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ABSTRACT 

We present an improved numerical method for calculating the density of states 

for lattice field theories. We use it to study the SU(3) pure gauge theory at 

both zero and finite temperature. We also compute strong and weak coupling 

expansions for the density of states and find excellent agreement with our data. 

Using a specially developed algorithm for solving high order polynomials, we find 

the zeroes of the partition function. For lattices with Lt = 2, we test the finite 

size scaling prediction for the rounding of the transition by following the motion of 

these zeroes for L, = 6, 8, 10, and 12. We find that the correlation length exponent 

is l/v = 3.02 f 0.05, in excellent a,greement with the value d = 3 expected for a 

first order deconfinement transition. 
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1. INTRODUCTION 

It is an old idea that one should study the thermodynamic properties of a sys- 

tem by following the movement of the zeroes of its partition function!1-51 Recently, 

this approach has been given new impetus by the suggestion of a practical method 

to numerically calculate the density of states!‘71 Given the density of states, one 

can reconstruct the partition function and find its zeroes. We find this approach, 

which we refer to as the spectral density method, to be very promising. It provides 

a complementary way of studying phase transitions, allowing a determination of 

their order and other global properties on a competitive basis with more established 

methods. A particularly interesting potential application is QCD with two light 

flavors of quark, for which there are conflicting results obtained using traditional 

Monte-Carlo approaches! 

However, the work in Refs. 6,7 considers either discrete systems, or SU(2) on . 
very small lattices. It is important to test out the method on a more complicated 

theory and on larger lattices. We have chosen to study pure SU(3) gauge theory, 
_ on both symmetric L4 and asymmetric Li x Lt lattices. For the symmetric, zero 

temperature lattices, we expect no phase transitions. For the asymmetric, finite 

temperature lattices, we expect to see a first order decor&ring transition. 

The method suggested in Refs. 6,7 involves performing a random walk through 

configuration space, collecting the distribution of values of the average plaquette as 

a histogram. Such an approach is severely hampered by systematic and statistical 

errors, which need to be minimized in order to study SU(3) on larger lattices. To 

that effect, we introduce various improvements. The most important is the use 

of a guided random walk. By a sequential tuning of the guiding, or “weighting”, 

function we are able to reduce the statistical errors by many orders of magnitude. 

This change also greatly reduces the systematic errors associated with hysteresis. 

The kind of simulation we are dealing with requires the resources of a supercom- 

puter, which are best utilized if the code is vectorized. In Ref. 6,7 vectorization 
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was obtained through replication of the lattice. We are able to vectorize a substan- 

tial portion of the algorithm without such replication. This is essential in order 

to study larger lattices, for which replication is not feasible due to memory limi- 

tations. These techniques allow us to pursue our study of pure gauge SU(3) with 

relatively modest amounts of computer time. In total we have consumed roughly 

50 hours of CRAY-XMP time. 

As a check on our results we have calculated the strong and the weak coupling 

expansions for the density of states and compared them with our data. The agree- 

ment is excellent. A further check is provided by a comparison of our results with 

conventional Monte-Carlo results on a 64 lattice. 

Having calculated the density of states as a histogram, we know the partition 

function as a polynomial in a variable related to the coupling constant p = 6/g2. 

By solving the polynomial we can find the zeroes of the partition function in the 
-. complex p plane. This is the most challenging part of the numerical calculation, 

for the polynomials are up to 3000-th order, with a ratio of largest to smallest 

coefficients ranging up to 104400, i.e. 4400 orders of magnitude. This ratio grows 

exponentially with the volume. We have had to develop a special purpose code to 

solve this problem. 

As the volume of the system tends to infinity, the zeroes pinch the real p axis, 

if there is a phase transition!’ Exactly how they do this depends on the order of the 

transition. In particular, one can extract the correlation length exponent from the 

I41 motion of the zeroes closest to the real axis. Thus one has a simple quantitative 

method of calculating critical exponents. This is particularly advantageous for first 

order transitions, where the zeroes give a quantitative measure of the rounding of 

the transition. 

We have tested this by considering lattices of size Lz x Lt, with L, = 6, 8, 

10 and 12, and Lt = 2. We expect to see a first order deconfinement transition, 

with the critical exponent v given by l/v = d = 3. We find excellent agreement 

with the finite size scaling formula, with the result l/v = 3.02 f 0.05. Although 
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previous authors have checked the finite size scaling in the position of the critical 

P, [‘I which is not universal, our result is, to our knowledge, the first test of finite 

size scaling for the rounding of the transition. 

For lattices of dimension L4 we do not expect to see a transition as L increases. 

Instead there should be a crossover region. This means that there will be zeroes 

close to the real ,B axis, but at a location which does not vary with the volume. 

Such zeroes were investigated long ago in Ref. 2. With relatively low statistics 

we have examined these zeroes for L=2, 4 and 6. We find results inconsistent 

with a first order transition, but our data are too scant to rule out a higher order 

transition. 

