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I. INTRODUCTION 

An historic and central goal of physics has been the determination of the funda- 
mental theory of the nuclear force. Incredibly, it appears that the search may 
well be over: Quantum Chromodynamics [l] (QCD), the SU(3),,1,, non-Abelian gauge 
theory of quarks and gluons appears to be the theory of the strong and nuclear 
interactions in the same sense that quantumelectrodynamics accounts for electro- 
dynamic interactions. QCD solves many crucial problems: the meson and baryon 
spectra, quark statistics, the structure of the weak and electromagnetic currents 
of hadrons, the scale-invariance of interactions at short distance, and most- 
likely, color (i.e., quark and gluon) confinement at large distances. Many dif- 
ferent and diverse tests [21 have confirmed the basic features of QCD although the 
fact that the tests of quark and gluon interactions must be done within the con- 
fines of hadrons, as well as various technical difficulties, have prevented truly 
quantitative confirmation of the theory. The structure of the theory satisfies 
all prerequisites of elegance and beauty. 

Despite the evidence that QCD - or something close to it - gives a correct 
description of the structure of hadrons and their interactions, it seems paradoxi- 
cal that the theory has thus far had very little impact in nuclear physics. One 
reason for this is that the application of QCD to distances larger than 1 fm 
involves coherent, non-perturbative dynamics which is beyond present calculational 
techniques. For example, in QCD the nuclear force can evidently be ascribed to 

..quark interchange and gluon exchange processes. These, however, are as complicated 
to analyze from a fundamental point of view as is the analogous covalent bond in 
molecular physics. Since a detailed description of quark-quark interactions and 
the structure of hadronic wavefunctions is not yet well-understood in QCD, it is 
evident that a quantitative first-principle description of the nuclear force will 
require a great deal of theoretical effort. 

Another reason for the limited impact of QCD in nuclear physics has been the 
conventional assumption that nuclear interactions can for the most part be analyzed 
in terms of an effective meson-nucleon field theory or potential model in isolation 
from the details of short distance quark and gluon structure of hadrons. However, 
in these lectures, I will argue that this view is untenable: in fact, there is no 
"correspondence principle" which yields traditional nuclear physics as a rigorous 
large-distance or non-relativistic limit of QCD dynamics. On the other hand, the 
distinctions between standard nuclear physics dynamics and QCD at nuclear dimensions 
are extremely interesting and illuminating for both particle and nuclear physics. 
For example: 
(1) Meson and nucleon degrees of freedom are insufficient to describe nuclei in 
QCD: mixed color configurations appear as Fock components of ground state nuclei 
and as excited multiquark nuclear states. In fact, the hidden color wavefunction 



components contribute to basic properties of nuclei including magnetic and quadru- 
pole moments, charge distributions, etc. 

(2) The usual impulse approximation formula for elastic form factors of nuclei, 

which is conventionally used to separate nucleon size effects from nuclear dynamics 
is incorrect in QCD because of off-shell and recoil effects. An alternative, QCD- 
based formula is discussed in Section VIII. We also shall show (see Sec. IV) that 
even so-called static properties such as the nuclear magnetic moment which are 
derived in the limit 92 -t 0 receive non-trivial recoil contributions. 

(3) Since quarks are the ultimate carriers of the electromagnetic current in QCD, 
the identification of specific nucleon anti-nucleon pair production terms in the 
analysis of the electromagnetic structure of nuclei cannot be justified. 

(4) Conventional effective meson-nucleon field theories with nucleons coupled to 
isovector p-mesons violate unitarity in tree graph (Born) approximation. Since 
such theories are not renormalizable they have no predictive content in higher 
orders. A renormalizable theory requires tri-linear and quartic vector meson cou- 
plings and a spontaneous symmetry breaking mechanism to provide meson masses. 

The real conflict between quark and nuclear physics is at a very basic level: 
because of Lorentz invariance a conserved charge must be carried by a local (point- 
like) current; there is no consistent relativistic theory where fundamental con- 
stituent nucleon fields have an extended charge structure. 

The plan of these lectures is as follows. In Section II we review the basic 
structure and features of QCD. Light-cone perturbation theory is then introduced 
in Section III. This method can be regarded as an elegant relativistic generaliz- 
ation of ordinary Schroedinger many body theory and it has many applications to 
nuclear physics problems. Sections III through VII are intended as a general 
introduction to QCD analysis and phenomenology with special emphasis on exclusive 
and inclusive large momentum transfer reactions, and.the structure of hadronic 
wavefunctions. 

The most dramatic and definitive area of application of QCD to nuclear physics 
is the short distance structure of the nuclear force and large momentum transfer 
nuclear reactions. We will discuss these applications in detail in Section VIII. 
The importance of these predictions is not only the asymptotic large momentum 
behavior, but also the analytic constraints placed on nuclear amplitudes. For 
example, we give predictions for the power-law form of effective meson-nucleon 
couplings as dictated by the underlying renormalizable gauge theory. In Section IX 
we conclude with a list of experiments which could illuminate QCD dynamics within 
nuclei. The eventual goal is the complete synthesis of nuclear, hadronic and 
quark/gluon dynamics. Indeed, if QCD is correct, it must account for all the 
features and interact-ions of nuclei as well as mesons and baryons. 

II. BASIC FEATURES OF QCD 

In quantum chromodynamics the fundamental degrees of freedom of hadrons and their 
interactions are the quanta of quark and gluon fields which obey an exact internal 
SU(3) (color) symmetry. The spin-112 quarks are in the fundamental (triplet) 
representation of SU(3),, the spin-l gluons are in the adjoint (actet) representa- 
tion, aqd hadrons are identified with singlet states; e.g., mesons 

IM> - ,&Iqi4i> and baryons IB> - C E i jkl qiqjqk" 
In addition, gluonium (color- 

singlet bound states of 2 and 3 gluons) should exist. As we discuss in Section VI, 
new types of "hidden color" nuclear states are also predicted in QCD. The different 
types of quarks, u,d,s,c,b,... are distinguishable by their flavor label and mass. 



It is well known that the general structure of QCD meshes remarkably with the 
facts of the hadronic world, especially quark-based spectroscopy (including the 
charm and beauty quark systems); current algebra; the dimensional-counting parton- 
model structure of large momentum transfers reactions (up to computable logarithmic 
corrections to scale-invariance). Experiments at large momentum transfer, both 
exclusive and inclusive, are consistent with the QCD postulate that the electro- 
magnetic and weak currents of hadrons are carried by point-like spin-112 quarks 
which interact via a Dirac coupling to spin-1 gluons. The most important phenome- 
nological evidence for QCD comes from inelastic lepton scattering, e+e- annihilation 
processes, and those high momentum transfer exclusive and inclusive reactions where 
the structure of perturbative quark and gluon subprocesses can be studied in rela- 
tive isolation from the bound state dynamics of the hadrons. From the theoretical 
standpoint, the elegant structure of QCD makes it appear almost compelling as a 
fundamental theory of hadronic and nuclear phenomena, even though many crucial 
questions concerning quark and gluon confinement, and the effects of non- 
perturbative phenomena remain unanswered.[3] 

A critical feature of QCD is asymptotic freedom, C4l i.e., the logarithmic 
decrease of the effective quark and gluon coupling constant us(Q2) with momentum 
transfer which implies that the strong interactions become weak, and even cal- 
culable in perturbative theory at short distance. The fact that the annihilation 
ratio 

R+ (s) = a(e+e- + hadrons) 

e e- 
+ _ (1.1) 

o(e e -+ u+!J-) 

is empirically [5] close to the zeroth order QCD prediction, R" = 3 c e 2 
q q 

for energies 

above the heavy quark thresholds, is a crucial check of asymptotic freedom and the 
color, charge, and spin assignments of the quark quanta in QCD. Critical features 
of QCD are also confirmed by the observed logarithmic breaking of scale-invariance 
in deep inelastic lepton-scattering [2] and the measurements of two-jet and three- 
jet structure of e+e- annihilation final states. [51 The recent observations of 
jet structure 161 in two-photon reactions (consistent with yy + qi subprocesses), 
and measurements ci'1 of the photon structure function also provide fundamental 
checks of predictions which are essentially unique to QCD. However, despite these 
successes, there is no direct experimental evidence for (near) scale-invariant 
quark-quark, quark-gluon, or gluon-gluon scattering amplitudes as predicted by QCD; 
the cross section for large transverse momentum hadron production in hadron-hadron 
collisions appears to reflect much more complicated dynamical mechanisms. On the 
other hand, as we discuss in Section IV, the fact that the proton form factor 
GM(Q~) scales as (Q2)-2 reflects the fact that the minimum Fock state in the nucleon 
contains 3 quarks, and that the internal quark-quark interactions which control the 
nucleon wavefunction at short distances are consistent with scale invariance. C8,91 
Thus far experiments are not sufficiently sensitive to distinguish a logarithmically 
decreasing as(Q2) from a constant; i.e., fixed point behavior. The sensitivity of 
the nucleon form factors to the form of as(Q2) is discussed in Section VI. 

Although there have been remarkable technical achievements in perturbative QCD 
calculations in the past few years, C1,2,101 there has also been the realization 
that precise and detailed comparisons with experiment require consideration of 
effects and phenomena not readily computable with present methods. There are, in 
fact, only a v&y few large momentum transfer processes which can be studied 
rigorously to all orders in perturbation theory such as R + -(s), Cl1 the meson 
form factors EM Cl11 (and Fy-+M (Q2)), the two photon Er&esses cl21 yy * @ 
at large momentum transfer, the photon structure function, cl31 and the Q2-evolution 
of ,the hadron structure functions. Although, in principle, these processes can be 
calculated to arbitrary orders in perturbation theory, in practice, there are 
serious complications involving the dependence of predictions made to finite order 
on the choice of renormalization scheme and the scale parameterization chosen for 



the argument of as. 12,131 We shall discuss a new method cl41 for avoiding these 
ambiguities in Section II. Aside from this, there is always the question of the 
radius of convergence of the perturbation expansion. Even for processes which can 
be calculated to arbitrary orders in as, there are (presently) uncalculable power- 
law suppressed (higher twist) contributions Cl51 which must be included in detailed 
fits to experiment, especially at the edge of phase space. Cl61 

In the case of jet production, QCD-based predictions based on the elementary 
features of e+e- + q{ and qig, yy -+ qq, etc. must also take into account higher 
twist contributions, model-dependent non-perturbative effects intrinsic to hadron 
formation and decay, c51 and possibly dynamical effects due to quark confinement. [31 
In the case of some exclusive processes such as the baryon form factor there are non- 
leading QCD contributions which are asymptotically suppressed by Sudakhov form 
factors. c9,lOl The precise evaluation requires an all orders resumption of pertur- 
bation theory. QCD predictions for elastic hadron-hadron scattering are complicated 
by the presence of Landshoff Cl71 pinch singularity contributions which are only 
partially suppressed by Sudakhov form factors. [lOI Despite these complications, 
we can still derive general properties for exclusive reactions such as hadron- 
helicity conservation cl81 and the leading power-law behavior. cl91 

An even more interesting (and perplexing) situation occurs for all inclusive 
high momentum transfer inclusive reactions involving hadronic initial states such 
as Drell-Yan massive lepton pair production, direct photon production, and large 
pT hadron production. As shown in Ref. 20, initial state interactions violate the 
usual QCD factorization theorem order by order in perturbation theory and affect 
the normalization and transverse momentum dependence of the inclusive cross sec- 
tions. In addition, final state interactions also affect the associated multi- 
plicity and transverse momentum dependence of the outgoing jets in deep inelastic 
lepton scattering reactions. A detailed report on these effects is given in 
Ref. 20. 

Perhaps the most serious complication to QCD phenomenology is the presence of 
higher twist subprocesses, since power-law suppressed contributions can often 
mimic (and thus confuse the identification) of the logarithmic modifications pre- 
dicted for the leading twist contributions. Cl61 Examples of this for deep in- 
elastic structure functions and fragmentation distributions are discussed in 
[211 and [221 and Section V. In the case of three-jet produ;tiTn in e'e- annihila- 

_tion, higher twist terms give contributions [231 dN/dk2 - (k,)- for the hadron 
transverse momentum distribution in quark and gluon jets. These hard components 
can complicate the separation of the e+e- -+ qqg and e+e- -+ qq subprocesses. In the 
case of hadron production at large transverse momentum, "direct-coupled" higher 
twist subprocesses such as gq + nq actually dominate [241 the leading twist 
qq + qq -+ qTq subprocesses at large XT = 2pT/G. Evidence for direct-coupled 
nq + y*q subprocesses in rp -+ u+u-x reactions is discussed in Section V and Ref. 22. 

Present QCD phenomenology is also incomplete in the sense that although much 
attention is paid to the 42 evolution of hadron structure functions there is no 
real understanding of the basic x-dependent form of the quark and gluon distri- 
bution in hadrons, or how to relate them to other hadronic phenomena. The relation 
of the x - 1 behavior of structure functions to the exclusive fixed W2, high Q2 
domain is only roughly understood. [25] The x - 0 behavior of structure functions - 
and the connection to the photoabsorption truss section at fixed Q2, high v, and 
nuclear shadowing phenomena is also not well understood. C261 

The main purpose of these lectures is to begin to extend QCD phenomenology by 
taking into account the physics of hadronic wavefunctions. [271 Our eventual goal 
is to obtain a parameterization of the wavefunctions which will bridge the gap 
between the non-perturbative and perturbative aspects of QCD. The lack of know- 
ledge of hadronic matrix elements is the main difficulty in computing and normaliz- 
ing dynamical higher twist contributions for many processes. 

4 



In Section III we emphasize the utility of a Fock state representation of the 
meson and baryon wavefunctions as a means not only to parameterize the effects of 
bound state dynamics in QCD phenomena, but also to interrelate exclusive, inclusive, 
and higher twist processes. It is particularly convenient to choose a momentum 
space Fock state basis [19,271 

$n(xi,kLi; "i) ; 5 xi = 1 3 2 kli = O 3 
i=l i=l 

gefined at equal "time" 'I = t + z on the light cone. Here Xi = (k" + k3)i/(po + p3), 
kli, and Xi specify the longitudinal and transverse momenta and spin projection S, 
of each (on-mass-shell) quark and gluon in the n-particle Fock state (n => 2 for 
mesons and n Z 3 for baryons). We also choose the light-cone gauge A+ = Ao + A3 = 0 
so that only physical polarizations of the gluons occur. The color singlet wave- 
functions are regulated so that they are finite in both the infrared and ultra- 
violet regimes. C281 

There are a number of reasons why this representation of hadrons in terms of the 
quark and gluon degrees of freedom is useful: 

(1) In light-cone perturbation theory, the perturbative vacuum is also an eigenstate 
of the total QCD Hamiltonian on the light-cone; perturbative calculations are enor- 
mously simplified by the absence of vacuum to pair production amplitudes. 

(2) All form factors, charge radii, magnetic moments, etc. have exact expressions in 
terms of the $n. 

(3) The structure functions Gq(x,Q) and G g (x,Q) (and more general multiparticle dis- 
tributions) which control large momentum transfer (leading and higher twist) inclu- 
sive reactions, and the distribution amplitudes $(x,Q) which control large momentum 
transfer exclusive reactions (and directly coupled inclusive reactions) are each 
specific, basic measures of the $n. Examples of these calculations are schemati- 
cally illustrated in Figs. 1 through 3. 

(4) Other physical quantities such as decay amplitudes provide rigorous sum rule or 
local constraints on the form of the valence components of meson and baryon wave- 
functions. C21 

M’ ti 
F,(O*) 

+;(x,Q) TH +,(Y,Q) 

(bl 

Fig. 1 Calculable large momentum transfer 
meson processes in QCD, and their connec- 
tion to the meson Fock state wavefunction 
$qq and distributions amplitude $(x,Q). 
Only a representative diagram for the hard 
scattering amplitude TH is shown. (a) The 
y + IT~ transition form factor (measurable 
in single tagged ee -+ ee IT~ experiments),- 
(b) the meson form factor,.(c) the yy + MM 
scattering amplitude. Details are discussed 
in Sec. IV. 

P 



=> 
P p+q 

dcr(PB-1% G,/B(X,Q) dc(tq-Pq) 

G,,,(xo,Q) TH(gq-m) G,,(Xb.Q) 

(0) 

+rl,(x,Q) TH($i+q-Y*q) G,,,(xb,Ql 

(b) 

lr p-qijx: D Tot- *,- xb-EoT 
I-X 4 

+,(x,0) TH(cIi+g -q+G) Gg,p(xb,c'O) 

fC) 

Fig. 2 Baryon processes at large momen- 
tum transfer in QCD and the connection 
to the baryon Fock state wavefunction. 
(a) Baryon form factors, (b) heavy 
quarkonium decay T -+ pi, (c) deep 
inelastic lepton-baryon scattering. 
Only representative contributions are 
shown. The inclusive cross section and 
structure function Gq/B(x,Q) is computed 
from the square of the baryon wavefunc- 
tion summed over all contributing Fock 
states. 

Fig. 3 Examples of QCD-computable higher 
twist "direct-coupled" subprocesses for 
inclusive reactions. The subscript D 
indicates that the hadronic wavefunction 
is involved directly in the high momentum 
transfer subprocesses. (a) Direct 
production of high pT mesons in hadron- 
hadron cross section. The predicted 
cross section is proportional to the 
meson form factor FM(P$) times the lead- 
ing twist cross section. (b) Higher 
twist contribution to meson-induced 
massive lepton pair production. The 
predicted cross section is equivalent to 
a contribution Fb(x,Q2) N C/Q2 to the 
longitudinal structure function of the 
meson. (c) Direct meson production of 
quark jets in meson-baryon collisions. 
All of the meson energy is used to 
produce jets at large transverse momen- 

- tum. The cross section is proportional 
to FM(~;) times the leading twist qq -+ 
qq cross section. (d)-Direct production 
of anti-quark jets in BB collisions. 
The 

B !?+ 
ross section is proportional to 

GM(pT) times the leading twist qq -+ qq 
cross section. In each case the direct 
process dominates over the leading twist 
contribution in a large x kinematic 
region. 



In the remainder of this section we will give a brief introduction to QCD and 
asymptotic freedom. We then discuss a new method to avoid scheme and scale ambi- 
guities in perturbative QCD predictions. In Section III we give a detailed dis- 
cussion of light-cone perturbation theory and the Fock state expansion of hadronic 
wavefunctions. The QCD equation of motion is also discussed. In Section IV we 
discuss measures of the hadronic and nuclear wavefunctions (form factors, magnetic 
moments, etc.), and the QCD analysis of high momentum transfer exclusive processes. 
We also show how meson distribution amplitudes can be measured in yy -+ c reactions. 
The connection of the Fock state basis to leading and higher twist contributions 
to deep inelastic scattering is given in Section V. In Section VI we discuss how 
many different QCD processes are interrelated (as in Figs. 1 through 3) through 
the hadronic Fock states. We also discuss a novel type of QCD subprocess - direct 
coupled hadron-induced reactions. [29] A new prediction for the proton form factor 
is also given. In Section VI we also introduce a simple phenomenology of hadron 
wavefunctions and discuss present constraints on the form and normalization of the 
valence meson and nucleon Fock states. An important conclusion is that the valence 
Fock state as defined at equal time or the light cone appears to have a signifi- 
cantly smaller radius than that of the physical hadron; C271 higher Fock states 
thus play an essential role in low momentum transfer phenomenology. Applications 
to quark jet diffraction excitation [30] and the hidden heavy quark Fock state 
structure of hadrons are also discussed. [31] The effects of initial and final 
state interactions on QCD inclusive reactions are discussed in Ref. 20. 

