where the structure function obeys "anti-shadowing," i.e., a(x) > 1.

The existing data on lepton-nucleon scattering [108] clearly show shadowing at low x
and low Q2, but the data are not sufficient to demonstrate whether the shadowing
occurs in the leading twist Bjorken-scaling contributions to the structure function,
rather than in higher twist contributions associated with vector meson electro-
production.

There are several arguments which indicate that QCD actually predicts the
absence of shadowing for the leading twist structure functions, ie., a(x,Q2)y =1
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at Q2 + ® and fixed x < 1. Since shadowing is associated with initial state
(Glauber) interactions, [20] let us consider the representative initial state con-
tributions to the virtual photo-absorption cross section OY*(X,QZ) shown in Fig.26.

Fig., 26 Example of an initial state
scattering correction to the nuclear

* q * q . .
4 Y photo-absorption cross section lead-
ing to Glauber corrections and
+ shadowing of the nuclear structure
. functions. The contributions of (a)
A . (a) A (b) and (b) cancel for Q2 large compared
1—-82

4253427 to the momentum transfer of the
exchanged gluon.

At low Q2, soft vector gluon exchange (finite transverse momentum %;, and small
light-cone momentum fraction &+ ~@&(1/Vs) between the incident quark and the nuclear
quark spectators gives an energy independent initial state correction to the photon-
nucleus cross section as in meson-nucleus reactions. However, at high Q2>> lg, the
contributions of Figs.26a and 26b exactly cancel — corresponding to the vanishing

of the hadronic radius of the photon. A complimentary argument for the absence of
shadowing corrections based on explicit consideration of coherent shadowing contri-
butions and their damping at large Q2 is given in Ref. 105,

(3) In addition to the above considerations, simple additivity of the nuclear struc-
ture functions will be violated by the fact that the nuclear Fock state spectrum is
more complex than that of the individual nucleon. For example, the nuclear binding
associated with meson exchange contributions leads to a modification to the sea
quark and antiquark distributions in the nuclear structure functions. The number

of strange quarks in the a-nucleus structure function may be different than the
extrapolation from a nucleon target. We also emphasize that the existence of hid-
den color components in the Fock state expansion of the nuclear state also implies
new contributions to the nuclear structure functions, particularly in the x > 1
far-off-shell domain.

The definitive experimental identification of additivity violating effects in
the nucleus will also require a careful study of the nuclear target dependence of
lepto-production channels, e.g., the reaction eA - eK'X which is sensitive to the
intrinsic strange quark composition of the nucleus, i.e., contributions not due to
QCD evolution (see Sec. VI). The identification of specific ed -+ eN*N* channels
in electron-deuteron scattering may be an important clue to the AA and hidden color
Fock states of the deuteron as in Eq. (6.24).

F. Nuclei as Probes of Particle Physics Dynamics

Thus far in this section we have discussed applications of QCD specific to the
dynamics and structure of nuclei. Conversely, there are numerous examples where a
nuclear target can be used as a tool to probe particular aspects of particle
physics. We will only mention a few applications here.
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(1) Parity violation in hadronic or nuclear processes. The exchange of a weak W
or Z boson between the quarks of a hadron or nucleus leads to a high momentum
component in the Fock state wavefunction

> o 2
By (x,k ) ~ ;§i:;g ¢ X,Mw) 7 (7.19)
L

as in the derivation of the distribution amplitude evolution equation. [19] The
interference of these amplitudes with normal QCD contributions leads to parity vio-
lation in processes such as photodisintegration yd - np and total hadronic cross
sections. [111]

(2) The nucleus as a color filter. As we have discussed in Sec. VI, one can study
a new class of diffractive dissociative jet production processes in nuclei which
isolate the valence component of meson wavefunctions. [30] One can also use the A
dependence of the nuclear cross section to separate central and diffractive mecha-
nisms for heavy flavor production (open charm, etc.). [30,31]

(3) Nuclear corrections to inclusive QCD reactions. When a hadron traverses a
nucleus, its Fock state structure would be expected to be modified by elastic and
inelastic collisions. An analysis based on perturbative QCD is given in Ref. 20.
We show that multiple scattering in the nucleus increases the transverse momentum
fluctuations of the quark and gluon constituents in the hadron, implying a nuclear
enhancement for the rate of hadron and photon production at large transverse
momentum. At very large pr the direct photon production cross section in nuclei
should have the form

A1/3

(pN - vX) |1 + 0O 7 . (7.20)

T

do . do

d°p/E d”p/E P

In the case of the Drell-~Yan cross section da/sz szi (pA » yty™X) the trans-
verse momentum Q, distribution of the produced lepton pair is predicted to

broaden due to multiple scattering in the nucleus of the quarks in the initial
state. Nevertheless, the integrated cross section do/dQ2 (pA ~ u+p‘X) is propor-
tional to A. Furthermore, as shown in Ref. 20, the light-cone x distribution of a
fast quark is not effected by inelastic processes induced by multiple scattering
in the nucleus as long as the quark momentum is large compared to a scale propor-
tional to the length of the target. This effect is related to the formation zone
analysis of LANDAU and POMERANCHUK [112] which shows that radiation from a clas-
sical current propagation between fixed target centers is limited at high energies.