In the particular implementation we use, the method lies somewhere between 

traditional Monte-Carlo using the canonical ensemble at fixed ,8, and microcanon- 

ical methods. We would like to assess the relative strengths and weaknesses of 

the various methods. It is clear from our investigations that the spectral density 

method suffers from the usual problems of numerical simulations - i.e. hystere- 

sis,. a possible lack of ergodicity and critical slowing down? Thus the comparison 

between methods is best done case by case. We argue below that the spectral den- 

sity method is particularly favored for a quantitative study of finite size scaling, 

especially in weak first order, or higher order transitions, at finite ,8. For identi- 

fying a clear first order transition, or for studying the beta-function for large ,B,* 

traditional methods are to be preferred. 

The rest of this paper is organized as follows. In section 2 we review the method 

of Refs. 6,7 and explain our improvements. We give an extensive discussion of 

systematic and statistical errors. In section 3 we discuss the finite size scaling 

behavior of zeroes, with particular emphasis on first order transitions. Section 4 

contains the strong and weak coupling expansions, and the comparisons of these 

with our data. We present our results in section 5, and give our conclusions, as 

well as our view of the outlook for the method, in the final section. 

* Here we disagree with Ref. 7. 
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We include two appendices. Appendix A provides a justification of the method, 

explains how we optimize it, and gives the details of our estimates of statistical 

errors. Appendix B contains an outline of the algorithm we use to find the zeroes 

of the polynomials. 

2. METHOD 

The fundamental quantity of interest is the partition function: 

2 = 
J 

[dU]eVP’ 

Vc G E = iCReTrU,l I 
Pl 

P-l> 

-. Here “pl” stands for plaquette, and U,l is the usual product of link matrices around 

the plaquette. Throughout this article we use V to denote the number of plaquettes 

on a four-dimensional lattice: -. 

V = 6LiLt. (2.2) 

where L, and Lt are the linear dimensions of the lattice, in the space and time 

direction, respectively. We refer to V as the volume. The variable E is the average 

plaquette (normalized to 1); it varies in the range -l/3 < E 5 1. We refer to E as 

the energy, and to E as the energy density: 

Pursuing further the obvious analogy with statistical mechanics, we define the 

entropy density S(E) in terms of the density of states N(C): 

evs(‘) E N(e) = 
J 

[dU]S(c- c,, Re Tr UPl ) 3v (2.3) 

* A somewhat more frequently used notation is 2 = J[dU] exp(-/3S) where S = 1 - E. 
The two are of course completely equivalent. The reader should therefore keep in mind that 
despite the plus sign in the exponential we have the usual Boltzmann weight. 
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We can rewrite the partition function in terms of the entropy density as 

1 1 

w> = 
J 

dcN(c) evp’ = 
J 

de ,v(s+@) (2.4 
-l/3 -l/3 

Thus if we know S(E) for all 6, we can reconstruct 2 and all its derivatives, for 

example 

(e) = 2-l 
J 

[dU]eVflEE = L= 
V @ 

2d (6) ,B2 d21n 2 
““=Pdg=FdB2. 

(2.5) 

Eq. (2.4) shows that Z(p) is just an integral transform of s(e). In finite volume, 

the range of integration is finite, so Z(,B) is well defined for arbitrary ,B. Therefore, 

knowledge of S(E) 11 a ows us to look for zeroes of 2 at complex ,B. 

In general s is a function of both E and the volume, but as V increases s tends 

to a universal function of E. We discuss the theoretical expectations for s in the 

following section. Here we point out only that for a given ,B, as V 4 00, the 

integral over E becomes dominated by a single saddle point (except for a first order 

transition at critical ,B). Th us our usages of “energy density” for c rather than for 

(c), and of “entropy density” for S(E) rather than for s((c)), become standard as 

V + co. Following the same convention, we refer to f = s + ,BE as the free energy 

density, and F = V f as the free energy. 

Refs. 6,7 suggest a numerical method for determining S(E). The procedure 

starts by dividing the energy range up into many bins, which are grouped into 

overlapping sets of bins. The idea is to determine the relative number of states 

in adjacent bins. This is done by first bringing the configuration to an energy 

within the set in question. Next, random changes are made to the links; these are 

accepted if the resulting energy lies within the set, and rejected otherwise. Whether 

the change is accepted or rejected, the final energy is added to a histogram. After 

some number of such “events” within a set, the ratio of numbers in adjacent bins 
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gives an estimate of the relative number of states in the two bins. If adjacent 

sets of bins are chosen to overlap, these ratios can be extended over the entire 

energy range. Cl ear y, 1 in the end we know the density of states only up to an 

overall factor, and thus the entropy is known up to an additive constant. Such a 

constant is irrelevant to physical observables, and also does not effect the zeroes of 

the partition function. 

In Refs. 6,7 it is stressed that it is essential to record an event even if the 

change has been rejected. This is clearly a very important point, but the reasoning 

behind it is not provided in Refs. 6,7. We therefore feel is worthwhile to present 

here a simple heuristic argument showing that it is the correct prescription. A 

more rigorous argument is given in Appendix A. First consider a simple example: 

a set of three bins each with the same density of states. Let the random walk 

move either to the left or to the right by one bin. We want to show that a uniform 

1 probability distribution, P(i) = l/3 i = 1,2,3, is maintained if all events are 

recorded. This is true for the middle bin, since the new probability is given by 

P’(2) = l/2 P(1) + l/2 P(3) = l/3. For the edge bins, one of these two terms is 

missing, but it is replaced by jumps outside the set which are rejected, yet recorded. 

For example, P’(1) = l/2 P(1) + l/2 P(2) = l/3. 