A. The QCD Lagrangian 

An essential feature of QCD is that SU(3), is an exact local symmetry: rotations 
in color space can be made independently at any space-time point. The mathematical 
realization of this is the Yang-Mills 
Lagrangian density is Cl1 

gQCD = Jl(i@ - m) J, - i Tr F2 
I.lV 

iDn = i a' I + gAu 

Fpv = aFIAv - avAP + g[A",Av] 

-Here 

Jiw = 

is the color triplet of quark fields, 

octet gluon field summed over the 3 x 
i fabc xc and TrCXaXbl = 2hab. 8QCD invariance and color symmetry follows 
gauge transformation 

A'(x) -f U(x) A'(x) U-'(x) + $ U(X) 

where the unitary matrix U(x) = exp i c XaBa(x) is an arbitrary function of space 

_ _ 
non-Abelian gauge field theory. The QCD 

(2.1) 

(2.2) 

(2.3) 

and An(x) = c 
a=1,8 

A,Al(x) is the color 

3 traceless matrices 1, satisfying [A,,Xbl = 
is obviously a color singlet. Local gauge 
from the invariance of L??QCD under the general - 

(2.4) 

(2.5) 

and time. d PV Note that the field strength F (x) -t U(x) F" U-l(x) is not invariant 

7 



since it is in the adjoint representation of W(3),. The local gauge invariance of 
the Yang-Mills is an essential ingredient in proving the renormalizability and con- 
sistency of the theory. [II 

In general, a sum over quark flavors i = u,d,s,c,b... is understood in LZQCD. 

(In fact, the mass matrix mij is not diagonal when the weak and electromagnetic 
interactions are taken into account. c321) The fundamental origin of the quark 
flavors and their masses remains an outstanding problem in hadron physics. 

In a sense QCD can be regarded as the non-Abelian generalization of QED: 

9 
QED = +(x)(iP, - m) JI - L F2 

4 PV 

where iD" = ia ' + eA', Fuv = aPAv - avA". From the point of view of formal per- 
turbation theory there are close similarities in the Feynman rules and treatment 
of ultraviolet renormalization and infrared divergences. The Feynman rules for 
QCD are given in Table I. In the case of covariant gauges one must formally in- 
clude "ghost" scalar particles in loops, or else unitarity of amplitudes involving 
the non;Abelian-couplings will be lost. In the case of axial gauges (nuA = 0 
where n is a fixed 4-vector) there are no ghosts, but renormalization is'somewhat 
more complicated. The color trace algebra for any Feynman diagram can be done 
almost automatically using the graphical rules given by CVITANOVIC. [331 The main 
algorithm is that as far as color is concerned, the gluon propagator N in SU(N) is 
equivalent to two quark lines 2 minus l/N times the identity (to remove the U(N) 
singlet). The complete rules are given in Ref. 33. 

Although QCD and QED perturbation theory have many similarities, there are non- 
perturbative aspects of the non-Abelian theory which have no analog in electro- 

Table I Feynman rules for quantum chromodynamics" 

Fermion 
Propogalor 

i 
8 g-m+ir oB 

Cluon a b 
-C Propagator ’ p p v 

Ghost 
Propagator ’ 

Q b i8ob ---C-W 
P i p +ir 

Pa 
Fermion : t 
Vertex A ig Yj x”ofi 

a B 

Pfobc Ppv(k-~)u+gvu(q-r)p I 

+ gup(r-k), 1 
YQ od 

Ouartic : 
Vertex -if? fobe fcde (gpugvp’gppgvu) 

. 
vb UC + focc fbdctgjwgnp- gppgvu) 

+ fade fcbc (g~~gvp-gpg~~ )I 

Ghost 
Vertex ’ 

94’ x, 
g fobcrp 

b’ C 

8 
*From A. J. Buras, Ref. 1. 



dynamics, e.g., classical ("instanton") solutions to the pure gauge theory. These 
solutions can have profound consequences for the QCD vacuum state. [34] Further- 
more, the absence of asymptotic color states implies that, at best, the perturba- 
tion rules are only valid in a far-off-shell short-distance regime. 

Fortunately for many processes of experimental interest it is possible to prove 
factorization theories which separate the long-distance dynamics associated with 
the hadron wavefunction and color confinement from quark and gluon subprocesses 
which only involve short distance propagation of color. [35] If this factorization 
can be proved to all orders in perturbation theory, it is reasonable to assume 
that the corresponding perturbative predictions are legitimate predictions of the 
complete theory. In the case of predictions dependent on hadronic fragmentation 
from quark or gluon jets one has to make an extra assumption that the essential 
effects of color confinement are restricted to large distances. [3] 

B. QCD Perturbation Theory 

As in QED, one can sum the effects of vacuum polarization into a "running" coupling 
constant (~1~ = g2/4Ti) 

asta2) = 
as (Q;) 

l- as(Q2) [dQ2) - dQ$] 
(2.7) 

where n(Q2) can be computed (in some gauges) from the single-particle-irreducible 
contributions to the gluon propagator. Given the gluon propagator at any scale 
Q& one can use Eq. (2.7) to determine the effective interaction at the scale Q2, 
To lowest order in perturbation theory the quark and gluon loop insertions give 

Q2,Q2 0 >> m?, i = 1, 2...n I. f 1 
2 2 1 Q2 2 ~(9 1 - n(Q,) = G log 2 [1 3 nf - 11 1 + mcQ (2.8) 

QO 

i.e., for nf < 3312, as(Q2) decreases with Q2, exactly opposite to QED. More 
generally, one can calculate the Q2 dependence of cs in higher orders 

a +o 2 2 2 as(Q2) : B[as(Q2jl = -jy a,(Q ) 81 

a log Q 
- (4 ((Q2) 

71 
(2.9) 

+ . . . 

where Cl1 80 = 11 - 213 nf, 81 = 102 - 3813 nf. 
Q2 to two loop accuracy then has the form 

The solution for as(Q2) at large 

as(Q2) = 
4-X (2.10) 

where A is introduced as a constant of integration. The fact that a,(Q2) decreases 
at large momentum transfer [asymptotic freedom] is an extra-ordinary feature of QCD 
which in principle allows a systematic computation of short distance processes. A 
graph of as(Q2) showing the effect of the El/E0 term is shown inFig.4. It should 
be emphasized that perturbation theory does not determine the form of es at small 
Q2 where its magnitude becomes large. As noted by PARIS1 and PETRONZIO, C36] con- 
sistent calculations of perturbative loops demand that cs(Q2) remains finite at 
all values of the loop integration. Thus far there is no.direct experimental evi- 
dence that as(Q2) decreases logarithmically. 

4 
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Fig.-4 The QCD coupling constant 
as(QZ) for n loop accurac; = 4 ? Fe- and F""- . Empirical specifi- 
cations of A in a given scheme 
should use the two-loop formula 
(Eq. (2.10). 

If we choose Q$ to be the ultimate ultraviolet cutoff scale of QCD then as(Qi) = 
a: is the "bare charge" of the theory. We can then identify as(Q2) as the effective 
coupling constant which takes into 
invariant mass A2: Q2 %/5Z2 < Q2. 

account all vacuum polarization contributions of 

m(Q2) which takes into account al P 
Similarly, we can define the running quark mass 

self-energy insertions in the range 92 <Al2 < Qz. 

Let us now.define a cutoff La rangian 
intermediate states with&2 > 9 

s;ED density for QCD by excluding all 
K . The fact that the theory is renormalizable 

implies that 

s&D = ?($ + g(K)& - m(K)) $ - + Tr F2 (2.11) 

-k @+ m(K) v oPvFFIv J, + . . . 
K 

i.e., all effects of very high mass statesdd2 > K 
2. are completely contained in the 

-effective coupling constant g(K), the quark runnin 
power-law suppressed 11~2, I/K~, 

mass m(K), and "higher twist" 
etc. terms. If K 8 is taken at the ultimate cutoff 

scale Qs then &?+D is the bare Lagrangian. If ~~ is chosen sufficiently large then 
the higher twist terms are negligible in (2.11). 

The classic perturbative calculation in QCD is that of the annihilation cross 
section 0 + e e-+hadrons which can be computed from the hadronic absorptive part of 
the forward e+e- -+ e+e- 2 amplitude to order CL . Since there are no external color 
charges there can be no gluon-mass infrared divergences or quark mass singularities. 
Th;s the only relevant scale is 42 = s = Egsrn., and we can compute perturbatively from 
SQCD with ~2 = Cj2. The result to order ai(Q2) is 

aiE 2 

R+ -(Q2> = -3 c ei 1 + ' i" ) + o'(z2) (B + A nf) + . . . 
ee 4 Tr I 

(2.12). 

where the A nf term arises from virtual quark loops. An essential and unique pre- 
diction of asymptotic freedom is ,that Q$y", R(Q2> = 3 c e: = R", the free quark 
prediction. The specific values of B and A in Eq. (2.12) depend on the method of 
implementing the ultraviolet cutoff. In the fis scheme (a particular dimensional 
regularization scheme) one finds [37] B 21.98, A G -0.115. However, in analogy 
to QED, it is clear that the A nf term should be identified with the fermion loop 
vacuum polarization contribution to the running coupling constant in the CL~(K)/~T 



term; the particular numerical value for A is rather arbitrarp.since we could have 
chosen any scale ~~ = 2 2 f Q for the perturbation expansion. In QCD, as is essentially 
a function of BO = 11 - 213 nf. Thus we write B + A nf = -3/2 BOA + C, where C = 
(33/2)A + BZ 0.0825 must be scheme independent (since to the order of interest the 
cutoff schemes can only differ by the definition of the scale constant A2). We thus 
have the QCD prediction: [14] 

2 a 
R e+e-(Q2) = 3 c ez 

@f2Q2) 
TT + 0.0825 + . . . 

9 ?T I 
(2.13) 

where f = fcs = e3' 2 0.71 in the fiz scheme. Let us imagine that eventually 
measurements of ae+e- + (Q2) hadrons will be sufficiently accurate that we can 
choose R(Q 2 > to define a "canonical" measurement of the QCD running coupling 
constant: 

c,;(Q2) z n[R'Q2:; R"][l - 0.0825(+] = <'(f2R2) . (2.14) 

r 

Our goal is then to show that all observables in QCD which have a perturbative ex- 
pansion in as can (in principle) be expressed in terms of as(Q2) without any scheme 
or scale ambiguity. We will define the scale parameter A = AR using Eq. (2.10) for 
aR 

S’ 

We thus propose the following prescription for making scheme and scale indepen- 
dent perturbative QCD predictions: Cl41 For any observable p(Q2) which has a 
perturbative expansion in as(Q2) one can compute in a given renormalization scheme 

as (Q2) 
dQ2) = - +(Aonf+Bo) 

af (Q2) 
IT 2 +... 

IT 
(2.15) 

As in the case of R(Q2), we identify (-3/2)BoAp as the vacuum polarization correc- 
tion to the running coupling constant in the as/n term. Thus 

2 
+ . . . 

where 

3Ao - 3AR 
Q2 

and 

C 
P 

=J$Ap+~ 
P 

(2.16) 

(2.17) 

(2.18) 

are scheme-independent. The leading order prediction for p(Q2> can thus be written 
unambiguously in terms of a:. If Co as/n is reasonably small, then we can expect 
that Eq. (2.16) gives a meaningful perturbative QCD prediction. An important task 
will be to carry out the above procedure to higher orders in as. 

As an example of the above method, let us consider the decay rate for pseudo- 
scalar quarkonium stat22 which is computed in terms of Qh -f gg plus higher order 
subprocesses. 111 the MS scheme: C293 (C is a known color factor) 



Wlc -t hadrons) 

rbl, + 7-Y) = +F(+)]' 11 + $ (17.13 - + nf)+ . ..) (2.19) 

= C [~;((.37Mn,)~)]~ [l + 2.46 $ + . ..) 

i.e.: the effective scale+i; the vacuum polarization contributions is -0.37 M,-,, 
relative to the scale in e e -+ hadrons. If as Z 0.2, then the correction term 
in Eq. (2.19) gives only a 7% correction to the determination of as. In the case 
of the hadronic decays of Jcp = I-- heavy quarkonium states, the correction to the 
QQ + 3g decay amplitude appears to be very large so that the leading order expres- 
sions may not be meaningful. One finds [401 

r(T + hadrons) = 10(n2 - 9) 
CT -f P+V-> 81 71 e2 a2 

[a; ((.22MT)2)]3 [l - 13.94 $ + . ..) (2.20) 

b 

For as Z 0.2, the correction term gives a correction of order 30% to the determina- 
1 tion of as. Note that even in QED, the radiative corrections to orthopositronium 

decay are very large: 

r3 = 12.61 (3) ; + . . . 
Y 

so this appears to be an intrinsic problem to this type of decay process. Addi- 
tionally, the QCD prediction for quarkonium decay is complicated by some uncertain- 
ties from relativistic and higher Fock state components in the quarkonium 
wavefunction. 

One of the most important predictions from QCD is the logarithmic variation of 
structure function moments, Mn(Q2) = j01dx xnF3(x,Q>: Using the above renormaliza- 
tion procedure we find Cl41 

d -Y 
log Mn(Q2) = -$ ai 

aR 

d log Q2 
1 --f cn + . . . 1 

where the yn are known anomalous dimensions (see Sec. IV). The coefficient C, 
varies from -0.27 to 1.1 for non-singlets moments n = 2 to 10, thus giving reason- 
ably small corrections to the lowest order predictions. The monotonic decrease of 
f, with n reflects the fact that the momentum scale for gluon emission becomes 
increasingly restricted at large n ((1 - x> - 0(1/n)) due to phase-space 
effects. [411 Further applications and discussions will be given in Ref. 14. We 
also note that in processes with several large momentum transfer scales, the effec- 
tive argument for a: in the leading order predictions can be very complicated. For _ 
example in the.case of large pT jet production due to qq + qq scattering, the sub- 
process scattering amplitude involves as evaluated at the subprocess invariants t 
and G, whereas the evolution of each hadronic structure function is sensitive to 
its respective x-dependent phase-space boundary as well as the quark momentum 
transfer. 

III. HADRONIC WAVEFUNCTIONS IN QCD [27] 

Even though quark and gluon perturbative subprocesses are simple in QCD, the com- 
plete description of a physical hadronic process requires the consideration of many 
different coherent and incoherent amplitudes, as well as the effects of non- 

/2 



perturbative phenomena associated with the hadronic wavefunctions and color con- 
finement. Despite this complexity, it is still possible to obtain predictions for 
many exclusive and inclusive reactions at large momentum transfer provided we make 
the ansatz that the effect of non-perturbative dynamics is negligible in the short- 
distance and far-off-shell domain. (This assumption appears reasonable since a 
linear confining potential V N r is neglibible compared to perturbative l/r contri- 
butions.) 'For many large momentum transfer processes, such as deep inelastic lepton- 
hadron scattering reactions and meson form factors, one can then rigorously isolate 
the long-distance confinement dynamics from the short-distance quark and gluon 
dynamics - at least to leading order in l/Q 2. [351 The essential QCD dynamics can 
thus be computed from (irreducible) quark and gluon subprocesses amplitudes as a 
perturbative expansion in an asymptotidally small coupling constant as(Q2). 

An essential part of the QCD predictions is the hadronic wavefunctions which 
determine the probability amplitudes and distributions of the quark and gluons 
which enter the short distance subprocesses. The hadronic wavefunctions provide 
the link between the long distance non-perturbative and short-distance perturbative 
physics. Eventually, one can hope to compute the wavefunctions from the theory, 
e.g., from lattice or bag models, or directly from the QCD equations of motions, 
as we shall outline below. Knowledge of hadronie wavefunction will also provide 
explicit connections between exclusive and inclusive processes, and will allow 
the normalization and specification of the power law (higher twist) corrections to 
the leading impulse approximation results. As we shall discuss in Sec. VI, there 
are a number of novel QCD phenomena associated with hadronic wavefunctions, includ- 
ing the effects of intrinsic gluons, intrinsic heavy quark Fock components, dif- 
fraction dissociation phenomena, and "direct" hadron processes where the valence 
Fock state of a hadron enters coherently into a short-distance quark-gluon 
subprocess. 

The most convenient representation of a wavefunction in a relativistic field 
theory is to use a momentum space Fock state basis defined at equal "time" 
T = t + z on the light cone (see Fig.5a): [42] 

(b) 

CC) 

(d) 

Fig. 5 (a) the n-particle Fock state amplitude 
defined at equal T. The state is off the p- 
light-cone energy shell (see Eq. (3.12)). 
(b,c) Examples of light-cone time-ordered per- 
turbation theory calculations. The frame is 
chosen so that k' > 0. (d) QCD equation of 
motion for the meson wavefunction. 
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t $,(i: li' xi; Xi) 
I 

(3.1) 

Momentum conservation requires 

t i&o, 5 xi=l, O<x.<l . 
i=l i=l 

1 (3.2) 

The $ . are the transverse momentum of the (on-mass-shell) constituents relative 
to thiibound state 3-momentum P' = P3. 

( 
The xi 

k* 
2re &he light-cone momentum frac- 

tions = ko + k3, A* B = 1/2(~+~-+ A-B+) - A~. By) 

k; (k" + k3) i 
X I-= 

i P+ PO + P3 
(3.3) 

(In a frame where P 3 + m, the xi 
2 = m2 

are the longitudinal momentum fractions.) The 
mass shell condition is k , or k- = (k-: + m2)/k'. As we shall see, the 
equal-r formalism is equivalent to the usual Schroedinger equal-time theory in the 
non-relativistic limit. 

A unique and remarkable advantage of quantizing a relativistic theory at equal T 
is the fact that the perturbative vacuum state (O> is also an eigenstate of the full 
Hamiltonian. Matrix elements where particles are created out of the vacuum are 
excluded because of the fact that all particles must have k: > 0. Furthermore, the 
charge operator and the current J+ = O J + J3 are diagonal in the Fock state basis. 
It is particularly advantageous to choose the light-cone gauge A+ = A0 + A3 = 0 
since unphysical degrees of freedom do not appear. A comparison between time- 
ordered and -t-ordered perturbation theory is given in Table II. 

Thus at a given "time" we can define the (color singlet) basis 

Iqn> = a+ b+ 
k+& k+',c 

, IO> 

L 
. . . 

The pion state, for example, can be expanded as 

In) = hi) ‘yq; + Jqig) Yqtg + . . . 

(3.4) 

where Y, = <nln> is the amplitude for finding the Fock state In> in IT> at time 7. 
The full Fock state wavefuncsion which describes the n-particle state of a hadron 
with 4-momentum PU = (P+,P-,P,) and constituents with momenta 

(~4 + it, > 2 + m2 
; 

and spin projection Ai is 

(3.6) 



Table 2 Time-ordered perturbation theory 

c 2 conserved 

-K,b = 'ab 

+ I$‘aC xk” _ kk” + if ‘cb 
a C 

n ! time-ordered contributions 

Fock states Jln(zi) 

n 

c 
i=l 

%,=$=o 

Equal T =t+z 

particle 
mass shell 

conserved 

"ab = 'ab 

+ v c 
1 

C 
ac xk- - xk- + ic 'cb 

a C 

k' > 0 only 

Fock states Jln(zLi,xi) 

n n 
k+ x=-, c x. = 1, 
p+ i=l = 

(0 < x i < 1) 

k: + m* 

X i 

u XiP ( 
t ,x3 + r: 

11 > li Xi 
Yn = tJ n(xi) li; k Ai 

Lq 
(3.7) 

E XiP ( 
+ -f ,x.P + T: 11 ) 

I-l 
li Ai 

. 
gluons Lq 

Note that +,(Xi,Zli; Xi) is independent of P + $1. , The general normalization condi- 
tion is 

C/[d2kL1/CdX~IJln(xi,~li; 'i)12 = ' 
n 

where by momentum conservation 

[ 1 d'k,, 

(3.8) 

(3.9) 
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(3.10) 

In the non-relativistic limit the equal r = t + z/c and equal time t theories 
coincide. For example, for the Fock state wavefunction in the rest system we can 
identify ' 

and the off-shell light-cone energy is 

n 

= I 
k- 

i=l i 

Thus, in the non-relativistic limit, the hydrogen atom wavefunction is 

'ls = [kf i (me - l)' + n'rn:]' 

(3.11) 

(3.12) 

(3.13) 

Light-cone perturbation theory rules can be derived by either evaluating stan- 
dard equal-time time-ordered perturbation theory for an observer in a fast moving 
Lorentz frame (the "infinite momentum" method), [431 or more directly, by quantiz- 
ing at equal r. The LCPTh rules are: C19,441 

(1) For each Feynman diagram assign particle 4-momentum kV such that k+,gl is con- 
served at each of the n vertices. (This is the analogue of 3-momentum conservation.) 
Since all particles are on the (positive energy) mass shell (k2 = m2) we have _. . 