(4) Propagation of quark and gluon jets in nuclear targets. In the conventional
parton model picture based on the impulse approximation, the multiplicity of
hadrons produced in deep inelastic lepton scattering or a nuclear target is expected
to be identical to that on a single nucleon, since only one nucleon is "wounded" at
large momentum transfer. 1In fact, the soft gluons radiated by the scattered quark
jet in the deep inelastic process can interact in the nuclear target and produce
extra associated multiplicity in the target-fragmentation and central rapidity
regions. [113] As shown in Ref. 20 only fast quanta are prevented in QCD from
interacting inelastically in a nuclear target. The study of the initial and final
interactions of the hadrons and jets in nuclear target, specifically the modifica-
tion of longitudinal and transverse momentum distributions, can provide important
insights into the nature of QCD dynamics.

VIITI CONCLUSIONS

In these lectures we have discussed the application of QCD to hadron and nuclear
dynamics at short distances where asymptotic freedom allows a systematic perturba-
tive approach. We have shown that it is possible to define the perturbative
expansion in ag(Q?) in such a way as to avoid ambiguities due to choice of
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renormalization scheme or scale, at least in the first non-trivial orders. [14]
Our main emphasis in these lectures, however, has been on how to systematically
incorporate the effects of the hadronic wavefunction in large momentum transfer
exclusive and inclusive reactions — thus leading to a broader testing grogpd for
QCD. We have particularly emphasized the Fock state wavefunctions Pn(xi,K;i; Xi)
which define the hadron or nuclear state in terms of its quark and gluon degrees
of freedom at equal time on the light-comne. It is clear that a central problem
of QCD is to determine not only the spectrum of the theory but also the basic
bound state wavefunctions of the color singlet sector. Such solutions may be found
in the near future using lattice numerical methods, particularly by quantizing at
equal time on the light-cone, or by more direct attacks on the QCD equations of
motion for the Y, as discussed in Sec. III.

Even without explicit solutions for the y,, we can make a number of basic and
phenomenological statements concerning the form of the wavefunctions: [27]

(1) Given the ¥ we can compute the single and multiple quark and gluon distribution
amplitudes and structure functions which appear as the coefficient functions in the
QCD predictions for high momentum transfer exclusive and inclusive reactiouns,
including dynamical higher twist contributions. We have also emphasized general
features of these distributions, including helicity selection rules, Lorentz
properties, connections with the Bethe-Salpeter amplitudes, renormalization
properties, and correspondence limits in the non-relativistic weak binding approxi-
mation.

(2) The perturbative structure of QCD leads to predictions for the high k;, x » 1
and far-off-shell behavior of the wavefunction. In particular, the large k, power-
law behavior yy ~ k| of the valence wavefunctions and the |w|é ~ kIZ behavior of
the higher Fock state contributions leads te QCD evolution equations and light-cone
operator product expansion for the essential measures of the wavefunctions, the
distribution amplitudes ¢y(x,Q), ¢5(xi,Q, ¢p(x4,Q) and the structure functions.

We have also emphasized the fact that the valence wavefunction behavior yy ~ kIZ
implies that the high k} behavior of quark and gluon jet distributions dN/dkf is
~l/kf, not exponential or gaussian.

(3) Important boundary values and constraints on hadronic wavefunctions are obtained
from the weak and electromagnetic decay amplitudes, including ¢ - BB. The meson and
baryon distribution amplitudes are measureable in detail from the angular behavior
~of the yy » MM and [114] yy - BB amplitudes.