More generally, consider a “gedanken simulation” in which the system is al- 

lowed to roam freely through configuration space, with no constraint placed on 

the energies. Every event would be recorded, and if we waited long enough, the 

resulting histogram would give us the relative density of states for all energies. 

To obtain the relative distribution of states in a given set only, we would simply 

delete all the events in which the system was outside the set. A typical sequence 

would consist of a string of events inside the set, then a string of events outside, 

then inside, etc. Consider an “inside” string of events. It would end with the 

system going outside through an edge bin. The crucial observation is that, since 

E changes in small steps, after a string of outside events the system would return 

to the original set via the same edge bin through which it had left. Thus, when 

we discard the outside strings, we are left with a sequence in which every change 



which would lead outside is, instead, followed by an event in the same edge bin. 

This sequence is almost the same as that we obtain in the actual simulation by 

rejecting changes which jump outside, though including them in the histogram. It 

is not exactly the same because in the gedanken simulation one does not enter the 

set at the same configuration from which one left. But, on average this does not 

matter, as demonstrated by the argument in Appendix A. 

In the practical implementation of the method, one adjusts the number of bins 

so that as V changes the bin size remains constant in terms of the total energy E. 

In terms of E the bin size is 6(1/V). 

This method, as advocated in Refs. 6,7, though straightforward, is unsatis- 

factory. In nearly all sets, the density of states is a rapidly,varying exponential 

function of energy. Thus most of the events fall into one of the edge bins, with 

the other edge bin containing substantially fewer events. This is bad for several 

reasons. First, the errors in the entropy are not uniform, which could lead to sys- 

tematic errors in quantities derived from the entropy. Second, and more important, 

there is an enormous waste of events. All physically interesting quantities depend 

on the entropy density in a number of adjacent sets. The error propagated across a 

number of sets is dominated by the errors on the results in the sparsely populated 

bins. The majority of events, which provide a very accurate determination of the 

results in certain bins, do not help reduce this error. The third problem is that a 

rapidly varying density of states within a set severely limits the maximum energy 

range (or the number of bins) that one can allow a given set to cover. The con- 

figuration space may well have energy barriers which separate configurations with 

the same energy. When the sets are narrow, one can never bypass such barriers. 

It is easy to see why one expects a rapid variation of the density of states in 

a typical set. For V + 00, each energy c is associated with a value of ,L? by the 

saddle point equation: 

S’(g = !q = -p, 
E=E (2.6) 
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Thus the derivative of s is -,B, and the local density of states is 

For finite volume there are small corrections, of 0(1/V), to this behavior. If one 

uses, for example, 7 bins, each 1 unit of E wide, then the ratio of events in the 

most populated bin to that in the least populated bin is M eS6P. The region of 

interest for SU(3) finite temperature phase transitions turns out to be p > 5.0, 

so this ratio is very small. In fact, it becomes ever smaller as one approaches the 

continuum limit at p = co. 

The problem, then, is that the events are distributed highly non-uniformly. 

Our solution is to measure not N(c), but rather 

where SW is a weighting function. Clearly if sw(c)=s(c) then the weighted den- 

sity of states will be independent of E, all bins will be equally populated, the 

statistical error will be uniform, and the error propagated over a number of sets 

will be as small as possible. We introduce this weight in the standard way: a 

Metropolis accept/reject step. Each change in a link is accepted with probability 

min( l,e-V(SW(“)-SW(c)) ), where E’ is the new energy, E the original energy. This 

accept/reject step is done in addition to the original accept/reject which confines 

the energies to the set. As before, one needs to record the accepted changes as 

well as those events where the trial change would have taken the energy outside 

the set. The heuristic justification of this procedure goes through unchanged with 

the addition of weighting, and the argument in appendix A covers weighting also. 

The price of adding the Metropolis step is that some fraction of otherwise 

valid changes are rejected. We find that in the range of interest, the acceptance 

ratio from the weighting criterion alone is 20-30%. This increases our statistical 

errors by - 2. This should be compared to the increase in errors when using no 
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weighting. In the example mentioned above, a rough estimate of this increase is 

N dw M 106. A more careful estimate of the merits of weighting is given 

below, but it is clear that weighting gives an enormous improvement. Indeed, 

without it this study would not have been feasible. For SU(3) the crossover occurs 

at much higher ,B than for SU(2) and thus the improvement for SU(3) is even more 

crucial than for SU(2). 

In order to determine the weighting function SW(~), we bootstrap ourselves up 

from a state of ignorance. First we determine S(E) on a 24 lattice with s, = 0, 

with small bins and only 4 bins per set. We then smooth the result, with cubic 

spline fits, and use this as a weight for runs with wider bins, more bins per set, 

and higher statistics. We get better and better approximations to s(e), which we 

plug back in as the new SW. When we move to a larger lattice, we use the results 

from the next smallest lattice as a starting weight. Typically we use bins of size 
. 0.5 - 1.5 in E. There are relatively few bins in a set; we use from 4 - 13. We 

always use an overlap of 1 bin. 

We find it convenient to replace the weighting function with a piecewise linear 

function: SW(E) = Pset c within each set, with ,Bset varying from one set to the next. 