(3.14) 

(2) Construct all time orderings (up to n!) such that k+ > 0 for all particles. 

(3) For each intermediate state assign a propagator 

1 

c k; - c 
initial intermediate 

ki + ie 

and a factor l/k+ for each internal line. (This is the analogue of 

l/ c Ei - c 
( 

and 1/(2E) in TOPTh.) 
initial intermediate 

Ei + is 

(4) For each loop integrate 

(3.15) 

(3.16) 



I 
and sum over intermediate state spins and polarization. 

(5) The vertex factors depend on the theory. In the case of g4' interaction, assign 
a factor g at each vertex. In gauge theories the gluon-fermion vertices are 

f&u, -gS$v, gU$v, -gV$u - (3.17) 

The trigluon and quartic-gluon vertices are given in Table I. 

(6) Finally, there are instantaneous gluon contributions in A+ = 0 gauge: 

y+ . . . Y+ 
(k+) 2 

(3.18) 

(analogous to Coulomb interactions) and instantaneous fermion contributions v+/Zk+ 
(the remnant of backward-moving "Z-graph" fermion lines). For example, the 
electron-electron scattering diagrams of Fig.5b give 

CA! = e2 UyYl uyvu d + e2 uy+u uy+u 
ee+ee k+D PV <k+>' 

where the polarization sum is 

,j” = c 
lJ v + 

_ EA EA’ E = 0, k*c=O 
x=1,2 

and the light-cone-and energy denominator is 

D = p- - k- - pi + ie . a 

Similarly, the Compton scattering diagrams of Fig.5c give 

d?f 2 
c 

iip u c X 
ye-tv= e x=l2 

'h'a" + e2 i?tc Y+d,u 

, P+D 2Pf 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

D = k-a f pi - p- + ie 

(This is analogous to the decomposition of the Feynman propagator ($-m + ic) -1 

into positive and negative frequency components.) 

Calculations in light-cone perturbation theory are often surprisingly simple 
since one can usually choose Lorentz frames for the external particles such that 
only a few time-orderings need to be considered. All the variables have a direct 
physical interpretation. The formalism is also ideal for computing helicity 
amplitudes directly without trace projection techniques. A list of all the gluon 
fermion vertices which are required as gauge theory calculations is given in 
Tables I and II of Ref. 19. 

It is straightforward to implement ultraviolet renormalization in light-cone 
perturbation theory. We define truncated wavefunctions $K and a truncated 
Hamiltonian HK such that all intermediate states with 161 > K2 are excluded. c451 
Thus K-l is analogous to the lattice spacing in lattice field theory. Since QCD 
is renormalizable the effects of the neglected states are accounted for by the 
use of the running coupling constant uS(k2) and running mass m(K2), as long as k2 
is sufficiently large compared to all physical mass thresholds. Completeness 
implies 
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c / [d2k-~]~dxl[l~(xi,k-li; Ai) I2 = 1 - O(s) 

n,A i 

(3.23) 

The equation of state for the meson or baryon wavefunction in QCD is a set of 
coupled multiparticle equations (see Fig.5d): 

(3.24) 

where M2 is the eigenvalue and Vnnl is the set of diagonal (from instantaneous 
gluon and fermion exchange) and off-diagonal (from the 3 and 4 particle vertices) 
momentum-space matrix elements dictated by the QCD rules. Because of the K cutoff 
the equations truncate at finite n,n'. In analogy to non-relativistic theory, one 
can imagine starting with a trial wavefunction for the lowest /q<> or Iqqq> valence 
state of a meson or baryon and iterating the equations of motion to determine the 
lowest eigenstate Fock state wavefunctions and mass M. Invariance under changes in 
the cutoff scale provides an important check on the consistency of the results. 
Note that the general solution for the hadron wavefunction in QCD is expected to 
have Fock state components with arbitrary numbers of gluons and quark-antiquark 
pairs. 

The two-particle "valence" light-cone Fock state wavefunction for mesons or 
positronium can also be related to the Bethe-Salpeter wavefunction evaluated at 
equal r: 

I dk- 
z +BStkP) = 

u(x,,Q 2x,,-Zl) 
(3.25) 

+ negative energy components, 

where JI satisfies an exact bound state equation Cl91 

k: + rn: 
M2 - x - 

kf + rni 

x2 I 
a+$ (3.26) 

= yi,~ " M2 11 
$(Yi9'li) 

The kernel K is computed from the sum of all two-particle-irreducible contributions 
to the two-particle scattering amplitude. For example, the equation of motion for 
the le+e-> Fock state of positronium reduces in the non-relativistic limit to 

( kl ' 5 - @(am>, x = x1 - x2 N O(a)‘) M2 = 4m2 + 4me 

k* + x*m* 1 E - m I 
Jl(xi,kl) (3.27) 



The non-relativistic solut ion is (8 = am/2) Cl91 

JICxi,kl>’ = d- 
rnBa 

n 

64 n 8 x1x2 

kf + (x1-x2)~m2 + f3* 1 * 

UtVS - uPt J22 

L’ - 
UtVt 
Jx1x2 

(3.28') 

for para and ortho states respectively. 

llore generally, we can make an (approximate) connection between the equal-time 
wavefunction of a composite system ani the light-cone wavefunction by equating the 

off-shell propagator 6 = M2- in the two frames: 

In addit , 

(3.29) 

M* - 2 

i=l 

k; + III* 

X 

-on we can identify 

k;’ 
X =- 

i 
P+ 

z 

(q” + q3)i 
, Eli ’ ;;li 

c jnl (J) 
q”. 

E 

(3.30) 

For a relativistic two particle state with a wavefunction which is a function of 
-the off-shell variable 8 only, then we can identify (ml = m2 = m, x = x1 - x2) C271 

(3.31) 

In the non-relativistic limit, -+ this corresponds to the identification 
q1 =Zl, qz=x2m2. 

IV. MEASURES OF HADRONIC WAVE FUNCTIONS 

A. Form Factors of Composite Systems - 

If owe could solve the QCD equation of motion Eq. (3.24) for the light-cone wave- 
functions $n of a hadron then we could (in principle) calculate all of its electro- 
magnetic properties. For example, to compute the elastic form factors <plJp(O) /p+q> 
of a hadron we choose the Lorentz frame C461 

( 2 
pu = (p+,P-,+ = p+, " 9 d 

P > 
(4.1) 

q lJ = (q+,q-,;;,) = ( 0, ?p, 
P+ 

; 
I > 

I9 



where p 2 
= (p+912 = M2 and -q* = Q2 = q2. Then the only time ordering which con- 

tributes to the <pIJ+\p+q> matrix element is where the photon attaches directly to 
the ejGjY+uj currents of the constituent quarks. The spin averaged form factor 
is C46,191 {see Fig.6a) 

F(Q2) = F:F, ejf [ 11 x [dx] d2k C~~K(Xi,~~i; Xi) ~~(xi,~~i' 'i) 
n j i 

where 2: 
1 

= q + (1 - xj);L for the struck quark and ci - xi:' (i # j) for the 
spectator quarks. (The -Xi;;l terms occur because the arguments i?' are calculated 
relative to the direction of the final state hadron.) We choose K2 >> Q2,M2. We 
note here the special advantage of light-cone perturbation theory: the current J+ 
is diagonal in the Fock state basis. 

Because of Eq. (3.23) the form factor is normalized to 1 at zero momentum trans- 
fer. We can also compute the helicity flip form factors in the same manner. [19,471 
For example, the anomalous moment a = F2(0) of any spin l/2 system can be writtenC471 

(4.3) 

Explicit calculations of the electron anomalous moment in QED using this result are 
given in Ref. -47. We notice that in general all Fock states $5 contribute to the 
anomalous moment of a system, although states with K 2 much larger than the mean off- 
shell energy <&> are not expected to be important. The general result (4.3) also 
includes the effects of the Lorentz boost of the wavefunction from pu to (p+q)p. 
In particular, the Wigner spin rotation contributes to F2(q2) and the charge radius 
Fi(q2) in the q2 -f 0 limit and can only be neglected in the limit of non-relativistic 
binding <8> << M2. This effect gives non-trivial relativistic correctiins [481 to 
nuclear magnetic moment calculations based on simple additivity $ = (c p.). 

j J 
B. Form Factors of Mesons 

Results such as Eqs. (4.2) and (4.3) are formally exact but useless unless we have 
complete knowledge of the hadronic or nuclear wave function. However, by making 
use of the impulse approximation and the smallness of the QCD running coupling con- 
stant, we can calculate features of elastic and inelastic large momentum transfer 
processes cl91 without explicit knowledge of the wavefunction. For example consider 
the iqi> Fock state component contribution to the pion form factor. Choosing 
~~ = Q2, we have 

(4.4) 

+ higher Fock state contributions . 

The bound state wavefunctions are peaked at low transverse momentum, i.e., small 
off-shell energy 8. 
(a) $: << <T 

Thus the leading contribution at large Q2 come from the regimes 
and (b) ($1 + (1-~)<~~)2 <c $I. Thus 

1 

Fia)(Q2) = J dx $(x,Q) JIQ(x, (l-~);~) 
0 

(4.5) 

where 1191 



P P+9 

P P+9 

= c 
n 

(a) 

(b) 4239A9 

Fig. 6 (a) Calculation of current ma- 
trix elements in light-cone perturba- 
tion theory. (b) Valence Fock state 
contribution to the large momentum 
transfer meson form factor. TH is com- 
puted for zero mass quarks q and ?j 
parallel to the pion momentum. 

J Q d2k 
$(x,Q)= - 

16n3 
'hQ(x,kl) . (4.6) 

If we simply iterate the one-gluon exchange kernel Vl in the equation of motion 
for JI, then for q? >> <g:> 

1 

-/ 
= dy 

0 

Thus we can write the gluon exchange contribution to the form factor in the 
form; [11,191 (see Fig.6b) 

Fn(Q2) = j- 
1 

0 
dx dy +*(y,Q) THhy; Q) 6(y,Q) 

(4.7) 

(4.8) 

where 

TH = 
161~ CF as(Q2) el e2 

Q2 
(l- y)(l- x) + xy 1 (4.9) 

is the "hard scattering amplitude" for scattering collinear constituents q and i 
from the initial to the final direction. The color factor is CF = (n$- 1)/2n, = 

srl 
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413. The "distribution amplitude" cp(x,Q) is the amplitude for finding the /q?j> 
Fock state in the pion collinear up to the scale Q, (It is analogous to the wave- 
function at the origin in non-relativistic calculations.) The distribution ampli- 
tude enters universally in all large momentum transfer exclusive amplitudes and is 
a process-independent measure of the valence quark distribution in each hadron; 
its (logarithmic) dependence on 42 can be determined directly from the operator 
product'expansion or the light-cone or from an evolution equation, as we discuss 
below. 

Thus the simplest estimate for the asymptotic behavior of the meson form factor 
is F,(Q2) - as(Q2) /Q2. To see if this is correct we must examine the higher order 
corrections: Cl91 

(1) Contributions from higher particle number Fock states /q?jg>, /qqqq>, etc. are 
power-law suppressed since (in light-cone gauge) the numerator couplings cannot 
compensate the extra fall-off in 42 from the extra energy denominators. 
(2) All infrared singularities and contributions from soft (Ill + 0) gluons cancel 
in color singlet matrix elements. (It is interesting to note that the quark 
(Sudakov) form factor falls faster at large Q2 than Fv(Q2).) 

(3) Vertex and vacuum 
since we choose ~~ = Q K 

olarization corrections to the TE are higher order in as(Q2) 
. 

Cl-x)(1-y)Q2 
The effective argument of es in TH is Q2 = xyQ2 or 

corresponding to the actual momentum transfer carried by the gluon. 
(4) By definition, $(x,K~) sums all (reducible) contributions from low momentum 
transfer gluon exchange in the q?j wavefunction. 
Id71 ' K2 

Hard gluon contributions with 
and the irreducible (cross-graph, 

are higher order as(Q2). 
etc.) give contributions to TH which 

By analyzing the denominators in TH one can show that 
the natural &cutoff for $(x,K) which minimizes higher order contributions is 
K2 = QE = Q2 min {$--x , e] . 

(5) Although TH is singular at x + O,l, 
(1-x)E 

the endpoint behavior of $(x,92> N xE, 
(E > 0) is sufficient to render this region harmless. 

C. The Meson Distribution Amplitude 

The essential prediction of QCD for the pion form factor is the power-law be- 
-havior [81 F, m l/42, with logarithmic corrections from the explicit powers of 

as(Q2> in TH and the Q2 dependence of the distribution amplitudes $(x,Qz>. 

The variation of 4 with Q2 comes from the upper limit of the I;1 
(since $ -l/k:) and the renormalization scale dependence: 

integration 

QQ(x,i; ) = ___ Z2(Q) Qo 
.! Z2 (9,) G (x,Q 

due to the vertex and self-energy insertions. ThUS 

Q 2 + $(x,9) = (?2 4iQ(x,;sL) + d 
aQ 16712 d log Q2 

log Z2(Q2) $(x,Q) . 

(4.10) 

(4.11) 

To order u,(Q*) we can compute Q2@ from one-gluon exchange (as in Eq. (4.7)), and 

d log Z2(Q2)/d log Q2 = as(Q2)yE/47. 
obtain an "evolutional equation" Cl91 

Setting $(x,Q) = x(1-x) T(x,Q) = x1x2;, we 

(4.12) 



I where 

V(Xi’Yi) = 2CF X1Y2 ecy -x1> 
I 1 

6 - + A  

hlh2 y1- x1 > 

+ (l++ 2) 
I 

(4.13) 

(6 
hlC2 

= 1 when the q and s helicities are opposite) and 

A~(Yi,Q) = ~(Y~,Q) - ~(xi,Q) ’ (4.14) 

The T(xl,Q) subtraction is due to the YF$ term - i.e., the infrared dependence at 
yi = Xi is cancelled for color singlet hadrons. Thus given the initial condition 
4(xi,QO), perturbation theory determines the evolution of $(x,Q) for Q > QO. The 
solution to the evolution equation is [19] 

$$,Q) = x1x2 2 312 
a,(Qi) Cn (xl - x2> (log Q2/A2) 

-'n 

n=O 
(4.15) 

where the Gegenbauer polynomials G3i2 (orthogonal on 1 Cdxlxlx2) 
The corresponding eizenvalues are the "non-singlet" 

are 
Of V(Xi, Yi> * 

eigenfunctions 
anomalous 

dimensions: 

n-Cl 

c 
L 

26h h 

2 k (n+l)?n:2) 
I 

20 . (4.16) 

These results can also be derived by using the operator product expansion for the 
distribution amplitude. [49] By definition 

(4.17) 
Z +=o, z2=-zf = 6 (-l/Q21 

(A+ is the positive energy spinor projection operator). The relative separation 
of the q and 4 thus approaches the light-cone z2 = 0 as Q2 + m. Equation (4.16) 
then follows, by expanding $(z)+(O) in local operators. 

The coefficients a, are determined from $(xi,QO): 

-'n 
a n d(xl- x2) ‘n 3/2(x 1-x2) ~~xi,Qo) . (4.18) 

For Q2 -t ~0, only the leading y. = 0 term survives 

Q2 

lim $(x,Q> = a&x2 
+ OJ 

where 

1. 
aO 

1 
-= dx $(x,Q) = 

/ J 
dx 

' d2kl Q 
6 0 

2 + (x&J 

is the meson wavefunction at the origin as measured in the decay 71 + pv: 

(4.19) 

(4.20) 



I ( 
More generally, the leptonic decay (p" +- +ee, 

its distribution amplitude by the "sum rule" 
etc.) of each meson normalizes 

1 

/ , 

fM dx $,(x,9) = - 
0 2% ' 

(4.22) 

independent of Q. The fact that flT # 0 implies that the probability of finding 
the (q?j) Fock st2te in the pion is non-zero. In fact all the Fock states wave- 
functions $E(xi,kli)(l&j < K~) are well-defined, even in the infrared limit 
Xi -+ 0 (since 181 N <k:>/Xi and <kf> is non-zero for a state of finite radius). 

The pion form factor at high Q2 can thus be written c11,19,501 

Fn(Q2) = $ 
1 

0 
dx O*(x,Q)TH(x,y; Q> $(y,Q) 

T’ = 16 a’ ( Cl- x> Cl- ~19~) 
H 3?r (1-x)(1-y)Q2 l 

Thus 

F,(Q2) = 
2 l(jn as(a2) 

3 
Q2 

(4.23) 

(4.24) 

where ?j2 2 <(l-x)(1-y)>Q*. Finally, for the asymptotic limit where only the 
leading anomalous dimension contributes: [511 

21im 
2 as(Q2> 

Q 
F,(Q2) = 16i7 f - 

+cn Tl 
Q2 - 

The analysis of the F,,(Q2) form factor, measureable in ee -+ eeT 0 

proceeds in a similar manner (see Fig.la). 
reactions, 

An interesting result is cl91 

u,(Q2) = FdQ2) 
4aQ21F,,(Q2) I2 

(4.25) 

(4.26) 

which provides a definition of ~1~ 
function $r. 

independent of the form of the distribution 

Ref. 50. 
Higher order corrections to F,(Q2) and Fny(Q2) are discussed in 

D. Large Momentum Transfer Exclusive Processes cl91 

The meson form factor calculation which we outlined above is the prototype for 
the calculation of the QCD hard scattering contribution for the whole range of 
exclusive processes at large momentum transfer. 
in the Xi 

Away from possible special points 
integrations (see below) a general hadronic amplitude can be written to 

leading order in l/Q2 as a convolution of a connected hard-scattering amplitude TH 
convoluted with the meson and baryon distribution amplitudes: 



I 

$j&Q) = , 
and 

(4.27a) 

(4.27b) 

The hard scattering amplitude TR is computed by replacing each external hadro; line 
by massless valence quarks each collinear with the hadrons momentum p?S xi PH. 
For example, the baryon form factor at large Q2 has the form c9,191 (See Fig.2a and 
Fig.7.) 

GM(Q2) = j-[dx=bl +*(yi,8) TH(x,y; Q2) O(s,$ (4.28) 

where TR is the 3q + y + 3q' amplitude. (The optimal choice for ?j is discussed in 
Ref. 19.) For the proton and neutron we have to leading order (CR = 2J3) 

- . 

TP = T1 

128~1~ C2 
Tn = z2 [Tl - 

3(Q2 + MO) 

(a) 
z 

T2 1 

l- ilt + .qf .+ $5 +*.. 