(4) By assuming simple analytic forms for the valence wavefunctions in the non-
perturbative domain, we have found consistent parameterizations which are compatible
with the data for hadron form factors, decay amplitudes, etc. An important feature
which emerges from these studies is that the valence state is more compact in
transverse dimensions than the physical hadron. Even at low momentum transfer
scale, higher Fock states play an important role, i.e., there is no scale where

the proton can be identified as a 3-quark valence state. This observation may be
compatible with the traditional nuclear physics picture of the nucleon as a central
core, surrounded by a light-meson cloud. [115]

(5) The fact that there is a finite probability for a hadron to exist as its valence
state alone, implies the existence of a new class of "directly-coupled" semi-
inclusive processes where a meson or baryon is produced singly at large transverse
momentum, or interacts in a high-momentum transfer reactions without accompanying
radiation or structure function evolution. [29] As in the case of directly-coupled
photon reactions, the hadron can interact directly with quark and gluons in the
short-distance subprocess, with a normalization specified rigorously in terms

of the distribution amplitudes or form factors. Examples of these subprocesses are
99 -~ Bq, 8g » Mg, Mg - qg, Bq + qq. We have also discussed an important contribu-
tion to the longitudinal meson structure function F% ~ C/Qz, involving direct-
coupling of the meson, somewhat analogous to the photon-structure function. The
finite probability for a meson to exist as a qa Fock state at small separation also
implies a new class of diffractive dissociation processes. [30]
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(6) The Fock state description of hadrons in QCD also has interesting implications
for nuclear states, especially aspects involving hidden color configurations. More
generally, we have emphasized the idea that the far-off-shell components of hadron
wavefunctions can be "unveiled" as the energy resolution scale is increased. For
example, the existence of heavy quark vacuum polarization processes within the
hadronic bound state implies finite probabilities for hidden charm Fock states

even in light mesons and baryons. The diffractive dissociations of these rare
states appears to provide a natural explanation of the remarkable features of the
charm production cross sections measured at the ISR. [31]

(7) We have also emphasized the importance of initial state interactions in all
inclusive reactions involving hadron-hadron collisions. The initial state inter-
actions disturb the color coherence, k, distributions, and at low energies the x-
dependence on the incoming hadronic distributions. Despite these profound effects
on the hadronic Fock states, many of the essential features of the QCD predictions
still are retained. [20] We have also discussed many examples where a nuclear tar-
get can be used to analyze the propagation of quarks and gluons through a hadronic
medium.

(8) In Sec. VII of these lectures we focussed on the role of QCD at nuclear dimen-
sions and its implications for fundamental nuclear interactions. The existence of
hidden color Fock state components in the nucleon wavefunction implies that the
standard nucleon and meson degrees of freedom are not sufficient to describe nuclei.
The mixing of the ground state of a nucleus with the extra hidden color states will
evidently lower its energy and thus influence the nuclear magnetic moment, charge
radius, and other properties. We expect that the hidden color components will be
most significant in large momentum transfer nuclear processes and reactions such

as the parity-violating terms in the photon-disintegration of the deuteron, which
are sensitive to the structure of the nuclear wavefunction at short distances.
Conversely, the new QCD degrees of freedom should also imply the existence of ex-
cited nuclear states which are predominantly of hidden color. These states may
have narrow width if they are below the pion decay threshold. The six-quark
excitation of the deuteron could possibly be found by a careful search for anomalous
resonant structure in yd » yd scattering at large angles. Other speculations [86]
concerning the phenomenology of these states are discussed in Sec. VI.

The fact that QCD is a viable theory for hadronic interactions implies that a
fundamental description of the nuclear force is now possible. Although detailed
work in the synthesis of QCD and nuclear physics is just beginning it is clear from
the structure of QCD as a relativistic field theory that several traditional con-
cepts of nuclear physics will have to be modified. These include conventional
treatments of meson and baryon-pair contributions to the electromagnetic current
and analyses of the nuclear form factor in terms of factorized on-shell nucleon
form factors. On the other hand, the reduced nuclear form factors and scattering
matrix elements discussed in Sec. VII give a viable prescription for the extrapola-
tion of nuclear amplitudes to zero nucleon radius. There is the possibility that
the present phenomenology of nuclear parameters will be significantly modified.

Independent of the specific dynamical theory, we have emphasized the utility
of light-cone perturbation theory as an elegant but calculationally simple exten-
sion of non~relativistic quantum mechanics to the relativistic domain. The number
of possible applications of this tool to nuclear physics [116] is extensive since
quantization at equal time on the light-cone allows a consistent definition of
relativistic Fock state wavefunctions, their equations of state, and a completely
relativistic treatment of the dynamics of elementary and composite systems.

Thus, in summary, we have found that the testing ground of perturbative QCD
where rigorous, definitive tests of the theory can be made can now be extended
throughout a large domain of large momentum transfer exclusive and inclusive
lepton, photon, hadron and nuclear reactions. With the possible exception of inclu-
sive hadron production at large transverse momentum, a consistent picture of these
reactions is now emerging. By taking into account the structure of hadronic wave-
functions, we have the opportunity of greatly extending tests of QCD, unifying the
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short and long distance physics of the theory, and making an eventual synthesis
with the realm of hadronic spectroscopy, low momentum transfer reactions and
nuclear physics.
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