For our range of sizes of the bins and sets this gives results indistinguishable from 

those obtained with a smooth weighting curve. Using the linear form for SW allows 

a considerable saving of computer time. In practice, it means that, within each set, 

we are running a standard Metropolis gauge update Monte Carlo with ,B = Pset, 

except that we restrict the energy to lie within a small set, and that ,B varies from 

set to set. 

A further ingredient of our method is how we construct the trial changes in the 

configuration space. The following procedure represents a compromise between 

speeding up the computer program through vectorization and making sure that 

the algorithm moves through all of phase space. Ref. 7 suggests making a random 

change to a random link. To save computer time we have done something slightly 

less random. We break the lattice up into 24 hypercubes. We then choose a random 
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point within the hypercube, and update a link emanating from this same point in all 

hypercubes. The direction of this link is chosen randomly, and separately for each 

hypercube. This yields a set of links whose contribution to E is non-overlapping. 

We order these links randomly, and then repeatedly move through the links in this 

order suggesting changes. We use ten such repetitions (“hits”) for all the results 

in this paper. The changes to the link matrices are made by multiplying by an 

SU(3) matrix drawn from a trace-biased distribution. Using a criterion described 

in appendix A, we optimize a parameter determining the size of the change. 

It is because E must remain within bounds that the algorithm is intrinsically 

not vectorizable. In our implementation the loops which are not vectorized, es- 

sentially a series of logical manipulations, take 40-50% of the CPU time. The 

remaining time is taken up with what amounts to doing the usual manipulations 

in an SU(3) Metropolis update code. We stress, though, that most of this time is 

needed whether or not we use a weighting function. 

Finally, we discuss how we move between the sets. All our runs are done in 

a contiguous subset of the total number of sets. We begin with all links set to 

the unit matrix, and then move to an energy in the desired starting set at one or 

other end of the range. From this set, we move monotonically in energy through 

the sets. As discussed below, we make runs in both directions. To move from 

one set to the next, or from the starting configuration to the first set, we suggest 

changes to links and accept only those that move the energy in the desired direction. 

We move until we are in the central bin(s) of the set, and then begin collecting 

the events. We find this method to be adequate even when moving “uphill” i.e. 

moving in a direction of decreasing density of states. We experimented with “finite 

temperature” algorithms in which we accepted a certain fraction of the moves in 

the wrong direction, in the hope of overcoming possible metastabilities, but we 

found no such method to improve over the naive one. 

In summary, within each set we obtain an estimate of the weighted number 

of states per bin. We then multiply by the inverse of the weight to obtain the 
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actual, binned density of states. We extend these results over the entire energy 

range by matching the results from adjacent sets in the overlap bin. This gives us 

S(E) over some range of E, up to an overall factor. There are three types of error 

in the resulting entropy density. First, there is the error due to discretization. To 

the extent that s( 6) is described by .sw( E), this is a small effect. It is discussed 

further in the next section. Second, there are statistical errors, and, finally, there 

are systematic errors. It turns out that the systematic errors are most important, 

and we discuss these first. 

Possible systematic errors come from the usual sources for Monte Carlo cal- 

culations: insufficient thermalization, hysteresis, and, for second order transitions, 

critical slowing down. Thermalization here means that when we enter a new set, 

it takes a certain number of events to get to that region of configuration space 

where there are most states for the given energy range. However, with our method 

of moving from one set to an adjacent set, we find this effect to be small. We 

are already close to the appropriate region of configuration space. Thus we have 

chosen not to discard any events when we begin in a new set. However, the first 

one or two sets are effected by thermalization, as is clear by a comparison with 

other runs, and we discard these edge sets. 

A much more important source of systematic error is hysteresis. Since we 

move from one set to an adjacent set, the configurations we sample remember 

their history. The result in a set depends upon the direction from which we enter. 

This is only a problem close to the transition, which in the present instance is 

first order. We have tried to use this effect to our advantage. We only consider 

our result to be final if runs in both directions agree. Thus, for energies in the 

transition region, we must run long enough for both phases to have appeared, and 

for possible phase separated states to be included. To make sure that this happens, 

we find it important to use large sets. This allows our simulation to move around 

more freely in the configuration space, and so to avoid more easily any energy 

barriers. The largest sets we have used consist of 13 bins each of size - 1.7 in units 

of E. Clearly, only with a weighting function can we use such large sets. Indeed, 
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we must have a good first estimate of s(e) in order to do this. 

The third source of systematic error is critical slowing down. It is our claim, 

contrary to that of Refs. 6,7, that this method does suffer from critical slowing 

down in the vicinity of a critical point. This shows up, in energy ranges close to 

the critical energy, as the existence of states involving fluctuations on very different 

length scales. Thus, it takes more and more time to move through these states 

using a local algorithm. 

We close this section with a discussion of the statistical error in our estimate of 

the density of states. Consider a range of c, which we divide into B bins, partitioned 

into S sets each of b bins. We use a single overlap bin, so B=(b-l)S+l. It makes 

no difference how large the bins are - the same events are simply being repackaged. 