(4.29) 

(4.30) 

Fig. 7 (a) Leading contributions to TH for the baryon 
form factors corresponding to the four terms of Eqs. (4.31) 
and (4.32), respectively. (b) Contributions to the kernel 
for the evolution of the baryon distribution amplitude. 

where 

2 

T1 = - 
CZ&Y~Q > as ( (I- x1> Cl- yl) Q2) 

+ 
as(x2y2Q2) a& - xl> (I- yl)Q2) 

(4.31). 
x3(1 -x1j2 Y3(1-Yl)2 x2(1-x1)2 Y,(1-Y1)2 

2 
os(x2y2Q ) 2 

os(x2y2Q ) 
x2x3(1 -x3) Y2Y3(1 - Yl) ' 



2 
cQx~Y~Q ) 

2 

T2 = - 
as(x3y3Q > 

x1x3(1-x1) Y1Y3(1-Y3) * 
(4.32) 

T1 corresponds to the amplitude where the photon interacts with the quarks (1) and 
(2) which have helicity parallel to the nucleon helicity, and T2 corresponds to 
the amplitude where the quark with opposite helicity is struck. The running coupl- 
ing constants have arguments Q2 corresponding to the gluon momentum transfer of 
each diagram. Only large Q2 behavior is predicted by the theory; we utilize the 
parameter MU to represent the effect of power-law suppressed terms from mass in- 
sertions, higher Fock states, etc. 

The Q2-evolution of the baryon distribution amplitude can be derived from the 
operator product expansion of three quark fields or from the gluon exchange kernel, 
in parallel with the derivation of (4.12). The baryon evolution equation to lead- 
ing order in os is [19] 

I 

C 
& hi,Q) + + $ i+Q) 

0 

x1x&i, 5 = log(log Q2/A2) i 

v(x& = 2x1x2x3 Le(yi-xi) 6(Xk- $1 
A 

i#j 
+ 7 

ii 

(4.33) 

(4.34) 

= V(Yi’Xi) * 

The infrared singularity at x. = y. is cancelled because the baryon is a color 
singlet. The evolution equat$on h&s the general solution 

$(xi,Q) = ~1~2x3 c 
n=O 

(4.35) 

The leading (polynomial) eigensolution $n(xi) and corresponding baryon anomalous 
dimensions are given in Refs.19 and 52. Thus at large Q2. the nucleon magnetic 
form factors have the form [9,19] 

GM(Q2) -+ 7 g bnm (log $ )-l'-" [l + 0(os(Q2), $1 . (4.36) 

We can also use this result to obtain results for ratios of various baryon and 
isobar form factors assuming isospin or SU(3)-flavor symmetry for the basic wave- - 
function structure. Results for the neutral weak and charged weak form factors 
assuming standard SU(2) x U(1) symmetry are given in Ref. 46. 

As we see from Eq. (4.28), the integration over xi and yi have potential endpoint 
singularities. However, it is easily seen that any anomalous contribution (e.g., 
from the region x2,x3 w @(m/Q), x1 N 1 - @(m/Q)) is asymptotically suppressed at 
large Q2 by a Sudakov form factor arising from the virtual correction to the 4yq 
vertex when the quark legs are near-on-shell (p2 N @(mQ)). [19,541 This Sudakov 
suppression of the endpoint region requires an all orders resummation of perturba- 
tive contributions, [571 and thus the derivation of the baryon form factors is not 
as rigorous as for the meson form factor, which has no such endpoint singularity. 

P 



The most striking feature of the QCD prediction (4.36) is the l/Q4 power-law 
behavior of G& as G$. The power-law dependence 183 reflects: 

(1) The essential scale-invariance of the qq scattering subprocesses within TB. 

(2) The fact that the minimal Fock state of a baryon is the 3-quark state. 

We will discuss the phenomenology of the baryon form factors and the resulting 
constraints on the baryon wavefunction in Sec. VI, 

In the case of hadron scattering amplitudes A+B -+ C+D, photoproduction, Compton 
scattering, etc., 
transfer 42 = 

the leading hard scattering QCD contribution at large momentum 
tu/s has the form [193 (helicity labels and suppressed)(see Fig.8) 

Fig. 8 QCD contributions to 

T, = x c .)) + T + l em 

meson-meson scattering at large 

~~~~~~~n~~a~~f~f, L~~~~~~&(c) 
pinch singularity which is sup- 

12-81 (a) 
pressed by quark form factor 

(b) (c) 423YAl I effects. 

c/H A+B + c+D(Q2.ecem.) = $[dx$,(xc,~) $-,(xd’ii) THhi; Q2,ecsrn) 

x 4A(xa,G) 4,(x,,G) .* 

The essential behavior of the amplitude is determined by TH, computed where each 
hadron is replaced by its (collinear) quark constituents. We note again that TH is 
"collinear irreducible," i.e., the transverse momentum integrations of all reducible 
loop integration are restricted to k? > @(Q2) since the small k, region is already 
contained in $. If the internal propagators in TH are all far-oif-shell @(Q') (as 
in Fig.8a) then a perturbative expansion in as(Q2) can be carried out. However, 
this is not true for all hadron-hadron scattering amplitudes since on can have 
multiple quark-quark scattering processes which allow near-on-shell propagation in 
intermediate states at finite values of the xi. Cl71 The classic example is meson- 
meson scattering, where two pairs of quarks scatter through the same angle (see 
Fig.7c). However, the near-on-shell region of integration is again suppressed by 
Sudakov factors. (Physically this suppression occurs because the near-on-shell 
quarks must scatter without radiating gluons.) A model calculation by MUELLER Cl01 _ 
for 'II- IT scattering in QCD (using an exponentiated form of the Sudakov form factor) 
shows that the leading contribution comes in fact from the off-shell region 
~k2=~o~2~~Q2)1-E where E = (2c+l)-1, c = 8CF/(ll - 2/3 nf) (for four flavors 

. . This region gives the contribution Cl01 

dtz N 
2 -3/2 

6'(Q > 
- cLn (2c+1/2c) 

7lTr -b 7lTI (4.38) 

compared to (Q ) 2 -2 from the hard scattering lk2/ N 2 @(Q ) region. 
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Thus, even when pinch singularities are present, the far-off-shell hard scatter- 
ing quark and gluon processes dominate large momentum transfer hadron scattering 
amplitudes. Given this result, we can abstract some general QCD features common to 
all exclusive processes at large momentum transfer: 

(1) All of the non-perturbative bound state physics is isolated in the process- 
independent distribution amplitudes. 

(2) The nominal power-law behavior of an exchange amplitude is (l/Q)n-4 where n is 
the number of external elementary particles (quarks, gluons, leptons, photons in TH). 
This immediately implies the dimensional counting rules: C81 

n-2 
f(e > c.m. 

where n = nA -I nB + nC + n D' and 

nH - 1 

(4.39) 

(4.40) 

where FH is the helicity-conserving [18,19] form factor. These power-law predic- 
tions are modified by (a) the Q2-dependence of the factors of cts in TH, (b) the 
Q2-evolution of the distribution amplitudes and (c) a possible small power associ- 
ated with the-almost complete Sudakov suppression of pinch singularities in hadron- 
hadron scattering. The dimensional-counting rules appear to be experimentally 
well-established for a wide variety of processes (see Ref. 19 and Fig.9): 

IO0 

IO-’ 

IO-’ 
- . 

LL= 10-1 
z 
cd 
x5 10-2 

lo-* 

lo-3 

lO-4 

10-n 

7 

Helium 4, n=l2 

0 2 4 6 Fig. 9 Hadronic form factors 

q* (GeV*) 
multiplied by (Q2)n-1. (From 

,311B. Ref. 1.) 

GM(Q-) N (Q2)-2 , FT (Q2) N (Q2)-l (4.41) 

and 



I 
2 (UP + TP) N (Q2)-7 (4.42) 

2 (TP -f TP) N (Q2)-8 

jf (PP -f PP) N (Q2)-lo 

2 (VP -t VP) $ (yp -f VP> - Q2 I 

at fixed ecsrn . . The application to yy -+ 6 processes is discussed in Sec. IV-E. 
(3) Since the distribution amplitudes $M and $B are Lz = 0 angular momentum pro- 
jections of the hadronic wavefunctions, the sum of the quark spin along the hadron's 
momentum equals the hadron spin: Cl81 

c 
i6H 

s; = s; (4.43) 

(In contrast, in inclusive reactions there are any number of non-interacting quark 
and gluon spectators, so that the spin of the interacting constituents is only 
statistically related to the hadron spin - except possibly at the edge of phase- 
space x N 1.) Furthermore, since all propagators in TH are hard, the quark and 
hadron masses -can be neglected at large 42 up to corrections of order q/Q. The 
vector gluon interactions conserve quark helicity when all masses are neglected. 
Thus total quark helicity is conserved in TH at large Q2. Combining this with 
(4.43)) we have the QCD selection rule: 

c AH = c 
initial final AH (4.44) 

i.e., total hadron helicity is conserved up to corrections of order @(m/Q). 

Hadron helicity conservation thus applies for all large momentum transfer 
exclusive amplitudes involving light meson and baryons. Notice that the photon 
spin is not important: QCD predicts that yp -+ np is proton helicity conserving 
at fixed 0,.,., s -t m, independent of the photon polarization. Exclusive ampli- 
tudes which involve hadrons with quarks or gluons in higher orbital angular 
momentum states are also suppressed by powers of the momentum transfer. An im- 
portant corollary of this rule is that helicity-flip form factors are suppressed, 
e.g.: 

F2p(Q2) / Fl(Q2) N @'(m2/Q2) . 

The helicity rule, Eq. (4.44), is one of the most characteristic features of 
QCD, being a direct consequence of the gluon's spin. A scalar or tensor gluon- 
quark coupling flips the quark's helicity. Thus, for such theories, helicity may - 
or may not be conserved in any given diagram contributing to TH, depending upon 
the number of interactions involved. Only for a vector theory, like QCD, can we 
have a helicity selection rule valid to all orders in perturbation theory. 

The study of timelike hadronic form factors using e+e- colliding beams ca; pro-- 
vide very sensitive tests of this rule, since the virtual photon in e+e- -+ Y -+ hAhB 
always has spin +l along the beam axis at high energies. Angular momentum conserva- 
tion implies that the virtual photon can "decay" with one of on1 

4 
two possible 

angular distributions in the center of momentum frame: 
and sin% for ix, - xsl = 0 where AA B 

(1 + COS 0) for /AA- ABl = 1, 
are the helicities of hadron hA,B. Hadronic 

helicity conservation, Eq. (4.44), aA required by QCD greatly restricts the 



possibilities. It implies that AA f AB = 0 (since the photon carries no "quark 
helicity") , or equivalently that XA - XB = BAA = -2AB. Consequently, an ular 
momentum conservation requires \hAl = \XBl = l/2 for baryons, and \XA\ = P XB\ = 0 
for mesons; furthermore, the angular distributions are now completely determined: 

do 
d c0se 

(e+e- -+ Bg) 0~ 1 + cos2e (baryons) 

da +- 2 
d c0se 

(e e -f MM) = sin 8 (mesons) 

(4.46) 

(4.47) 

We emphasize that these predictions are far from trivial for vector mesons and for 
all baryons. For example, one expects distributions like I+ c1cos26, -1 < c1 < 1, 
in theories with a scalar or tensor gluon. So simply verifying these angular dis- 
tributions would give strong evidence in favor of a vector gluon. 

The power-law dependence in s of these cross sections is also predicted in QCD, 
using the dimensional counting rule. Such "all orders" predictions for QCD allowed 
processes are summarized in Table III. 

Table III Exclusive channels in e+e- annihilation. 
- PB)%(S) for mesons, 

The hAhBy* couplings in allowed 
p?fOsesses are -ie(pA 
-ie c,,vpop&Pp~F~Y(~) for meson-photon 

-iev(pB)ypG(S)U(pA) for baryons, and 
final states. Similar predictions apply to 

decays of heavy-quark vector states, like the J,,$' ,***, produced in e+e-collisions. 

e+e- + hA()IA) EB(XB> Angular Distribution ( 
+- 

bee +hE > 
a(e+e- + ,I') 

Allowed 

in QCD 

Suppressed 

in QCD 

+- 
ee + ,+,-,K+K- SiI-?Cl 'tlF(s,I 2 - c/s2 

p+(Q)p-(O),K*+K*- sin2e kIF(s)j2 .., c/s2 

lIOYW) rllY,Q'Y 1 + cos2e (no/Z)~lF~~(s)1~ w c/s 

e+e- -b p(f%))p(i%) ,G,. . . 

p(+%)x(T%),:A,... 

A(t+)&%>,y*j*,... 

1 + cos2e. 1 G(s) 

I + cos2e (G(s) 
1 + cos20 (G(s) 

I2 4 - c/s 
I 2 i c/s4 
I2 - c/s4 

’ +- 
e e + p+(O)p-(fl) + - + *-,.. . rrp ,KK 1 + cos2e < c/s 3 

P+(*l)p-w),... sin2e < cl.5 3 

e+e- + p04)~W5>,pii,Gz;.... 2 sin 0 -c c/s5 
P(&~(&,A~,... 1 + cos2g c c/s 5 

A(&d(+%,... 2 sin e c c/s 5 

Processes suppressed in QCD are also listed there; these all violate hadronic 
helicity conservation, and are suppressed by powers of m2/s in QCD. This would not 
necessarily be the case in scalar or tensor theories. 

The exclusive decays of heavy quark atoms ($,JI' ,... > into light hadrons can also 
be analyzed in QCD. Cl81 The decay $ -+ pp for example proceeds via diagrams such 
as those in Fig.2b. Since q's produced in e+e- collisions must also have spin ?l 
along the beam direction and since they can only couple to light quarks via gluons, 
all the properties listed in Table III apply to $, JI', T, T' , . . . decays as well. 
There are considerable experimental data for the J, and Ji' decays. c551 
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Perhaps the most significant tests are the decays $J,$' -t pi,nn,... . The pre- 
dicted angular distribution 1 + 82 cos20 is consistent with published data. C351 
This is important evidence favoring a vector gluon since scalar or tensor gluon 
theories would predict a distribution of sin28 + @(es). Dimensional counting 
rules can be checked by comparing the J, and $' rates into pi, normalized by the 
total rates into light-quark hadrons so as to remove dependence upon the heavy- 
quark wavefunctions. Theory predicts 

8 BR(J, -f pi> 
BR(VJ’ -f p;> - (4.48) 

where 

BR(@ -f p;) 5 r(J, -+ PP> 
F(@ * light-quark hadrons) * (4.49) 

Existing data suggest a ratio (M+r/Mq)" with n N 6 t 3, in good agreement with QCD. 

Many more examples of exclusive reactions which test the basic scaling laws and 
spin structure of QCD are discussed in Refs. 18 and 19. The essential point is 
that exclusive reactions have the potential for isolating the QCD hard-scattering 
subprocesses in situations where the helicities of all the interaction constituents 
are controlled. In contrast, in inclusive reactions the absence of restrictions on 
the spectator quark and gluons allows only a statistical correlation between the 
constituent and hadronic helicities. 

E. Two-Photon Processes 1121 

One of the most-important applications of perturbative QCD is to the two-photon 
processes do/dt (yy + I@), M = 
These reactions, 

TI,K,P,W at large s = (kl + k2)* and fixed 0,.,.. 
which can be studied in e+e- + e+e-* processes, provide a par- 

ticularly important laboratory for testing QCD since these "Compton" processes are, 
by far, the simplest calculable large-angle exclusive hadronic scattering reactions. 
As we discuss below, the large-momentum-transfer scaling behavior, the helicity 
structure, and often even the absolute normalization can be rigorously computed for 
each two-photon channel. 

- . Conversely, the angular dependence of the yy + I& amplitudes can be used to 
determine the shape of the process-independent meson "distribution amplitudes," 
$M(x,Q), the basic short-distance wavefunctions which control the valence quark 
distributions in high momentum transfer exclusive reactions. 

A critically important feature of the yy -+ I@? amplitude is that the contributions 
of LANDSHOFF [171 pinch singularities are power-law suppressed at the Born level - 
even before taking into account Sudakov form factor suppression. There are also 
no anomalous contributions from the x N 1 endpoint integration region. Thus, as in 
the calculation of the meson form factors, each fixed-angle helicity amplitgde can 
be written to leading order in l/Q in the factorized form [Q2 = 
min(xQ,(l-x)Q)1 (see Fig.9): 

p; = tuls; Qx = 

dy +,(Y.6y) TH(x,y; Sdcsm,) $,f(x,6x) (4.50) 

where TH is the hard-scattering amplitude yy + (qi)(qq) for the production of the 
valence quarks collinear with each meson and (PM(x,Q) _is the (process-independent) 
distribution amplitude for finding the valence q and q with light-cone fractions 
of the meson's momentum, integrated over transverse momenta k, < Q. The contribu- 
tion of nonvalence Fock states are power-law suppressed. Further, the spin- 
selection rule (4.44) of QCD predicts that vector mesons M and G are produced with 
opposite helicities to leading order in l/Q and all orders in ns(Q2). 



1 0 Dimensional counting c81 predicts that for large s, s4 da/dt scales at fixed 
t/S or e,.m. up to factors of Rn s/A2. 

Some forty diagrams contribute to the hard-scattering amplitudes for YY -f G  
(for nonsinglet mesons). These can be derived from the four independent diagrams 
in Fig.lOb by particle interchange. The resulting amplitudes for helicity zero 
mesons are: 

T-t+ 

T -- I 

167~~~ 
S =- 32~~ 

3s x(l-x)Y(l-Y) 

T+- 
T -+ 

where g 
and el, 

(0) 

16~~ 
Zp 32ra 

3s x(l-x)Y(l-Y) 
(4.52) 

= (l-x)(1-y) * xy, the subscripts -I+,--,.,, refer to photon helicities, 
e2 are the quark charges (i.e., the mesons have charges '(el - q)). 

kl PA 

Fig. l_O (a) Factorized structure of the 

To compute the YY -+ MI? amplitude &?hh, (Eq.(4.50)) we now need only know the x- 
dependence of the meson's distribution amplitude @M?x,Q); 

of $M is fixed by the 'sum rule' (nc = 3) 
the overall normalization 

J 1 
fM 

0 
dx +,h,Q) = - 

2Js 
(4.53) 

where f M is the meson decay constant as determined from leptonic decays. 
the dependence in x and y of several terms in TXA, 

Note that 
is quite similar to that appear- 

ing in the meson's electromagnetic form factor (4.23): 

16nor 

/ 

1 
FM(s) = + dx dy 

0 x(1-x) y(1 -y) 
(4.54) 

when @M(x,Q) = @~(l~x,Q) is assumed. Thus much of the dependence on $(x,Q) can be 
removed from &XX, by expressing it in terms of the meson form factor - i.e., 



cdl-- 
= 16nc~ FM(s) (4.55) 

Al+- 
I 

( (e -e> 
2 

= 16~rc~ FM(s) 12 > 
d&l-+ 1 - cos2e 

- + 2<ele2> g[ec m ; . . $j 

I 

(4.56) 

c.m. 

2 up to corrections of order us and m /s. 
the only unknown quantity, 

Now the only dependence on (PM, and indeed 
is in the e-dependent factor 

dY 
$i(x,Q) $i(y.ii) a[y(l- y> + x(1 - $3 

x(1 - xl Y(l- Y) a 2 _ b2 cos2e 
c.m. 

/ 

1 
dx dy 

$p,o m;cY,o) 

0 x(1-x) Y(l-y) 

. 

The spin-averaged cross section follows immediately from these expressions: 

da 2 do -=- 1 1 
dt 

=-- 
s d case 161~s Cl c.m. 24 xx 

= 16~13~ ~ 
FibI 

S 

2 1 ((e1-e2j2Y 2(ele2X(el-e212) 

( 1 - cos2ec . m . 1 2+ 1 - cos2ec . m . -l 

(4.57) 

(4.58) 

r 
Xgecm 1 . . ; QM] + qele2)2 g2[ecsm. ; 9, 

Ii 
* 

In Fig.11 the spin-averaged cross sections (for yy + 7~) are plotted for several 
forms of I$M(X,Q). At very large energies, 
the form 

the distribution amplitude evolves to 

4,(x,Q) ----, J? fM x(1-x) , 
Q +co 

(4.59) 

and the predictions (curve (a)) become exact and parameter-free. However, this 
evolution with increasing Q2 is very slow (logarithmic), and at current energies 
$M could be quite different in structure, 
binding. 

depending upon the details of hadronic 
Curves (b) and (c) correspond to the extreme examples 4~ Q Ex(l-~)l~/~ 

and $M Oi 6(X - l/2), respectively. Remarkably, the cross section for charged 
mesons is essentially independent of the choice of $M.I, making this an essentially 
parameter-free prediction of perturbative QCD. By contrast, the predictions for 
neutral helicity-zero mesons are quite sensitive to the Structure of GM' Thus we 
can study the x-dependence of the meson distribution amplitude by measuring the 
angular dependence of this process. 

The cross sections shown in Fig.8 are specifically for yy + TTIT, where the pion 
form factor has been approximated by F,(s) w 0.4 GeV2/s. The rr+u- cross section 
is quite large at moderate s: 
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Fig. 11 QCD predictions for yy+nn 

to leading order in QCD. The results 
assume the pion form factor param- 
eterization F,(s) - 0.4 GeV2/s. 
Curves (a), (b) and (c) correspond 
to the distribution amplitudes $M = 
x(1 - xl, Cx(L-x) 11/4, and 
&(x-11/2), respectively. Predic- 
tions for other helicity zero mesons 
are obtained by multiplying with the 
scale constants given in Ref. 15. 

-+ T+n-) 4/F+]* 

+ ll+iJ-> 1 - cos4ec m 
- 0.6 GeV4 at e 

2 c .m. = 7r/2 
S . . 

(4.60) 

Similar predictions are possible for other helicity-zero mesons. The normalization 
of yy + MM relative to the yy + 717~ cross section is completely determined by the 

-ratio of meson decay constants (fM/f,)4 and by the flavor-symmetry of the wavefunc- 
tions, provided only that $M and $n are similar in shape. Note that the cross 
section for charged p!s with helicity zero is almost an order of magnitude larger 
than that for charged 71's. 

Finally notice that the leading order predictions (Eq. (4.58)) have no explicit 
dependence on as. Thus they are relatively insensitive to the choice of renonnali- 
zation scheme or of a normalization scale. This is not the case for either the 
form factor or the two-photon annihilation amplitude when examined separately. 
However, by combining the two analyses as in Eq. (4.58) we obtain meaningful results 
without computing O(a,) corrections. The corresponding calculations for helicity- 
one mesons are given in Ref. 12. Hadronic helicity conservation implies that only 
helicity-zero mesons can couple to a single highly virtual photon. So FM~, the 
transverse form factor, cannot be measured experimentally. For simplicity we will _ 
assume that the longitudinal and transverse form factors are equal to obtain a 
rough estimate of the yy + plpl cross section (Fig.12). Again we see strong depen- 
dence on $bfL for all angles except 8, m - r/2, where the terms involving gL 
vanish. Consequently, a measurement of'the angular distribution would be very 
sensitive to the x-dependence of @ML, while measurements at Scsrn, = ~12 determine 
Fq (s) . Notice also that the number of charged p-pairs (with any helicity) is 
much larger than the number of neutral p's, particularly near 8,.,, = sr/2. The 
cross sections are again quite large with 
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Fig. 12 QCD predictions for yy + 
p I PI with opposite helicity +l to 
leading order in QCD. The nonnal- 
ization given here assumes that 
the p distribution amplitude is 
helicity independent. 

(4.61) 

Results for other mesons are given in Ref. 12. 

The yy + * and y*y + M processes thus provide detailed checks of the basic Born 
structure of QCD, the.scaling behavior of the quark and gluon propagators and inter- 
actions, as well as the constituent charges and spins. Conversely, the angular 
dependence of the yy + c amplitudes can be used to determine the shape of the 
process-independent distribution amplitude $M(x,Q) for valence quarks in the meson 
q< Fock state. The cosf3,.,. -dependence of the yy + 6 amplitude determines the 
light cone x-dependence of the meson distribution amplitude in much the same way 
that the XBj dependence of deep inelastic cross sections determines the light-cone 
x-dependence of the structure functions (quark probability functions) Gq/M(x,Q). 

The form of the predictions given here are exact to leading order in as(Q2). 
Power-law (m/Q)2 corrections can arise from mass insertions, higher Fock states, 
pinch singularities and nonperturbative effects. In particular, the predictions 
are only valid when s-channel resonance effects can be neglected. It is likely 
that the background due to resonances can be reduced relative to the leading order 
QCD contributions if one measures the two-photon processes with at least one of the 
photons tagged at moderate spacelike momentum q2, since resonance contributions are 
expected to be strongly damped by form factor effects. In contrast, the leading 
order QCD yly2 
for lqil << s. 

-+ I@ amplitudes are relatively insensitive to the -value of qf or qs 

Finally, we note that the amplitudes given above have simple crossing properties. 
In particular, we can immediately analyze the Compton amplitude yM + yM in the 
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rzgion tqlarge enough with s >> It] in order to study the leading Regge behavior in 
the large momentum transfer domain. In the case of helicity +1 mesons, the leading 
contribution to the Compton amplitude has the form (s >> It/) 

u4z YM-+ YM = 16ITcFM (t) (e: + ei) 
I 

(4.62) 

(xv = x; , AM = Xr;’ 

which corresponds to a fixed Regge singularity at J = 0. [561 In the case of 
helicity zero mesons, this singularity actually decouples, and the leading J-plane 
singularity is at 3 = -2. 

V. DEEP INELASTIC LEPTON SCATTERING 

The crucial evidence that the electromagnetic current within hadrons is carried by 
point-like spin l/2 quarks comes from deep-inelastic electron, muon and neutrino 
scattering. At large momentum transfer, Q2 ^>, 2 GeV2 the lepton-nucleon inelastic 
cross section displays a scale-invariant behavior consistent with the simplest 
type of impulse approximation - where the electron scatters directly against point- 
like quark constituents of the target. [573 The deviations which are observed at 
very large Q2 are consistent with the color radiative corrections predicted by QCD. 
In addition at low values of Q2, there is evidence for power law "higher twist" 
corrections associated with coherent multiquark processes, interference effects, 
and final state corrections - quite in analogy to the corrections to impulse 
approximation expected in nuclear physics inelastic breakup calculations. 

The Fock state representation we discussed in Sec. III provides a particularly 
simple and elegant basis for calculating the deep inelastic cross section in QCD. 
We first consider the forward Compton amplitude y*p 
q2 = -92 < 0, 

-+ y*p with virtual photon mass 
and then calculate the ep + eX cross section from the absorptive 

part. An ideal Lorentz frame is 

P = (P+,P-,;el) = 
+ M2 5 

P 9 7 9 1 
P 

q = (q+,q-,q, 

(5.1) 

2 with q =-Q2 and p l q = Mv. For the diagram 13b which has no final state inter- 
actions, the (light-cone) energy denominator between the photon interactions is 

9 

x 

9 

P P 

12-81 ( 0 1 - 

= 

J’ 
(b) 

+ . . . 
( w 

Fig. 13 Calculation of the for- 
ward virtual Compton amplitude. 
Diagram (b) gives the impulse 
approximation, neglecting final 

4239AZC 
state and multiquark inter- 
actions. 

D = M2 + 2Mv - 
(ZL + GL)2 + m2 

X 

(5.3) 



I 
where m is the struck quark mass, and the sum over i # 1 gives the spectator quark 
and gluon contributions. For states with 

I&l = 1M2 - 
kf + m2 

> II x * << 2Mv and k2 << Q2 ?. 

we can write 

2 
D Z 2Mv - % + ic 

ImD -1 = -g& 6(x - &) 

i.e., the electron scattering on a quark with light-cone momentum fraction 

x : xBj 

The corresponding impulse approximation cross section is (x -f x 
Bj 

) 

da 

dQ2 dx 
(!?-P-+ a'x) = c Gq,p(~,Q) + (gq -t glq) 

q dQ 
pq 

= xp 

where C21l 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

gives the probability distribution for finding the quark with fractional light- 
cone momentum collinear up to the scale kf < Q2, I&I < 2Mv. Unlike large momentum 
transfer exclusive amplitudes, all Fock states contribute to the inclusive cross 
section. The subprocess cross secti:n-do/dQ2(Lq + a'q) is evaluated for a quark 
collinear with the proton momentum p - xp+, d, = 0. 
to the subprocess cross section are #ard 
power series in or,(Q2). 

(kf 
Since all the loop corrections 

,-O(Q2)), it can be developed as a 
Thus the only correction to perfect scale-invariance of 

do/dx dQ2 at large Q2 and fixed xBj 
distribution G(x,Q2). 

comes from the Q2 dependence of the probability 
This in turn can only arise from the wavefunction renormali- 

zation or from contributions I&, - U(l/k,) at large k, . In QCD these occur only 
from the perturbative processes q -f qg, and g -+ gg, g-+ qq, as illustrated in Fig.14. 

12-81 423YA16 

Fig. 14 Contributions to the hadron Fock state wavefunction 
which give 9 - l/k1 at large k, and thus structure function 
evolution. 

In parallel to the derivation of the evolution equation for the distribution ampli- 
tude, we then can derive evolution equations for the distributions GqjH(x,Q2) and 

Gg/H (x,Q2) of the form C58,591 
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as (Q2) 

/ 

1 
a 

a log Q2 
G(x,Q) = 2n 

X 
p(:) G(Y,Q) $ 

For example, for the "non-singlet" distribution 

G q,HkQ) = Gq,H (x,Q) = Gq,HkQ) 