The only restriction on the size of the bins is that they be small enough to resolve 

interesting structure in s(c). We place N events in total into the energy range, 
. 

and record every n;,-th one. We are interested in the relative error in the ratio R 

between the number of events in the two bins at the edges of the range. This we 

parametrize as: 

(2.8) 

which defines a figure of merit F, which we want as small as possible. For fixed 

b and n;,, the error is proportional to dm because the error in each bin is 

0: dm, and this error must be propagated over S x B/b sets. For a fixed 

range of E, the number of bins grows like V. Thus to maintain a constant relative 

error in R requires N cx V2, so that the computer time required grows like V2, as 

stressed in Refs. 6,7. For a first order transition one does indeed have to study a 

fixed range in E, as the discontinuity in c tends to a constant as V + co. For a 

second order transition, on the other hand, the interesting region in c shrinks as V 

increases, and thus the scaling factor need not be so bad. This improvement will, 

however, be countered by the effects of critical slowing down. 

What we need to know is how F depends on b and n;,, and also upon the 
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extent of the weighting: It is shown in Appendix A that for perfect weighting, and 

at fixed n;,, F is almost independent of b (or equivalently of S). In fact ,Y= slightly 

decreases towards a limiting value as b increases, mainly because the number of 

overlap bins decreases. For bins of size N 1.5 units of E, in the region of the phase 

transition, and with our optimal hit matrices, this limiting value is 350-400. The 

large size of .?= is due to the considerable correlations between events. 

Since F is nearly independent of b, we get almost the same SR/R however we 

partition the bins into sets. A heuristic argument for this is that almost the same 

events are being differently packaged into sets. However, the events are not exactly 

the same, because the rejections which keep the events within sets are different? 

Thus, with perfect weighting, we lose no statistical power if we use large sets, as 

is required to overcome systematic errors in SR/R due to hysteresis. 

As the weighting is removed, F grows rapidly. Table 3 in Appendix A shows 

that, for b = 4 the figure of merit grows from 450 for perfect weighting to 6 x lOi for 

no weighting. Furthermore, with less than perfect weighting, F grows exponentially 

with b. To take an extreme case, for no weighting F N 6 x 10” for b = 4 while 

F N 102’ for b = 7. We stress that 2= includes the effects of Metropolis rejection 

which accompany weighting. These numbers show clearly how important it is to 

have a good weighting function. They also illustrate why there is a practical limit 

to the width of sets: as the set size increases the required accuracy in the weighting 

function eventually becomes unattainable. 

The final question addressed in Appendix A is how L’= varies with n;,. For 

n;, = 1, which we use throughout, events are highly correlated because the typical 

* For simplicity we assume that the suggested changes to the link matrices move us through 
the energies in the same way in all sets, and that the weighted density of states varies in 
the same way in all sets. This is reasonable if we restrict ourselves to a limited range of E, 
or if we are in the vicinity of the phase transition. 

t A somewhat more rigorous argument goes as follows. Our algorithm moves around locally, 
performing a random walk, so it takes a number of events o( b2 to get an independent event 
in each bin. Now in each set there are N/S events, so the relative error in each bin is 
-,/m=,/m.Th e matching of this ratio at the set boundaries increases 
this error by 1/s, so the total error is - dm, independent of S. 
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step size is much smaller than the size of the bins. If one increases n;,, correlations 

are reduced, so the errors per recorded event are reduced, but the penalty is that 

not all events are recorded. We find, as illustrated in Table 3, that, at fixed b, .F 

always increases as n;, increases from 1. This is true with or without weighting. 

This increase is very slow at first, so that it may be optimal to have nin somewhat 

larger than 1, since it takes some computer time to record an event. However, it 

is clearly not optimal to record only uncorrelated events, as done in Ref. 7. For 

b = 4, such a strategy roughly doubles F (see Table 3), and in general it increases 

.Y= by an extra factor proportional to 4. 

3. FINITE SIZE SCALING 

Finite size scaling (FSS) analysis[l” is usually associated with second-order 

phase transitions, but it is also useful for first order transitions[11’121. A first-order -. 
phase transition is characterized by coexistence of two phases at the critical point. 

Finite-volume corrections have two effects: discontinuities are rounded, with a 

width inversely proportional to the volume V: 

and the critical coupling ,BC is shifted: 

PC(L) - P&o) - L-ds. (3.2) 

Here L is the linear extent of the system, V c( Ld, and d, depends on the boundary 

conditions. For periodic boundary conditions, which we use d, = d. 

One can consider a first order transition as a limiting case of a second order 

transition. FSS analysis of second order transitions encompasses both of the effects 

described above. However, it is only for the rounding of the transition that the 

limit of the second order analysis describes the first order FSS. The shift in ,BC is 
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a non-universal effect. This distinction is important because our measurement of 

the rounding is more reliable than that of the shift in PC. Previous studies of FSS 

for the finite temperature transition of pure gauge QCD,[g’131 on the other hand, 

have considered the shift in PC. 

FSS analysis has been extended to the zeroes of the partition function for 

second order transitions in Ref. 4. The basic result is that zeroes close to PC 

behave like 

PO(L) - p&x3> N L-l/“. (3.3) 

Here PO(L) are the complex zeroes of a lattice of dimension L and v is the cor- 

relation length exponent. The roots always come in complex conjugate pairs, so 

we can consider only those in the upper half plane. These lie on a straight line 

starting at /?Jco), which is real. The position of this line is independent of L; as L 
-. increases the zeroes move along this line in the way described by Eq. (3.3). Thus 

the scaling behavior applies separately to the real and imaginary parts of PO-PC. 