we have to lowest order in as(Q2), (CF = 4/3) 

P q,qG) = CF (:;)2= cF[:r:' - 6(1 - z) /,l dxe] 

(5.9) 

(5.10) 

(5.11) 

(The subtraction term, which ensures finite behavior at xg = 0, arises from the 
wavefunction renormalization, as in Eq. (4.14)). The Q2 dependence can be displayed 
most simply by taking moments: 

Mn(Q2) = J 
1 

G(x,Q2) xndx (5.12) 
0 

Then 

Mn 
NS = MzS($!) (5.13) 

where the yn are defined in Eq. (4.16). The higher order corrections to the Q2- 
evolution of Mn are discussed in Refs. 1 and 2. A critical feature [211 is the 
fact that the higher loop corrections (e.g., from the higher Fock states) are con- 
strained kinematically to kz < (1-y)Q2 < (1-x)Q2, where y is labelled in the 
figure; i.e., the evolution is reduced at large x and for large n. A detailed 
discussion is given in Ref. 41. 

Equation (5.7) displays an essential feature of the QCD predictions for inclu- 
sive reactions: the factorization of the physical cross section into a hard- 
scattering subprocess.cross section, controlled by short-distance perturbative QCD, 
convoluted with structure functions G(x,Q2) which contain the long distance hadronic 
bound state dynamics. Notice that the Q2 -evolution of G(x,Q) is also completely 
specified by the perturbative QCD processes and is independent of the nature of the 
target. 

All the corrections to the perturbative QCD impulse approximation from final 
state interactions, finite k? effects, interference contributions, mass corrections, 
etc. are of higher order in l/42, at least when analyzed using perturbative methods. 
In the operator product analysis these contributions correspond to matrix elements 
of "higher twist" operators which have non-minimal dimensions. The most important 
higher twist terms for deep inelastic lepton scattering are expected to correspond _ 
to processes where the lepton scatters on multiparticle clusters in the target 
(qq, Gi, virtual mesons, qg, etc.). We thus obtain a sum of contributions (see 
Fig.15): Cl51 

do ~ (RH -f !L'X) = 
dQ2dx c 

G a,H(~) 
acH pa = xPH 

(5.14) 

where, in general doa/dQ2 falls in Q2 according to the compositeness of a: 
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F2(x, Q2) -(I-xl3 
+ QCD evolution 

+ fl [Q,b2)] 

F2 (x, Q2) - y 

Fig. 15 QCD contributions to in- 
elastic electron-nucleon scatter- 

F2(x, 02) - 9 
is, including radiative and 
higher twist (diquark, triquark) 
corrections. 

do - (I?a -+ a'a) 
dQ2 

- y lFa(Q2)l 2 (5.15) 

For example, the "diquark" 
order (m2/Q2)2. 

eqq + eqq gives a contribution to ep + eX of relative 
Since the qq can carry a large fraction of the proton's momentum, 

this contribution can be significant at large x. For a guide to this effect one 
can use the spectator counting rule: C60,81 

G a/HcX) - (I-- x’ 

2ns-1 

x+1 
(5.16) 

where n, is the minimum number of spectator quarks (or gluons) in the Fock state 
required to stop at x + 1. The minimal Fock states containing a gives the dominant 
contribution. 

The simplified rule (5.16) can be derived from minimally connected tree graph 
diagrams, ignoring spin effects, or from simple phase space considerations if one 
ignores the spectator quark masses 1611 (see Sec. VI). Using this simple counting 
we can then classify the contributions to the hadron structure functions, as illus- 
trated in Fig.15. The diquark contribution is expected to give a large contribution 
to the longitudinal structure function since it acts coherently as a boson current. 
The order crs(Q2) contribution from the hard gluon radiative corrections with 
k;_ > (l-x)Q2 also gives a significant contribution to oL. 

A detailed derivation of the behavior of structure functions at x - 1 from per- 
turbative QCD is given in Ref. 21. At x - 1 all of the hadron's momentum must be 
carried by one quark, and each quark and gluon quark and gluon propagator which 
transfers this momentum becomes far off-shell: 

k2 m @(- '; I ,") . 

Perturbative QCD predictions thus become relevant. An important result is that at 
large x the struck quark tends to have the same helicity as the target 
nucleon: [21,62] 

G 
q+/p+ 

'v (1-xj3; Gq+,p+ - (l-~)~ (5.17) 

This type of spin correlation is consistent with the SLAC-Yale polarized electron/ 
polarized target data. Combined with the SU(6) symmetry of the nucleon wavefunction 
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this implies that the leading quark in the proton is five times more likely to be 

an up quark than a down quark, and thus 1623 (F2 = c e%Gq,n) 
q 

F2nkQ2)c/F2p(x,Q2) xT1 3/7 

For the case of mesons, the perturbative QCD gluon exchange prediction is C631 

G 
q/m 

- (l-x)2 (5.19) 

n 
In addition, the same QCD analysis predicts a large C/QL contribution to the meson 
longitudinal structure function (see Fig.3b): [22,641 

2 

/ 

Q‘ 
F;(x,Q2) = + CF 

Q 
dk2 us(k2) Fn(k2) I 

-m2/(1- x) 

(5.20) 

which numerically is FL - x2/Q2 in GeV2 units. This contribution, which can domi- 
nate leading twist quark distributions in mesons is normalized in terms of the 
meson distribution amplitude, which in turn is normalized by the pion form factor. 

The dominance of the longitudinal structure functions in the fixed W limit for 
mesons is an essential prediction of perturbative QCD. Perhaps the most dramatic 
consequence is in the Drell-Yan process ?rp -+ R+R-X; one predicts [221 that for 
fixed pair mass Q, ‘the angular distribution of the 9. + (in the pair rest frame) will 
change from the conventional (1 + cos20+) distribution to sin2(0+) for pairs pro- 
duced at large XL. A recent analysis of the Chicago-Illinois-Princeton experi- 
ment 1651 at FNAL appears to confirm the QCD high twist prediction with about the 
expected normalization. Striking evidence for the effect has also been seen in a 
Gargamelle analysis [66l of the quark fragmentation functions in vp + n+~-X. The 
results yield a quark fragmentation distribution into positive charged hadrons 
which is consistent with the predicted form: dN+/dzdy - B(l- z>~ + (C/Q2)(l-y) 
where the (1-y)behavior corresponds to a longitudinal structure function. It is 
also crucial to check that the efe- 

-- ( 
-t MX cross section becomes purely longitudinal 

sin28) at large z at moderate Q2. 1621 

The results (5.17) and (5.19) for GqjB and Gq/~ give the behavior of the lead- 
ing QCD contribution to the structure function before QCD evolution is applied. 
e.g., the results are valid for F2(x,Q2) at 42 of order of <k$>H. The large Q 3 
behavior is determined by the evolution equations (5.9), taking account of the 
phase space limits of the radiated gluons at x - 1. [411 

VI. THE PHEK%!ENOLOGY OF HADRONIC WAVEFUNCTIONS 

Thus far, most of the phenomenological tests of QCD have focused on the dynamics 
of quark and gluon subprocesses in inclusive high momentum transfer reactions. The 
Fock state'wavefunction $E(xi,cLi; Xi) which determine the dynamics of hadrons in 
terms of their quark and gluon degrees of.freedom are also of fundamental importance. 
If these wavefunctions were accurately known then an extraordinary number of phe- 
nomena, including decay amplitudes, exclusive processes, higher twist contributions 
to inclusive phenomena, structure functions, and low transverse momentum phenomena 
(such as diffractive processes, leading particle production in hadron-hadron col- 
lisions and heavy flavor hadron production) could be interrelated. Conversely, 
these processes can provide phenomenological constraints on the Fock state wave- 
functions which are important for understanding the dynamics of hadrons in QCD. 
In addition, as we discuss in Sec. VII, the structure of nuclear wavefunctions in 
QCD is essential for understanding the syntheses of nuclear physics phenomenology 
with OCD. 



A. Measures of Hadron Wavefunctions 

As we have shown in Sec. III the central measures of the hadron wavefunctions are 
the distribution amplitudes 

+$,Q) = JQ [d2kl] ++J 

which control high momentum transfer form factors and exclusive processes: 

and the quark and gluon structure functions 

Gq,H(~,Q) = c I" [d2kJidxll$n(xi,k-Li) j26(x-xq) 
n 

(6.1) 

(6.2) 

(6.3) 

which control high momentum transfer inclusive reactions 

do: II G @ d; (6.4) 

Examples are shown in Figs.1 through 3. A summary of the basic properties, 
logarithmic evolution, and power law behavior of these quantities is given in 
Table IV. _ 

The exclusive formula (6.2) also includes applications to large momentum trans- 
fer multiparticle production [68,8] e'e' + Hl...Hn with pi l Pj - 8(Q2), and the 
elastic and inelastic weak and electromagnetic form factors. We also note that 
hard scattering-higher twist subprocesses to inclusive reactions such as yq -+ Mq, 
gq + Mq, q?j -+ MM, qq + B<., etc. are absolutely normalized in terms of the distri- 
bution amplitudes. [69] In particular, some amplitudes such as yq + Tq, qq -f ng 
and gq -+ nq can be rigorously related to the pion form factor since the same 
integral 

J 1 dx 
- 9 (x,Q> o l-x ?I (6.5) 

enters in each of the quantities. [701 The pT6 processes [241 gq -+ Mq (see Fig.3a) 
and qc + Mq are particularly interesting and important in high-pT meson production 
processes such as pp -+ Mx since the meson is produced directly in the subprocess 
without the necessity for quark or gluon jet fragmentation. In fact, the contribu- 
tions of standard p~4 scaling processes such as qq + qq, gq -+ gq, and gg -+ gg to 
hadron production are strongly suppressed by two to three orders of magnitude 
because of the suppression of jet fragmentation DM/q(Z) at large momentum fraction 
z and the fact that the subprocesses must occur at a significantly larger momentum 
transfer than that of the triggered particle. [711 

Despite much effort there is at this time no systematic understanding of high 
PT hadron production in QCD. A comprehensive attack must take into account not 
only the leading twist subprocesses and directly coupled higher twist contributions 
such as those listed above, but also the effects of initial state multiple scat- 
tering effects. One of the most important experiments which could clarify the 
nature of these effects is the measurement of the ratio of direct photon to meson 
at high pT: (XT + 2pT/f%-) 

R (x s,e y/r T' c*m.> = fi (PP + IX)/& (PP + 7rX) 
P 

(6.6) 



Table IV Comparison of exclusive and inclusive cross sections 
I 

-_I  

Exclusive Amplitudes Inslusive Cross Sections 

AZ _ ' ~(Xi'Q) O TH(xi,Q) 

+(x,Q) = /” [d”k,] lii~al(x,kl) 

da -. n G(x,,Q) 0 d&p) 

G(x,Q) = cl" [d2kL]Cdxl' j$$x,kl) I2 
n 

Measure 4 in yy 3 ~$j Measure G in Rp -+ RX 

c 
ieH 

Ai = AH 

a+(x,Q) = cL 
8 log Q2 ’ 

s bJW,yMy) 

; ym +(x,Q) = n xi l cflavor 

i 

+ C+D)s 

n = “A + % + “C + * D 

c 
itlH 

xi # AH 

EVOLUTION 

aG(x,Q) = 
a log Q2 

a 
' s dy P(x/y)G(y) 

lpm GkQ) = sex) c Q 

POWER LAW BEHAVIOR 
2ns-1 

da ___ (AB + CX) 2 
c 

Cl- XT> 

d2P/E (Q2)nact 
-2 f(OcM) 

n act =n a + nb + nc + n d 

TH: expansion in c,,(Q*) d;r: expansion in as(Q2) 

COMPLICATIONS 

End point singularities 
Pinch singularities 
High Fock states 

Multiple scales 
Phase-space limits on evolution 
Heavy quark thresholds 
Heavy twist multiparticle processes 
Initial and final state interactions 

For example, if leading twist QCD processes dominate these reactions then 
f(xT) N (l-XT)-2 at Bc m w -rr/2. 

Ryhl - 
If directly-coupled processes such as gq * nq 

dominate the meson prod&fion then one predicts Ry/n * p$ at fixed xT and 0c.m. C721 
Measurements of this ratio in nuclear targets are important for clarifying the con- 
tribution of final state multiple scattering processes. 

The photon probe plays a crucial role in high-pT hadron reactions since the 
photon couples directly to the quark and gluon subprocesses at short distances. 
The most dramatic example of these point-like phenomena is the recent observations 
at PETRA [6-81 of high transverse momentum hadrons in yy collisions. The results 
at pT 2 3 GeV appear to be consistent with the scale invariant QCD prediction [731 

q-2 



I do(yy -+ jet + jet) = 

du(yy -f U+P-> 
q = u,d,s,s 

[l + @($))I 

(6.7) 

These results also indicate that, unlike typical meson-induced reactions, an inci- 
dent photon often produces high pT hadronic jets without leaving hadronic energy 
in the beam fragmentation direction. C741 One also expects analogous results for 
directly coupled photons in yp -t HX and yp -+ Jet + X reactions. The point-like 
behavior of on-shell photons is in direct contrast to the predictions of vector 
meson dominance models. 

A surprising feature of QCD is that even a hadron can produce jets at large pT 
without beam fragmentation. 1701 For example, the existence of high twist sub- 
processes such as Mq -+ gq and Mg + q< leads to high pT jet events in meson-induced 
collisions Mp + Jet + Jet + X where there is no hadronic energy left in the meson 
beam fragmenkation direction (see Fig.3c). The inclusive cross section, which 
scales as pT at fixed XT and f3cSmS, is absolutely normalized to the meson form 
factor. As in the case of the photon-induced reactions, the directly coupled meson 
has no associated color radiation or structure function evolution. An experimental 
search for these unique and highly kinematically constrained events is very im- 
portant in order to confirm the presence of these subprocesses which involve the 
direct coupling of meson qq Fock state to quarks and gluons at short distance. 

In general, we can replace any direct photon interaction by a direct-coupled 
meson interaction in the subprocess cross section by the replacement a T F,(p,$). 
Furthermore, one can compute direct-coupled processes which isolate the valence 
Fock state of baryons, e.g., pp + pX (production of isolated large pT protons via 
the qq -t pq subprocesses), and reactions pp -+ qqX (from <p * qq) (see Fig.3b), 
PP -+ qqqX (from gq -t qqq) etc., each of which produce jets at high pT without beam 
spectators or fragmentation. 

B. Constraints on the Pion and Proton Valence Wavefunction C271 

The central unknown in the QCD analysis of hadronic matrix elements is the hadron 
wavefunction in the non-perturbative domain ~2 ,>, 1 GeV2. For illustration we shall 

-assume that in this region the I& fall off exponentially in the off-shell energy: 

Ili; (Xi, 
b2& 

kLi) =A,e" n 

cFn = M2 - < 0 

(6.8) 

(6.9) 

The parameterization is taken to be independent of spin; the full wavefunction is 
then obtained by multiplying by free spinors u/m . The form (6.8) has the advan- 
tage of analytic simplicity: for example, the resulting baryon distribution 
amplitude at small K is 

4&y) = A6 (6.10) 

At large K, 4) is determined from ihe evolution equation (4.33). At very large k, 
the J1, for non-valence Fock states should match onto the power law fall-off k-71 - 
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predicted by perturbative QCD. It should be emphasized that the form (6.8) is 
chosen just for simplicity. An equally plausible parameterization is Jln N An&ip 
with p = 3, which is suggested by the Schroedinger equation assuming a linear 
potential and the correspondence given in Eq. (3.41). 

In the case of the pion we can derive two important constraints on the valence 
wavefunction from the n -+ nv and mo + yy decay amplitudes: 

/:," 2 1 3 1 0 1 dx JrKWl> = 
C 

and r-271 

+“‘x,‘y = 0) -=- 
Z2(K2) fTI 

(6.11) 

(6.12) 

The derivation of the second constraint assumes that the radius of the pion is 
much smaller than its Compton length: 

22 6 
m 'mn <<- . 

q R2 71 

Let us now assume the form 

2 
, (K < 1 GeV2) 

where 

- d Fv(Q2) 
dQ2 ' 

(6.15) 

is the contribu .tion to the slope of the meson form factor from the valence Fock 
st_ate (see Eq. (4.2)). The two conditions (6.11) and (6.12) then determine 
Rzq = 0.42 fm, and [27] 

(6.13) 

(6.14) 

(6.16) 

Thus the probability that the pion contains only the valence Fock state at small 
k2 is less than l/4. Furthermore, the radius of the valence state turns out to be 
smaller than that of the total state: Rexpt Z 0 7 fm. . One can also verify that 
the bound Pqtjn S l/4 is also true for p:wer law wavefunctions + -e-p, p > 2. 

The existence of other Fock states at equal T in the pion is to be expected 
considering the fact that its quark and gluon constituents are relativistic. The 
existence of large ma/m, and mA/mN spin splittings (due to transverse-polarized 
gluon exchange) also implies that there is a non-zero gluon component intrinsic 
to both meson and nucleon bound states. 

In the case of the baryon wavefunction, one can obtain non-trivial constraints 
on the form of the 3-quark valence wavefunction by making a simultaneous analysis 
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of the proton and neutron form factors and the $ -t pi decay amplitude, assuming 
the $ decays via a 3-gluon intermediate state (see Fig.6). The observed angular 
distribution 1531 for $ + pp is in fact consistent with the predicted form 
1 + B2 cos26 (where i3 is the nucleon velocity) and is a non-trivial check of hadron 
helicity conservation for exclusive processes in QCD. 

The $ -+ pp ratio is given to leading order in cxs by (Fig.lb) Cl81 

r($ -t 3g -f pi) + 3.2 x lo6 a3(s) &Ml <T>2 
r($ -+ 3g + all) S VG s4 

(6.17) 

where IpCM1/&l .4, s = 9.6 GeV2, and 

I 1 
<T> E CdxlCdyl 

$*(Yi, s> x1y3 + x3yl 

0 
YlY2Y3 [x1( l-Yl) + y,(l-x1)] [x3(1- Y3) + Y3(1-x3)] 

(Pb,,s> 
x 

x1x2x3 
(6.18) 

is a well defined function of the baryon distribution amplitude. In the case of 
the nuclear form factors (see Eqs. (4.31, 4.32)) it is important to use the cor- 
rect argument for each os in the hard scattering amplitude TH corresponding to 
the actual momentum transfer which flows through each exchanged gluon in Fig.7b. 
This effect is expected to yield the most important contribution to next to leading 
order in as and is an integral part of the QCD predictions. It is interesting to 
note that if $B = $x1x2x3 and if all the as have the same argument (which is, in 
fact, the situation in the asymptotic Q2 + m limit [9,191) then Eqs. (4.28-4.32) 

give Q2,, M lirn GP(Q2)/G;(Q2) = 0. However, the fact that ~1~ is not a constant and has 

different arguments for each diagram in Tl allows one to obtain empirically con- 
sistent results for the normalization [75] of G(Q2), cf;(Q2) and the $J -+ pp decay 
rate. To first approximation one requires [271 

as (xisiQ2) 
z 

as(Q2/9) 

us((l-xi)(l-yi)Q2) - as!4Q2/9) 
- 1.5 to 2.0 at Q2 2 10 GeV2 . (6.19) 

The QCD predictions (4.28-4.30) for the proton and neutron form factors are only 
valid at large Q2 where the effects of mass corrections, higher Fock states and 
finite transverse momentum can be neglected. In order to understand these effects 
we extend the parameterization of the 3 quark valence Fock state contribution by 
using (42 + M$)-2 in the denominators of (4.29, 4.30) and replacing as(Q2) + 
~~(92 + M2) = 4~r/B~ log ((Q2 + M2)/A2) to reflect the fact that at low Q2 the trans- 
verse momenta intrinsic to the bound state wavefunctions flow through all the 
propagators. 

Although we have not tried to optimize the parameterizations, a typical fit 
which is compatible with the proton and neutron form factors (see Fig.16) and 
$+pp decay data are MO 2 1.5 GeV, u Z 450 MeV, mq Z 300 MeV, and A = 280 MeV, SO 

that as(Q2 = 10 GeV2) 2 0.29. (Analyses [50] of higher order QCD corrections to 
the meson form factors suggest that one can identify the A used here with Amom = 
2.16 &is.) The computed radius of the 3-quark valence state (computed from GA via 
Eq. (4.2)) is, however, quite small: RV S 0.23 fm, and the valence Fock state 
probability is Pqqqip ) l/4. If this preliminary analysis is correct, then, as in 
the meson case, the valence state is much smaller in transverse size than the 
physical hadron (which receives contributions to its charge radius from all Fock 
states). 

4s 
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The most crucial prediction from this analysis is that Q4$(Q2) should decrease 
by a factor of 2 for 42 = 10 to Q2 = 40 GeV2, a trend not at all indicated by the 
data! Further measurements of GUM are clearly crucial in order to check this 
essential prediction of asymptotic freedom. 

Given the above parameterization of the nucleon valence Fock state we can use 
Eq. (5.8) to compute the 3-quark non-perturbative contribution to the proton struc- 

..ture function at large x (see Fig.17) 

GV q,p(x,Q$ = x(1- xl3 e 
-2m2b2(i+-$---) 

(6.20) 
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Since 4 m2b2 - 0.05, the exponential factor is not very important away from the edge 
of phase space and so it is difficult to distinguish between the non-perturbative 
and (l-~)~ perturbative contributions at large x (see Sec. V). Higher Fock states 
\qqqg>, lqqq qq) are expected to give the dominant contribution at lower x. Despite 
the freedom in this parameterization it is reassuring that one can simultaneously 
fit a number of diverse nucleon properties with QCD formulae and parameters which 
are in the expected range. 

At low Q2 the exact formula (4.2) can be used as a further constraint on the 
baryon Fock states. Eventually one hopes to extend the predictions to other domains 
of baryon phenomenology such as the baryon decay amplitude in grand unified models 
and the normalization of higher twist subprocess contributions to inelastic lepton- 
nucleon scattering. 

C. Quark Jet Diffractive Excitation C301 

The fact that the wavefunction of a hadron is a superposition of (infrared and 
ultraviolet finite) Fock amplitudes of fixed particle number but varying spatial 
and spin structure leads to the prediction of a novel effect in QCD. [301 We first 
note that the existence of the decay amplitude 1~ + pv requires a finite probability 
amplitude for the pion to exist as a quark and diquark at zero transverse 
separation: 

i w,;: 
I 

= 0) = J4-7; $-x(1-x)f (6.22) 
71 

In a QCD-based picture of the total hadron-hadron cross section, the components of 
a color singlet wavefunction with small transverse separation interact only weakly 
with the color field, and thus can pass freely through a hadronic target while the 
other components interact strongly. A large nuclear target will thus act as a 
filter removing from the beam all but the short-range components of the projectile 
wavefunction. The associated cross section for diffractive production of the 
inelastic states described by the short range components is then equal to the 
elastic scattering cross section of the projectile on the target multiplied by the 
probability that sufficiently small transverse separation configurations are 
present in the wavefunction. In the case of the pion interacting in a nucleus one 
computes the cross section 

127r if x2(l-x)2 (6.23) 

corresponding to the production of two jets just outside the nuclear volume. The 
x distribution corresponds to da/d case - sin26 for the jet angular distribution 
in the qq center of mass. 
nucleus at TL # 0 

By taking into account the absorption of hadrons in the 
one can also compute the k, distribution of the jets and the 

mass spectrum of the diffractive hadron system. Details are given in Ref. 30. 

D. The "Unveiling" of the Hadronic Wavefunction and Intrinsic Charm 

The renormalizability of QCD implies that all of the dynamics of the hadron wave- _ 
functions $z(Xi,Zli) at scales K2 much larger than mass thresholds is completely 
contained in the structure of the running coupling constant CI~(K~) and running 
mass m(K2) and the quark and gluon external line renormalization constants. 
Nevertheless, the fact that there are different hadronic scales and thresholds in 
QCD does imply non-trivial dynamical structure of the wavefunctions. In the case 
of Compton scattering, yp -+ yp, the energy denominators (see Eq.Y(5.3)) are a 
function of 2Mv - En, so that the cross section is sensitive to wavefunctions up 
to the scale lc2 - 2Mv. 
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As an example of the change of wavefunction physics with the resolution scale 
let us consider a deuteron target. For very low k2 << ~MEB,E. the deuteron acts 
as a coherent object. At the scale ~2 >> 2Msb.S., the wavefunction corresponds 
to a n-p bound state. As the scale increases to ~~ 2 1 GeV2, the quark degrees of 
freedom become relevant and the deuteron wavefunction in QCD must be described in 
terms of six,quark (and higher) Fock states: [76] 

ID> = a/(uud)l(ddu)l> + b/(uud8(ddu)8> + cl(uuu)l(ddd)l> + d/(uuu)8(ddd)8> 

+ . . . (6.24) 

The first component corresponds to the usual n-p structure of the deuteron. The 
second component corresponds to "hidden color" or "color polarized" configurations 
where the three-quark clusters are in color-octets, but the overall state is a 
color-singlet. The last two components are the corresponding isobar configura- 
tions. If we suppose that at low relative momentum the deuteron is dominated by 
the n-p configuration, then quark-quark scattering via single gluon exchange gener- 
ates the color polarized states (b) and (d) at high kl; i.e., there must be mixing 
with color-polarized states in the deuteron wavefunction at short distances. C671 

The deuteron's Fock state structure is thus much richer in QCD than it is in 
nuclear physics where the only degrees of freedom are hadrons. 

It is interesting to speculate on whether the existence of these new configura- 
tions in normal nuclei could be related to the repulsive core of the nucleon- 
nucleon potential, C761 and the enhancement [77] of parity-violating effects in 
nuclear capture reactions. One may also expect that there are resonance states 
with nuclear quantum numbers which are dominantly color-polarized. The mass of 
these states is not known. It has also been speculated 1781 that such long-lived 
states could have an anomalously large interaction cross section, and thus account 
for the JUDEK [79] anomaly in cosmic ray and heavy ion experiments. [80] Indepen- 
dent of these speculations, it is clearly important that detailed high-resolution 
searches for these states be conducted, particularly in inelastic electron scat- 
tering and tagged photon nuclear target experiments, such as yd + yd scatter at 
large angles. 

The structure of the photon's Fock states in QCD is evidently richer than that 
expected in the vector meson dominance model. [Sl] For example, consider the one- 
gluon exchange correction to the y + qc vertex. For R? > 
rection renormalizes the point-vertex. 

@(K~) the qertex cor- 
For the soft domain R? < @(K > one expects 

large corrections which eventually by dispersion theory correspond to the usual o, 
WY 9, *-- interpolating fields. The soft corrections thus give the usual hadron- 
like component of real photon interactions. Nevertheless, the point-like component 
survives at any momentum scale, [81] producing point-like corrections to photon 
shadowing, J = 0 fixed pole phenomena in the Compton amplitude, and the "anti- 
scaling" QCD structure function of the photon. [13] As the r:solution scale K 2 
increases past the heavy quark thresholds, one adds the y -+ cc, bb, etc. components 
to the photon's wavefunctions. 

It is also interesting to consider the dynamical changes to the nucleon wave- 
function as one passes heavy quark thresholds. For ~~ > 4rnz the proton Fock 
state structure contains charm quarks, e.g., states Ip> N luud cc>. We can dis- 
tinguish two types of contributions to this Fock state. 1311 (1) The "extrinsic" 
or interaction-dependent component generated from quark self energy diagrams as 
shown in Fig.18b - a component which evolves by the usual QCD equations with the 
photon mass scale Q2; and (2) the "intrinsic" or interaction-independent component 
which is generated by the QCD potential and equations of motion for the proton, 
as in Fig.18a - a component which contributes to the proton Fock state without 
regard to QCD evolution. Since the intrinsic component is maximal for minimum off- 
shell energy 



&M2- (kf + m2)/x 1 i 

the charm quarks tend to have the largest momentum fraction x in the Fock state. 
(This also agrees with the physical picture that all the constituents of a bound 
state tend to have the same velocity in the rest frame, i.e., strong correlations 
in rapidity.) Thus, heavy quarks (though rare) carry most of the momentum in the 
Fock state in which they are present - in contrast to the usual parton model as- 
sumption that non-valence sea quarks are always found at low x. One can also 
estimate using the bag model and perturbative QCD that the probability of finding 
intrinsic charm in the proton is -l-2%. C821 

(b) 42SOAS 

Fig. 18 Intrinsic (a) and 
extrinsic (b) contributions to 
the proton luudcZ> Fock state. 

The diffractive dissociation of the proton's intrinsic charm state [30,311 
provides a simple explanation why charmed baryons and charmed mesons which contain 
no valence quarks in common with the proton are diffractively produced at large XL 
with sizeable cross sections at ISR energies. Further discussion may be found in 
Ref. 31. 

VII. THE SYNTHESIS OF QCD AND NUCLEAR PHYSICS 

In this section we will discuss applications of quantum chromodynamics to nuclear 
physics where the basic quark and gluon substructure of hadrons plays an essential 
role at the nuclear level. C831 Because of asymptotic freedom we can make detailed 
predictions for nuclear form factors and nuclear scattering processes at large 
momentum transfer, as well as predict the asymptotic.short-distance features of 
the nucleon-nucleon interaction and nuclear wavefunctions. 184,851 We shall also 
discuss areas where QCD places constraints on or actually conflicts with standard 

-nuclear physics models. In particular, the fact that the nuclear wavefunction has 
"hidden color" Fock components [86] implies that the conventional meson and nucleon 
degrees of freedom of nuclear physics are not sufficient to fully describe nuclei 
in QCD. 

A. The Deuteron Form Factor and Nuclear States at Short Distances 

The most direct application of perturbative quantum chromodynamics to nuclei is 
the structure of the Fock state wavefunctions and the form factors of nuclei at 
large momentum transfer. In analogy with the meson and nucleon form factor calcu- 
lations discussed in Sets. III and VI we can write the deuteron form factor at 
large momentum transfer ifi the factorized form (see Fig.19): II851 

FD(Q2) = /,' Cdpl /,' Cdyl $c(xi,Q) fH(xi,yi; 9) +D(~,Q) (7.1) 

where TH - Cas(Q2)/Q215 is computed from the sum of hard scattering diagrams 
6q + Y* -+ 6q where the initial and final quarks are collinear with the initial 
and final deuteron momentum p and p+q, respectively. The distribution amplitude 

$D(xi; Q) =/" [d2kL] +6q(xi&Li) 
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Fig. 19 QCD factorization of the deuteron form factor at 
large momentum transfer. TH is computed for six quarks 
collinear with the incident and final directions. 

is defined in terms of the deuteron's six-quark valence wavefunction evaluated at 
equal time on the light cone. As in the case of the meson and baryon distribution 
amplitudes, the log Q2 dependence of +D is determined from an evolution equation 
of the form (4.33) where to leading order in as(Q2), the interaction kernel is 
determined from the sum of single gluon exchange amplitudes. 

Because of the helicity-selection rules, the leading form factor of the deuteron 
corresponds to the helicity zero - helicity zero electron deuteron scattering 
amplitude: 

FD(Q2) = $,(Q2) . d-- 
The other deuteron form factors are suppressed by at least one extra power of Q2. 
As in the case of the meson form factors, the leading deuteron form factor is not 
affected by endpoint singularities in the xi and yi integration. Thus asymptoti- 
cally, to leading order in m2/Q2 and as(Q2) we have 

FD(Q2) = [q--5.ngo dnm [liJ $]-“-” (7.3) 

D where the deuteron anomalous dimensions yn can be computed from the eigenvalues of 
the evolution equation for $D(Xi,Q) or the operator product expansion for six fer- 
mion fields near the light cone. 

The nominal QCD power law prediction FD(Q2) - (Q2)-' at large Q2 is consistent 
with the dimensional counting rule [8] F(Q2) - (~2)n-1 where n is the minimum 
number of elementary-constituents in the Fock state. The prediction thus reflects 
the QCD substructure of the nucleus and the essential scale-invariance of the 
renormalizable quark interactions in the tree graphs for TH. A comparison with 
data C871 for -R, p, n, D, Hz and Hi is shown in Fig.9. 

As we have indicated in Fig.20, the deuteron form factor receives contributions 
from six quark wavefunction components which are in both the standard color 
I(uud)l(udd)l> and "hidden color" /(uud)8(udd)8> configurations (see Sec. VI). 
It should be emphasized that the QCD equation of state for ~$6~ automatically leads 
to mixed color components, at least at short distances. For example, if we impose 
the boundary condition that the deuteron is effectively an n-p bound state at large 
distances then the one gluon exchange kernel in the evolution equation for $D(x,Q) 
automatically leads to hidden color components at large Q2. 
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Fig. 20 Hard-scattering contributions to 
the deuteron form factor. The contribu- 

P tions of diagram (a) require an internal 
n hidden color state. Diagram (b) corre- 

sponds to quark interchange. Diagram (c) 
T w-w shows the relationship of the deuteron 

(Cl form factor to the N-N off-shell scatter- ,*,I*, ing amplitude. 

The perturbative strcture of the QCD equation of state for $D at large kL also 
determines the power law and anomalous dimension structure of the valence wavefunc- 
tion. C471 For example, 
'!'D(x i,kL) N (k.f)-1. 

if one quark has large kl relative to the deuteron, then 
On the other hand, if we consider the deuteron as two nucleon 

clusters, then at large transverse separation we have 

jiD(xi,kLi) - 1 

(7.4) 

This power law reflects the fact that the effective nucleon-nucleon interaction 
large momentum transfer is Tnp+np N (l/42)4, 
dimensional counting. 

which is again consistent with 

The specific connection of the asymptotic deuteron form factor to the nucleon- 
nucleon interaction is as follows: [841 the deuteron form factor is the probability 
amplitude for the deuteron to remain intact after absorbing a large momentum trans- 
fer p -+ pfq. If we consider the deuteron to be a loosely bound n-p system, with 
each constituent sharing almost equally the deuteron-four momentum, then each 
nucleon scatters from -p/2 to -(p+q)/2. The coupling of the electromagnetic 
current to the struck nucleon is effectively point-like as in the case of deep 
inelastic scattering at large q2, 
q2/2 is far-off-shell. 

since the intermediate nucleon state (p/2 + q)2 m 
The required n-p scattering amplitude (evaluated at t = 

q2/4 = u, with one leg space-like at p i = q2/2) scales at Tnp+np w (l/42)4. This 
scaling, combined with the off-shell propagator then gives the results FD(Q2) W 
(Q2F5. The normalization of FD(Q2) can then be related to the non-relativistic 
deuteron wavefunction at the origin (see Ref. 84). It should be emphasized that 
the relativistic calculation of the deuteron form factor is incompatible with the 
conventional nuclear physics parameterization C881 

FD (Q2) = FN(Q2) F Body(Q2) ' (7.5) 

In the case of (static) non-relativistic models this form removes the structure 
of the struck nucleon. Equation (7.5) is, however, incorrect in the large Q2 
domain since the struck nucleon cannot be on-shell both before and after the inter- 
action with the electromagnetic current. 

B. Reduced Form Factors C841 

For a general nucleus, the asymptotic power behavior for the minimal helicity- 
conserving form factor-is FA($) m (Q2}1-3A reflecting the fact that one must pay 
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a penalty of as(Q2)/(Q2) to move each quark constituent from p to p+q. The fact 
that the momentum transfer must be partitioned among the constituents implies that 
the asymptotic domain increases with the nuclear number A. 

However, as we shall now show, the introduction of the reduced form factor FA(Q2> 
will allow interesting QCD predictions to be made even at relatively low momentum 
transfers. The basic idea is as follows: the deuteron from factor FD(Q2) is the 
probability amplitude for the nucleus to remain intact after absorbing momentum 
transfer Q. Clearly FD(Q2) must fall at least as fast as d(Q2/4) . G$(Q2/4) since 
each nucleon must change momentum from p/2 to (p+q)/2 and stay intact. Thus we 
should define the "reduced form factor" fD(Q2) via 

FD(Q2) f F;(G) f,(Q') 

Note that fD(Q2) must itself decrease at large Q2 since it can be identified as 
the probability amplitude for the n- p system to remain a ground state deuteron. 
In fact, the dimensional counting rules FD(Q2> N (Q2)-5, FIN N (Q2>-2 implies 
the asymptotic behavior fD(Q2) 5 (Q2)-l. This is precisely what one expects for 
a composite of two elementary systems once the nucleon structure has been removed. 

We can also understand the origin of the simple result for fD(Q2) from TH 
diagrams such as Fig.20c where a gluon immediately transfers momentum l/2 qu to 
the other nucleon. Such diagrams give contributions of the form 

as (QL/4> 

l+Q2/m2 
(7.7) 

The mass parameter can be estimated from the corresponding parameters in the meson 
and nucleon form factors and is expected to be small, m2Z 0.3 GeV2. 
son of the data for fD(Q2) with the prediction (92 + 0.3 GeV2) fD(Q2) 

The compari- 
-+ const. is 

given in Fig.21. Remarkably, the predicted flat behavior for Q2fD(Q2) appears to 
be accurate from Q2 below 1 GeV2 out to the limits of the data. The prediction is 
also verified at larger Q2 when one uses inelastic deuteron form factor data at 
fixed mass (p+q)2. 

- . 

0 I 2 3 4 5 6 7 

q2 (GA”) 1*1,11 

Fig. 21 Comparison of deuteron form factor data with 
the QCD prediction (1+Q2/m2)fD(Q2) -f const. at large 
Q2- The data are from Ref. 87. 
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I In general, we can define reduced nuclear form factors c841 

f,(Q2) f 
F,(Q') 

[F,(Q~/A~;IA 
(7.8) 

QCD the; predicts the power behavior fD(Q2) m (Q2)lmA (as if the nucleons were 
elementary), Comparisons with data for Hz and H: are given in Ref. 87. The defini- 
tion of the reduced form factor takes into account the correct partitioning of the 
nuclear momenta, and thus to first approximation represents the nuclear form factor 
in the limit of point-like nucleon constituents. One can also extend the definition 
to reduced elastic nuclear scattering amplitudes 

t,(Q2) E (7.9) 

e.g., in meson-deuteron elastic scattering at large momentum transfer. It should 
be of interest to see whether a consistent parameterization of nuclear amplitudes 
can be obtained if in each nuclear scattering process, reduced "point" amplitudes 
are defined by dividing out all of the constituent nucleon form factors at the cor- 
rect partitioned momentum. Again, we emphasize that the standard method based on 
Eq. (7.5) is invalid in a relativistic theory. The measurements of hadron-nucleus 
elastic scattering are also interesting from the standpoint of testing basic QCD 
scattering mechanisms. [841 For example, the K+-A scattering amplitude should 
scale as A-+-Z at large momentum transfers if the scattering is dominated by u-quark 
interchange. 

C. The Nucleon-Nucleon Interaction at Short Distances 

The basic measure of the nuclear force is nucleon-nucleon scattering. As we have 
discussed in Sec. IV, two general features of the N -N amplitude at large momentum 
transfer can be predicted from perturbative QCD: hadron helicity conservation and 
power law scaling at fixed angle. In general there.are five independent parity- 
conserving and time reversal invariant helicity amplitudes. 
rules Cl81 hinitial = 

The QCD selection 
hfinal implies that &(+t + +-) and A(-- + tt) are power 

law suppressed relative to &(+t- -+ ii-), A(+- + +-), A(-+ + +->. The helicity 
conserving amplitudes thus are predicted in first approximation to scale as 
&Ah= 0 - (Q2P4, yielding the dimensional counting prediction 

S lo 2 (s,e,,) = F(ecm> (7.10) 

for nucleon-nucleon scattering at fixed angle and s >> M2. More precisely, the 
nominal power-law is slightly modified by the Landshoff pinch singularity contribu- 
tions and the logarithm factors from 10 powers of as.(Q2) and the anomalous dimen- 
sions of the distribution amplitudes. Remarkably, the pp -+ pp data is consistent 
(within a factor "2) with the fixed angle scaling predicted by (7.10) as the cross - 
section falls more than 4 decades in the range 4 < pT 
(See Fig.22.) 

2 c 12 GeV2, 38O < f3,, < 90°. 
The simplest interpretation of the results is that the variation 

of a,(Q2) is very slow in this domain, 
the nucleon form factors. 

as in the case of the Q4GM(Q2) scaling of 
The presence of the Landshoff pinch singularities, 

however, could act to compensate for the fall-off of as. In addition, there is 
some evidence [901 that the data is systematically oscillating about the slOdo/dt 
const prediction, possibly suggesting the presence of an interfering subasymptotic 
amplitude. 

The computation of the angular dependence and normalization of each of the 
helicity-conserving N-N amplitudes in QCD is a formidable task since, even to 
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Fig. 22 Differential cross sections for pp -f pp scattering at 
large center of mass angles. The straight lines correspond to 
the predicted power-law fall-off at UslO. The data compilation 
is from Ref. 89. 

lowest order in as, there are of the order of 3 x lo6 connected Feynman diagrams in 
which five gluons interact with six quarks; [91] in addition a detailed representa- 
tion of the Sudakov suppression is needed in order to integrate over the Landshoff 
singularities. 1921 Considerable phenomenological progress has, however, been made 
simply by assuming that the dominant diagrams involve quark interchange; Cl51 i.e., 
exchange of the common valence quarks. This ansatz seems to yield a good approxi- 
mation to the observed large angle meson-baryon and baryon-baryon scattering 
amplitude angular distributions, as well as the correct crossing behavior between 
the hadronic amplitudes, including pp + pp to pp + Fp. A useful analytic form 
for the interchange amplitude in terms of light-cone Fock state wavefunctions is 
given in Ref. 93. A simple model for the quark interchange amplitude for pp + pp 
which has such properties is Jte 0: GE(t)Gg(u). 

The most sensitive tests of the hard scattering QCD prediction involve the 
polarization effects. The spin asymmetry ANN is defined as 

(7.11) 

which measures the difference of cross sections when both nucleons are polarized 
parallel to the normal (x) of the scattering plane or are anti-parallel. Similarly 
ALL refers to the polarization asymmetry where the initial spins are polarized 
along the laboratory beam direction (2) versus anti-parallel spins, and ASS refers 
to initial spins polarized (sideways) along the third direction (9). 

For the scattering of identical particles at 90° all amplitudes involving a 
single helicity flip vanish, e.g., (W -f +-). This implies the sum rule C97,98I 

sN - ALL - ASS = 1 (8c.m. = 90°) . (7.12) 

If in addition the double-flip amplitude (++ -t --) vanishes, as in the case of the 
perturbative QCD predictions, then we have ARE = 
sum rule becomes 

-ASS (all angles) and the above 
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2-%N - ALL =l (e c.m. = 900) (7.13) 

The striking CRABB et al., Argonne measurements for ANN (see Fig.23) can now be 
combined with preliminary results [961 for ALL at 90° and plab = 11.75 GeV 
(pT 22.4 GeV): 2Am - ALL 2 2(0.58 + 0.04) - (0.18 + 0.09) = 0.98 + 0.17, which 
is consistent with helicity conservation. On the other hand, it should be noted 
;hat th,e7;j;lange.of ANN is very rapid: ANN 2 0.05 at 0c.m. I 600 to ANN 2 0.60 at 

. . - which is in marked contrast to the generally smooth behavior predicted 
fzo: calculitions of TH for proton-proton scattering. For example, hard scattering 
diagrams with only quark interchange (see, e.g., Fig.20b) between the nucleons 
(which gives a good representation of the pp + pp angular distribution and crossing 
to pp + pp) leads to the simple predition [97,98-J 

%N = -ALL = -ASS = 113 (13 c.m. = 900) , (7.14) 

with a very slow variation (~2%) over all ec.m.. Diagrams with quark interchange 
plus gluon exchange between nucleons give a smaller value for ANN. [99] The angular 
distribution predicted for diagrams with only gluon exchange is incompatible with 
the large angle data; furthermore, if these amplitudes are normalized to the small 
angle regime then they are negligible at 90°. Cl91 
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At this stage, there does not seem to be a convincing explanation of the nucleon- 
nucleon polarization effects at large angle. [loo] It seems possible that whatever 
interference of amplitudes causes the oscillation of do/dt around the smooth s-10 
behavior can also lead to striking interference effects in the polarization 
correlations. [90,97] One possibility is that the quark interchange amplitude is 
asymptotically dominant, but that in the present experimental range there is sig- 
nificant interference with multi-Regge exchange contributions. [97] An important _ 
point is that the Landshoff pinch contribution for pp + pp scattering includes 
three sequential qq + qq scatterings each at approximately the same momentum trans- 
fer ^t - l/9. Since. IfI < 1.1 GeV2 is not very large, ordinary Reggeon exchange 
could still be playing a role in the quark-quark scattering amplitude. Unfortunately, 
the introduction of such contributions necessarily includes extra parameters and 
considerable model-dependence. Nevertheless, a simple estimate of the rotating 
phase associated with triple Regge exchange is consistent with the interference 
pattern indicated by the pp -+ pp large angle data. c91] 



D. Continuity of Nuclear Physics and Quantum Chromodynamics 

The syntheses of nuclear dynamics with QCD is clearly an important and fascinating 
fundamental problem in hadron dynamics. The short distance structure of the 
nucleon-nucleon interaction as determined by perturbative QCD must join smoothly 
and analytically with the large distance constraints (meson-exchange dynamics) of 
the N-N potential. The length scale of QCD is comparable with the inverse nucleon 
radius so it is difficult to find a specific domain where nuclear physics can be 
studied in isolation from QCD. 

The grand goal of QCD would be to actually derive the nuclear force from funda- 
mental QCD interactions. The difficulty is that the nucleon-nucleon interaction 
in QCD is a remnant of the color forces and is analogous in complexity to calculat- 
ing the molecular force between neutral atoms, e.g., positronium. The basic 
ingredients are quark interchange which is evidently related at long distances to 
pion and other meson exchange, and multiple gluon exchange, which despite the zero 
mass of the gluon must have an inverse range shorter than the mass of the lowest 
lying gluonium state. It is possible that numerical results for the N-N potential 
will eventually be obtained from lattice gauge theory calculations. Model calcula- 
tions of these exchange forces have also been given in the context of bag Cl011 and 
potential models. cl021 

The constraints of asymptotic QCD behavior, especially its power-law scaling and 
i: helicity selection rules have only begun to be exploited. For example, dispersion 

relations and superconvergent relations for the nuclear-nuclear helicity amplitudes 
should yield sum rules and constraints on hadronic couplings and their spectra. 
One could try to enforce a form of duality which equates the q-q-g exchange ampli- 
tudes with the sum over meson-exchange degrees of freedom. However, this cannot be 
strictly correct since the existence of hidden color configurations - whether mixed 
with ordinary nuclear states or appearing as resonance excitations - implies that 
duality in terms of the low-lying hadrons cannot be a true identity. 