The density of zeroes along the lines is determined by the specific heat exponent 

CL The angle the lines make with the real axis is related to o and to the specific 

heat amplitude ratio. 

One can extend this result to a first order transition by taking the limit v + 

lld[lll. In this limit one finds that the line of zeroes is perpendicular to the real 

axis, and that the density of zeroes is constant!14] Proceeding naively, one might 

expect the real part of PO(L) - PC(~) t o vanish. In fact, what happens is that 

now for each L there is a separate straight line perpendicular to the real p axis 

at p,(L) which depends on L in a non-universal way (cf. Eq. (3.2)). Thus in the 

singular limit of a first order transition the FSS result, Eq. (3.3), applies only to 

the imaginary part of &, - ,&( oo), and the universal prediction of FSS for a first 

order transition is 

Im [W(L) - b(M)] - L-d - l/V. (3.4) 
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Fig. 1. A typical curve of entropy density S(E) for a system with 
a first order phase transition. 

This is transcription of Eq. (3.1) to the language of zeroes, and it is this equation 

which we test below. 

It is instructive to understand how the scaling formula Eq. (3.4) comes about 

as a direct consequence of a first order transition, rather than as a lim iting case 

of Eq. (3.3). C onsider first the infinite volume lim it. In a generic case the entropy 

density S(E) has the shape depicted in Fig. 1. It is convex, S”(E) 2 0, because there 

are at least as many states at energy density E as obtained by partitioning the 

volume into equal parts of the states at energy E + 6 and E - S. Such a partitioning 

gives for the entropy density a straight line joining S(E + S) and s(e - S), up to 
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corrections vanishing as V -+ m:’ The average energy density and p are related 

by the saddle point equation 

s’(e) + p = 0. (3.5) 

Now (W) h as a discontinuity, jumping from ~1 to ~2 at /? = PC, jumping from e1 

to ~2 as shown schematically in Fig. 2. Thus, for ,f? = &, Eq. (3.5) is satisfied by 

a range of energy values, ~1 5 c 5 62. In other words, the free energy density 

s + ,BCe is flut, as illustrated in Fig. 3!. 

Fig. 2. The discontinuity in (c(p)) which occurs when V + DC) 
for a system whose free energy is that shown in Fig. 1. 

* We thank Michael Peskin for reminding us of this argument. 
t Actually a form for s with two peaks at c = ~1 and 6 = ~2 would also yield the desired form 

for E(P). We know that s is flat, however, because of its convexity. 
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E . 

Fig. 3. The free energy density, f = s + pee, for a system with 
a first order phase transition. 

For finite volume, two types of corrections arise. First, the entropy density 

changes. Th is can shift the flat region by 0(1/V) - the cause of the shift in 

PC - and also change the shape of s(c). In particular, a concavity can appear 

in the flat region. In this region there must be phase separation, and concavity 

occurs if the energy of domain walls outweighs the number of ways to produce such 

configurations. If it does, then the concavity in f can be as large as 0(1/L). In 

that case the free energy F = Vf has a dip which grows as O(Ld-‘), and only 

energies at the edge of the range contribute to the partition function. If, on the 

other hand, the dip in f is 0(1/V) or less, then F only has a dip of O(l), and all 

energies in the range contribute. The second finite volume effect is that there are 

0(1/V) corrections to the saddle point equation - a given p samples a region of c. 
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For a typical E this region has a size cx l/V. But for I,8 - PC] 2 1/[(c2 - cl)V] both 

ends of the “flat” region, and possibly the middle too, contribute to the functional 

integral. This is what gives rise to the rounding of the transition. 

For SU(3), as for all theories with continuous symmetry, the density of states 

N(E) = exp[Vs] is continuous. In a numerical study of the roots of Z we must 

approximate N(c) by a discrete distribution. In order to introduce the notation we 

need later, we will make the argument concerning the distribution of zeroes using 

this discrete approximation. The energy range E,;, 5 E 5 E,,, is divided into B 

bins of width Ae = (E,,, - c,in )/B. The partition function is then approximately 

proportional to a polynomial of degree B - 1: 

J 
B-l 

Z(p) = de N(c) exp[VPc] x c Ck exp[VPck] 
k=O 

-. 
B-l 

= exp[PV(h,, - AC/~)] c CkW” E exp[pV(c,,, 
k=O 

- 

(3.6) 
A&>1 VP) 

where 

c,,,-kAe 

El: = ~,a, -(k+;)Ae; ck= 1 dcN(c) - AeN( w = ,-pvA’, 

~,a,-(k+l)Ac 

We first calculate the roots of P(p) f or a system with a flat free energy. To do this 

it is useful to change variables: 

P(p) = c ckWk 0: c exp[V(Sk + ,bk)] [exp(-Vbk)u”] = c DkUk (3.7) 
k k k 

where the proportionality constant is independent of ,f? and 

N(ek) G exp(vsk); & = exp[V(sk + bk)]; u = exp[-V(p - &)Ac]. 
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The flat region ~1 5 E 5 62 corresponds to ki < k 5 k2: 

Dk<<zi: k < ICI or k > k2 

The coefficients outside the flat region are suppressed by exponentials of the volume 

and can be neglected in the first approximation: 

B-l kz 

c 
Dkuk M 

c 
Dkuk = 

jj ukl 2 Uk = jj ukl ll”f”‘,- ’ 

> 
(3.8) 

k=O k=kl k=kl 

The corresponding roots of P accumulate along a unit circle in the u plane, or 

along the line ,B = PC + iy in the complex ,!? plane: 

-. u = exp[-V(P - ,BC)Ac] = exp 
[k2 :;+ 11; 

or 

(P - PC) = f 
27mi 27rni k2 - ICI 

V Ae(k2 - kl + 1) = * v (62 - Cl) ; 
n = 1,2,3, . . . , 

2 
(3.9) 

Thus we find, as advertised, that the zeroes lie on a line perpendicular to the real 

axis, with uniform density, and approach the real axis like l/V. 