One missing ingredient in nuclear physics model calculations of meson exchange 
amplitudes and currents is the form of the effective off-shell meson-nucleon- 
nucleon vertices. In principle, the effective form factors of these couplings is 
determined by QCD. Let us return to the form of the-ultraviolet regularized QCD 
Lagrangian density discussed in Sec. II. If the cutoff ~~ is comparable to hadronic 
scales then extra contributions will be generated in the effective Lagrangian: 

(7.15) 

+ . . . 

K where go -2 
K-4 

is the standard contribution and the higher twist terms of order K , 

, . . . are schematic representations of the quark Pauli form factor, the pion and 
nucleon Dirac form factors, and the n-N-N coupling. The pion and nucleon fields 
represent composite operators constructed and normalized from the valence Fock 
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amplitudes and the leading interpolating quark operators. Our main point for 
writing down Eq. (7.15) is just to estimate the effective asymptotic power law 

behaviors of the couplings, e.g., Fpauli - l/Q2, Fn - fi/Q2, GM - quark 

FaNB(Q2) N M&fn/Q6. 

fz/Q4 and the 
effective,T %y5N FrN~ coupling: The net pion exchange 
amplitude thus falls off very rapidly at large momentum transfer SN -+ NN - (Q2)-7 , 
much faster than the leading quark interchange amplitude Mqq NN-tNN - (Q2)-4. 

Similarly, 2 -6 the vector exchange contributions give contributions M&N,NN - (Q ) . 

Thus, meson exchange amplitudes and currents, even summed over their excited 
spectra do not contribute to the leading asymptotic behavior of the N-N scattering 
amplitudes or deuteron form factors, once proper account is taken of the off-shell 
form factors which control the meson-nucleon-nucleon vertices. 

There is a further difficulty extending nuclear physics models based on an 
effective nucleon-nucleon-meson field theory. If one uses pointlike N$N isospin 
invariant couplings of the nucleons to the rho meson then the theory is not 
renormalizable without the full apparatus of non-Abelian gauge theories, including 
triple o and four-point p meson couplings, and a spontaneous symmetry breaking 
mechanism to generate the p mass. We emphasize that a non-renormalizable field 
theoretic model requires a new cutoff in each order of perturbation theory and 
thus is not predictive. 

In addition to the above problems, it is difficult to understand within the 
context of QCD the role of Nfi pair production contributions as conventionally used 
in nuclear physics model calculations of electromagnetic exchange currents, etc. 
Nucleon pair (i.e., qqqqqq) terms are far-off-shell and highly suppressed by off- 
shell form factors in QCD. On the other hand, anomalous "contact" terms are auto- 
matically generated in QCD time-ordered perturbation theory for the Z-graph term 
in the quark electromagnetic current. In the case of light-cone perturbation 
theory these are the instantaneous quark propagator terms described in Sec. III. 

E. Structure Functions of Nuclei 

If the nucleus were simply a loosely bound collection of nucleons, then the nuclear 
structure functions should reflect simple additivity: 

G ,,,b,Q) = Z G;,p(~,Q) + (A- Z> Gq,Jx,Q) (7.16) 

G ,,,(x,Q) = A Gg,N(~,Q) 

where x = A(k"+k3/pz+pi) is the quark light-cone momentum fraction scaled to the 
nucleon momentum. The interesting physics is the derivation from simple additivity, 
which arises from the following sources: 

(1) The nuclear structure functions Gq/A and Gg/A do not vanish at x = 1 but extend 
kinematically all the way out to x = A where one quark or gluon has the entire 
available light-cone momentum of the nucleus. For x 7 1 this is related to ordinary 
fermi motion. At larger x the structure functions are sensitive to far-off-shell 
QCD dynamics. [84,103,1041 Modulo logarithms, the power behavior of perturbative 
QCD contributions to the inclusive distributions is given by the spectator counting 
rule C6Ol (see Fig.24) 

(7.17) 

where n, is the number of spectator (quark) constituents in the bound system A 
forced to carry small light-cone momentum fraction: xs + 0. The power law is . 
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Fig. 24 Application of spectator counting rule to 
general composite or nuclear systems. The subsystem a 
has light-cone momentum fraction x, = kz/pz. There 

4253A25 are ns quark spectators. 1-62 

derived by simply counting the minimum number of off-shell propagators (& -+ --co as 
x -+ xmax) which are required to transfer all the momentum of A to a. Since the 
end result only depends on the number of spectators, it is easily shown that the 
system a can be a quark, gluon, or multiparticle cluster of constituents. However, 
the rule (7.17) holds only for the case where the helicities of a and A are 
identical; otherwise there are additional power-law suppressions. Examples of the 
spectator counting rule are dN/dx N (l-x)3 for q/p, (3-x)15 for q/Hz and (3- x)ll 
for p/Hz. These rules can be tested not only in deep inelastic lepton-nucleus 
scattering, but also in forward inclusive nuclear scattering reactions where had- 
rons are produced with large longitudinal momentum fractions; e.g., dN/dx (Al+A2 + 
p+X) - dN/dx (P/Al). [103,1051 The data for large x for these reactions does 
appear to be generally consistent with the power-law fall-off predicted by QCD 
spectator counting. Further discussions and tests can be found in Refs. 83, 103, 
and 105. In the case of the deuteron (and other even spin nuclei) the mismatch 
between the quark and nuclear helicity implies that the deuteron structure function 
vanishes at the kinematic limit as Cl061 F2D w Gq/~(x) m (2-x)10 rather than 
(2-x)9. (1i-1 each case, the power is logarithmically increased by QCD evolution.) 
One also expects an anomalous contribution to FLD at x h 2 analogous to the pion 
longitudinal structure function. Such contributions cannot be obtained from 
simple convolutions of the nucleon structure functions with nuclear distributions. 
The testing of these predictions is, of course, difficult because of the rapid 
fall-off of the structure functions, and the necessity for high Q2 in order to 
avoid higher twist contributions. As we have discussed in Sec. V, we expect, in 
general, a sum of impulse approximation contributions C84,1071 

do 

dQ2 dx 
(LA + g'x) = c -=<L 

dN 

a dQ2 
a + L'a) a/A 

dx 
- . 

(7.18) 

representing incoherent contributions, each of which correspond to lepton scatter- 
ing on one quark or clusters of quarks in the nuclear target. We also note that 
the transverse momentum distributions dNa/A/d2kL can also be predicted from the 
perturbative QCD processes which control the high momentum tail of the bound state 
wavefunctions. 

(2) The deviations from simple additivity of G,/A at x m 0 are related to the impor- 
tant question of whether the leading twist nucleon structure functions are 
shadowed; i.e., F2A(x,Q2) 
Fig.25). 

- Aa(x'Q2)F2~(x,Q2) at large Q2, 2 with a(x,Q ) < 1 (see 
A simple duality argument Cl091 based on the assumption of continuity of 

the structure fUnction at x = XBj = Q2/2Mu+O with the photoabsorption cross section - 
CryA (which is shadowed because of coherent vector meson photoproduction processes) 
obviously implies shadowing of F2A(x,Q2). However, as emphasized in Ref. 110, the 
QCD momentum sum rule then implies that a region of x must exist (probably at 
x N m,/MN) where the structure function obeys "anti-shadowing," i.e., a(x) > 1. 
The existing data on lepton-nucleon scattering Cl081 clearly show shadowing at low x 
and low 92, but the data are not sufficient to demonstrate whether the shadowing 
occurs in the leading twist Bjorken-scaling contributions to the structure function, 
rather than in higher twist contributions associated with vector meson electro- 
production. 

There are several arguments which indicate that QCD actually predicts the 
absence of shadowing for the leading twist structure functions, i.e., a(x,Q2) g 1 



Fig 25 Schematic representation of the 
deep inelastic nuclear structure function 
normalized to its nucleon components. 
( ;Th case of zero shadowing. 

A (E) Shzdowing and anti-shadowing. 

at Q2 + m and fixed x < 1. Since shadowing is associated with initial state 
(Glauber) interactions, [201 let us consider the representative initial state con- 
tributions to the virtual photo-absorption cross section o,*(x,Q2) shown in Fig.26. 

Fig. 26 Example of an initial state 
scattering correction to the nuclear 
photo-absorption cross section lead- 
ing to Glauber corrections and 
shadowing of the nuclear structure 
functions. The contributions of (a) 
and (b) cancel for 92 large compared 
to the momentum transfer of the 
exchanged gluon. 

At low Q2, soft vector gluon exchange (finite transverse momentum JLI, and small 
light-cone momentum fraction R +-&7(1/c) between the incident quark and the nuclear 
quark spectators gives an energy independent initial state correction to the photon- 
nucleus cross section as in meson-nucleus reactions. However, at high Q2>> .Lz, the 
contributions of Figs.26a and 26b exactly cancel - corresponding to the vanishing 
of the hadronic radius of the photon. A complimentary argument for the absence of 
shadowing corrections based on explicit consideration of coherent shadowing contri- 
butions and their damping at large 42 is given in Ref. 105. 

(3) In addition to the above considerations, simple additivity of the nuclear struc- 
ture functions will be violated by the fact that the nuclear Fock state spectrum is 
more complex than that of the individual nucleon. For example, the nuclear binding 
associated with meson exchange contributions leads to a modification to the sea 
quark and antiquark distributions in the nuclear structure functions. The number 
of strange quarks in the a-nucleus structure function may be different than the 
extrapolation from a nucleon target. We also emphasize that the existence of hid- 
den color components in the Fock state expansion of the nuclear state also implies 
new contributions to the nuclear structure functions , particularly in the x > 1 
far-off-shell domain. 

The definitive experimental identification of additivity violating effects in 
the nucleus will also require a careful study of the nuclear target dependence of 
lepto-production channels, e.g., the reaction eA -+ eK% which is sensitive to the 
intrinsic strange quark composition of the nucleus, i.e., contributions not due to 
QCD evolution (see Sec. VI). The identification of specific ed -t eN*N* channels 
in electron-deuteron scattering may be an important clue to the AA and hidden color 
Fock states of the deuteron as in Eq. (6.24). 

F. Nuclei as Probes of Particle Physics Dynamics 

Thus far in this section we have discussed applications of QCD specific to the 
dynamics and structure of nuclei. Conversely, there are numerous examples where a 
nuclear target can be used as a tool to probe particular aspects of particle 
physics. We will only mention a few applications here. 
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(1) Parity violation in hadronic or nuclear processes. The exchange of a weak W 
or 2 boson between the quarks of a hadron or nucleus leads to a high momentum 
component in the Fock state wavefunction 

a 
A$(x,jtl)) - ___ 

k;+G 

as in the derivation 

(7.19) 

of the distribution amplitude evolution equation. [19] The 
interference of these amplitudes with normal QCD contributions leads to parity vio- 
lation in processes such as photodisintegration yd -+ np and total hadronic cross 
sections. [llll 

(2) The nucleus as a color filter. As we have discussed in Sec. VI, one can study 
a new class of diffractive dissociative jet production processes in nuclei which 
isolate the valence component of meson wavefunctions. C301 One can also use the A 
dependence of the nuclear cross section to separate central and diffractive mecha- 
nisms for heavy flavor production (open charm, etc.). C30,311 

(3) Nuclear corrections to inclusive QCD reactions. When a hadron traverses a 
nucleus, its Fock state structure would be expected to be modified by elastic and 
inelastic collisions. An analysis based on perturbative QCD is given in Ref. 20. 
We show that multiple scattering in the nucleus increases the transverse momentum 
fluctuations of the quark and gluon constituents in the hadron, implying a nuclear 
enhancement for the rate of hadron and photon production at large transverse 
momentum. At- very large pT the direct photon production cross section in nuclei 
should have the form 

.-Sk!- (PA 
d3p/E 

-+ yx) = A--- d3dpC/E (PN + YX) [1 +@(?)I . (7.20) 

In the case of the Drell-Yan cross section do/dQ2 d2Ql (PA + u+u-X) the trans- 
verse momentum Ql distribution of the produced lepton pair is predicted to 
broaden due to multiple scattering in the nucleus of. the quarks in the initial 
state. Nevertheless, the integrated cross section da/dQ2 (PA -+ u'u-X) is propor- 
tional to A. Furthermore, as shown in Ref. 20, the light-cone x distribution of a 
fast quark is not effected by inelastic processes induced by multiple scattering 
in the nucleus as long as the quark momentum is large compared to a scale propor- 
tional to the length of the target. This effect is related to the formation zone 
analysis of LANDAU and POMERANCHUK Cl121 which shows that radiation from a clas- 
sical current propagation between fixed target centers is limited at high energies. 

(4) Propagation of quark and gluon jets in nuclear targets. In the conventional 
parton model picture based on the impulse approximation, the multiplicity of 
hadrons produced in deep inelastic lepton scattering or a nuclear target is expected 
to be identical to that on a single nucleon, since only one nucleon is "wounded" at 
large momentum transfer. In fact, the soft gluons radiated by the scattered quark 
jet in the deep inelastic process can interact in the nuclear target and produce 
extra associated multiplicity in the target-fragmentation and central rapidity 
regions. Cl131 As shown in Ref. 20 only fast quanta are prevented in QCD from 
interacting inelastically in a nuclear target. The study of the initial and final 
interactions of the hadrons and jets in nuclear target, specifically the modifica- 
tion of longitudinal and transverse momentum distributions, can provide important 
insights into the nature of QCD dynamics. 

VIII CONCLUSIONS 

In these lectures we have discussed the application of QCD to hadron and nuclear 
dynamics at short distances where asymptotic freedom allows a systematic perturba- 
tive approach. We have shown that it is possible to define the perturbative 
expansion in as(Q2) in such a way as to avoid ambiguities due to choice of 
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renormalization scheme or scale, at least in the first non-trivial orders. Cl41 
Our main emphasis in these lectures, however, has been on how to systematically 
incorporate the effects of the hadronic wavefunction in large momentum transfer 
exclusive and inclusive reactions - 
QCD. 

thus leading to a broader testing gro%nd for 
We have particularly emphasized the Fock state wavefunctions $n(xi,kli; hi) 

which de,fine the hadron or nuclear state in terms of its quark and gluon degrees 
of freedom at equal time on the light-cone. It is clear that a central problem 
of QCD is to determine not only the spectrum of the theory but also the basic 
bound state wavefunctions of the color singlet sector. Such solutions may be found 
in the near future using lattice numerical methods, particularly by quantizing at 
equal time on the light-cone, or by more direct attacks on the QCD equations of 
motion for the Jln, as discussed in Sec. III. 

Even without explicit solutions for the &, we can make a number of basic and 
phenomenological statements concerning the form of the wavefunctions: C271 

(l)Giventhe Jin we can compute the single and multiple quark and gluon distribution 
amplitudes and structure functions which appear as the coefficient functions in the 
QCD predictions for high momentum transfer exclusive and inclusive reactions, 
including dynamical higher twist contributions. We have also emphasized general 
features of these distributions, including helicity selection rules, Lorentz 
properties, connections with the Bethe-Salpeter amplitudes, renormalization 
properties, and correspondence limits in the non-relativistic weak binding approxi- 
mation. 

(2) The perturbative structure of QCD leads to predictions for the high k,, x + 1 
and far-off-shell behavior of the wavefunction. 
law behavior IJJ~ - ky2 

In particular the large kl power- 
of the valence wavefunctions and the /$I3 - ky2 behavior of 

the higher Fock s.tate contributions leads to QCD evolution equations and light-cone 
operator product expansion for the essential measures of the wavefunctions, the 
distribution amplitudes ~M(x,Q), $B(xi,Q), @D( xi,Q) and the structure functions. 
We have also emphasized the fact that the valence wavefunction behavior $v - kL2 
implies that the high k: behavior of quark and gluon jet distributions dN/dk: is 
-l/k& not exponential or gaussian. 

(3) Important boundary values and constraints on hadronic wavefunctions are obtained 
from the weak and electromagnetic decay amplitudes, including J, -+ BE. The meson and 
baryon distribution amplitudes are measureable in detail from the angular behavior 

-of the yy + MM and Cl141 yy -+ BE amplitudes. 
(4) By assuming simple analytic forms for the valence wavefunctions in the non- 
perturbative domain, we have found consistent parameterizations which are compatible 
with the data for hadron form factors, decay amplitudes, etc. An important feature 
which emerges from these studies is that the valence state is more compact in 
transverse dimensions than the physical hadron. Even at low momentum transfer 
scale, higher Fock states play an important role, i.e., there is no scale where 
the proton can be identified as a 3-quark valence state. This observation may be 
compatible with the traditional nuclear physics picture of the nucleon as a central 
core, surrounded by a light-meson cloud. [115] 

(5) The fact that there is a finite probability for a hadron to exist as its valence _ 
state alone, implies the existence of a new class of "directly-coupled" semi- 
inclusive processes where a meson or baryon is produced singly at large transverse 
momentum, or interacts in a high-momentum transfer reactions without accompanying 
radiation or structure function evolution. C291 As in the case of directly-coupled 
photon reactions, the hadron can interact directly with quark and gluons in the 
short-distance subprocess, with a normalization specified rigorously in terms 
of the distribution amplitudes or form factors. 
qq + 6 gq -f Mq, Mg -+ 96, B: -f qq. 

Examples of these subprocesses are 
We have also d&scusse; an important contribu- 

tion to the longitudinal meson structure function FL - C/Q , involving direct- 
coupling of the meson, somewhat analogous to the photon-structure function. The 
finite probability for a meson to exist as a q; Fock state at small separation also 
implies a new class of diffractive dissociation processes. [301 



(6) The Fock state description of hadrons in QCD also has interesting implications 
for nuclear states, especially aspects involving hidden color configurations. More 
generally, we have emphasized the idea that the far-off-shell components of hadron 
wavefunctions can be "unveiled" as the energy resolution scale is increased. For 
example, the existence of heavy quark vacuum polarization processes within the 
hadronic bound state implies finite probabilities for hidden charm Fock states 
even in light mesons and baryons. The diffractive dissociations of these rare 
states appears to provide a natural explanation of the remarkable features of the 
charm production cross sections measured at the ISR. [313 
(7) We have also emphasized the importance of initial state interactions in all 
inclusive reactions involving hadron-hadron collisions. The initial state inter- 
actions disturb the color coherence, kL distributions, and at low energies the x- 
dependence on the incoming hadronic distributions. Despite these profound effects 
on the hadronic Fock states, many of the essential features of the QCD predictions 
still are retained. [20] We h ave also discussed many examples where a nuclear tar- 
get can be used to analyze the propagation of quarks and gluons through a hadronic 
medium. 

(8) In Sec. VII of these lectures we focussed on the role of QCD at nuclear dimen- 
sions and its implications for fundamental nuclear interactions. The existence of 
hidden color Fock state components in the nucleon wavefunction implies that the 
standard nucleon and meson degrees of freedom are not sufficient to describe nuclei. 
The mixing of the ground state of a nucleus with the extra hidden color states will 
evidently lower its energy and thus influence the nuclear magnetic moment, charge 
radius, and other properties. We expect that the hidden color components will be 
most significant in large momentum transfer nuclear processes and reactions such 
as the parity-violating terms in the photon-disintegration of the deuteron, which 
are sensitive to the structure of the nuclear wavefunction at short distances. 
Conversely, the new QCD degrees of freedom should also imply the existence of ex- 
cited nuclear states which are predominantly of hidden color. These states may 
have narrow width if they are below the pion decay threshold. The six-quark 
excitation of the deuteron could possibly be found by a careful search for anomalous 
resonant structure in yd + yd scattering at large angles. Other speculations 1861 
concerning the phenomenology of these states are discussed in Sec. VI. 

The fact that QCD is a viable theory for hadronic-interactions implies that a 
fundamental description of the nuclear force is now possible. Although detailed 
work in the synthesis of QCD and nuclear physics is just beginning it is clear from 
the structure of QCD as a relativistic field theory that several traditional con- 
cepts of nuclear physics will have to be modified. These include conventional 
treatments of meson and baryon-pair contributions to the electromagnetic current 
and analyses of the nuclear form factor in terms of factorized on-shell nucleon 
form factors. On the other hand, the reduced nuclear form factors and scattering 
matrix elements discussed in Sec. VII give a viable prescription for the extrapola- 
tion of nuclear amplitudes to zero nucleon radius. There is the possibility that 
the present phenomenology of nuclear parameters will be significantly modified. 

Independent of the specific dynamical theory, we have emphasized the utility 
of light-cone perturbation theory as an elegant but calculationally simple exten- 
sion of non-relativistic quantum mechanics to the relativistic domain. The number 
of possible applications of this tool to nuclear physics Cl161 is extensive since - 
quantization at equal time on the light-cone allows a consistent definition of 
relativistic Fock state wavefunctions, their equations of state, and a completely 
relativistic treatment of the dynamics of elementary and composite systems. 

Thus, in summary, we have found that the testing ground of perturbative QCD 
where rigorous, definitive tests of the theory can be made can now be extended 
throughout a large domain of large momentum transfer exclusive and inclusive 
lepton, photon, hadron and nuclear reactions. With the possible exception of inclu- 
sive hadron production at large transverse momentum, a consistent picture of these 
reactions is now emerging. By taking into account the structure of hadronic wave- 
functions, we have the opportunity of greatly extending tests of QCD, unifying the 
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short and long distance physics of the theory, and making an eventual synthesis 
with the realm of hadronic spectroscopy, low momentum transfer reactions and 
nuclear physics. 
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