This result was derived assuming no dip in the free energy. In the opposite 

extreme of a large dip which grows with L, only the two points at the end of the 

range contribute. Thus, as V -+ co we need only include k = kl and k = k2 in the 

sum. The resulting zeroes are given by: 

(p _ PC) = f Gn - l>i . h - h 
VAe(k2 - kl)’ 

n = 1,2,3 ,..., 2 
(3.10) 

These zeroes lie on the same line as those in Eq. (3.9), have uniform density, 

and approach the real axis as l/V. For small 72, they lie half way between those 

obtained for the flat free energy. 
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We can turn the argument around, and ask what are the particular properties of 

the zeroes that lead to the discontinuity in (E). Here a variant of the electrostatic 

analogy introduced in Ref. 1 is useful. Let us give each zero in the u plane a 

charge -AC. Then, the electric field along the real axis is (E) /u up to an overall 

constant. It is clear that the ring of zeroes described by Eqs. (3.9) will give a 

discontinuity in (E) in the infinite volume limit. But it is also true that similar 

distributions of zeroes, such as that of Eq. (3.10), will do so as well. In order to 

get the discontinuity, and for (6) to grow monotonically with p, what is required is 

that the line of zeroes must be roughly perpendicular to the real axis and that the 

zeroes must have a nearly uniform distribution near to the real axis. We do not, 

however, know of any rigorous arguments for this. The electrostatic analogy makes 

clear that the zeroes close to the real axis will dominate the,rounding. Thus, in 

order to obtain Eq. (3.1) th e c osest 1 zeroes must approach the real axis as l/V, in 

agreement with Eq. (3.4). 
-. 

What are the errors introduced by the discretization? For the simple example 

discussed above, the result (3.9) h Id o s even with no discretization, except that 

there is no limit to the value of n. This illustrates the general behavior. Clearly, if 

we discretize, there is a limit to imaginary part of ,f?, jIm( < ,Olirn - r/(VAc). 

As one decreases Ac what happens is that (1) zeroes with small imaginary parts 

are little affected, (2) zeroes with imaginary parts close to Plim do move, and (3) 

a whole new set of zeroes appear with Im(P) > ,81irn We have explicitly verified 

these features. This behavior can be understood as follows: the partition function 

evaluated for imaginary p corresponds to a Fourier transform of exp [V(s+Re(p)t)] 

with a frequency V Im(P). Th us only the distant zeroes, which correspond to the 

high frequencies, feel the effect of changing the resolution of the measurement of 

w- 

There remains one technical point concerning the discretization: the approxi- 

mation ck M &eXp(vsk). We know how the density of states varies in a bin 

N(E) = exP{ +k - pk(, - Ek) + o((t - ck)‘)]}. 
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where our method of measurement gives us both Sk and Pk. Thus, for each p, we 

can Calculate ck more accurately: 

ck ti AC exp( Vsk) 
2 sinh [V(P - ,&)Ac/2] 

v(P - pk)Ae * (3.11) 

Consider some complex p. For bins for which Ip - Pkl ;S 1, Eq. (3.11) reduces to 

ck = Ac eXp(Vsk), since VA6 - 1. But, for a given p, it is precisely those bins 

with smallest ,8 - pk that are important, so the approximation is good for nearly all 

/3. Only for [ImpI 2 1, i.e. for distant zeroes, does the approximation brake down. 

This is just a restatement of the fact that only the distant zeroes are sensitive to 

the discretization. . 

4. ANALYTIC EXPANSIONS 

In this section we present the strong and weak coupling expansions for the 

entropy density and compare them with our results. 

Ref. 15 provides the strong coupling expansion for the free energy density of 

SU(3), in infinite volume. From their result one can immediately obtain the strong 

coupling expansion for the energy density: It is most convenient to use the variable 

Z=3c: 

* One must take care with conventions: our p is 6 times that of Ref. 15. 
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(E”) = ;p+ &P”- g&“-t ggP5+ gg&jgP” 

l:%i~Op" + 21158324305920 p 
6400d2-282600d+490757 9 

+ 
ll(17920d2-267624d+435299)pO + 1272320000d2-7658871745d+lOO92064674 11 

592433080565760 7677932724132249600 P 

+ 
13(157696000d2-487188695d+364951632) 12 

46067596344793497600 P 

+ 50176000d3+5254054400d2-3055083115d-14239256399 13 
1243825101309424435200 P 

(44 

+ 1949696000d3-4969646O8OOd2+216598878225d-25Ol5O888296 14 
29851802431426186444800 P 

+ 359667302400d3-6538865646880d2+2ll955653l6O42d-l92O89l225524l 15 
7253987990836563306086400 P 

+ W’“) 

. Here we have kept the dependence on the dimension of spacetime d. 

Given the strong coupling expansion for (c), one can obtain the power series 

expansion for the entropy S(E) around e = 0. The starting point is the expression 

for (E) in terms of the density of states: 

( 
’ 

> = SexP{q(e) + Dc]}edc 
sexp{V[s(e) + Pe]} de ’ 

(4.2) 

Since N(c) is an extremely rapidly varying function, with a very sharp maximum 

at 60, the integrals can be evaluated using the steepest descent method. The saddle 

point ~0 is given by 

S’(Eo) + p = 0; s(Ae) = -d2Ae2 - d3Ac3 + O(&“); AC = E - co (4.3) 

where do can be taken to be zero since it corresponds to an overall multiplicative 

factor in N(E), and dl = 0 because co is a an extremum of the integrand. The 
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result, including the leading l/V corrections reads’ 

34 
‘=“-4J,‘d; (44 

We now write s(c) as 

S(E) = - -jy cnen, (4.5) 
i=l 

combine with Eqs. (4.1) and (4.4) and plug into Eq. (4.3), equating the coefficients 

of ,B to zero, order by order. 

The resulting expression, including l/V corrections to the first two terms, is: 

8OOd+88067 ~10 _ 8960d-686899 2'1 + 81920d2-307855d-9894642 212 
2624400 29393280 725594112 

_ 61625d-7678606 $3 + 
1007769600 

14450688d2-27669565d-590906590;14 
213324668928 

P-6) 
_ 65536000d2+118450875d+364241882~15 

1632586752000 

+ 165150720d3-2888990720d2+51873Ol5775d+1697l9955926~l6 
98738846760960 

We have included the 0(1/V) corrections to the first two terms. These corrections 

are small even on a 24 lattice (V = 96), and so we decided that it was not worth 

calculating the 0( l/V) corrections to higher order terms. Also, on a finite lattice, 

there are 0(1/V) corrections to the original expansion for E, equation (4.1), which 

come in at higher order, and which we do not know. 

In Figure 4 we plot the entropy density S(E) on a 44 lattice and compare it with 

the “strong coupling” series, Eq. (4.6). For Ic( 2 0.3 the agreement is excellent, 

providing a useful check on the correctness of our measurements in that region. 

We find similar agreement on other lattices. 

t In the following we drop the () sign around E 
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Fig. 4(a). Comparison of the measured entropy per plaquette S(E) on a 44 lattice 
with the expansion (4.6) d erived from the strong coupling series (4.1). 

At the other extreme, the first few terms are known in the weak coupling 

expansion of e[161: 

k=l 

< is the natural variable for the weak coupling expansion of N(e). In Ref. 16 

w1 and w:! have been computed analytically for all SU(N) groups and the higher 

order coefficients have been fitted $0 Monte-Carlo data for SU(2). Since here we 

are interested in SU(3), we shall limit ourselves to w1 and ~2: 

( = 2/p + (1.2248 - 32.7V)/p2. (4.8) 
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Fig. 4(b). The difference between the measured entropy and the series (4.6). 

The saddle point equations (4.3) and (4.5) are replaced by: 

sqo)-P = 0; s(Ac) = -cI~A~~--&~+O(A[~); At = &&; (4.9) 

S(t) = Uo log t + c aktk . (4.10) 
k=l 

The log([) term in (4.10) is necessary for consistency of Eq. (4.9), since < z 0. 

We now combine Eqs. (4.8), (4.10) and (4.9), just as we did for the strong 

coupling, and obtain 

s(t) = (2 - l/V) log([) + (0.61259 - 16.4/V)[ + a2t2 + O(t3). (4.11) 

u2 can be fitted to the data. Figure 5 clearly shows that with u2 x 0.36 the data 
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-0.1 
. 

a,=O.O 

---- a,=0.36 

. . . . . . . . . . . a,=0.45 

-0.25 0 0.25 0.5 0.75 1 

E=l--l 
Fig. 5. The difference between data on a d4 lattice, and the weak coupling expansion, 
Eq. (4.11), for several values of ~2. 

is well matched by (4.11) up to 5 M  .47 . 

In summary, existing strong and weak coupling expansions predict S(E) for 

-l/32&0.3 and for .55&21.0, respectively. The remaining range, .32&.55, is 

where we concentrate our numerical calculations. This range is the “crossover” 

region, and it also contains, for the lattices we consider, the finite temperature 

phase transition. Of course, as one considers lattices with larger extent in the time 

direction, the finite temperature transition moves towards ,B=co. We mention 

this just to emphasize that there is nonperturbative information hidden in S(E) for 

E - 1, though it is swamped by the perturbative “background”. 
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5. RESULTS 

We begin by illustrating the quantities that can be calculated given the numer- 

ically determined entropy density. For the 24 lattice, we have determined s for all 

E except in the region corresponding to extremely weak coupling, i.e. c - 1. The 

weak coupling expansion, Eq. (4.10) h s ows that as E d 1 the slope of s diverges 

cc l/(1 - 6). Th us, even with weighting, there is some value of E beyond which 

numerical methods fail. Our best calculation for a 24 lattice uses 400 sets of 4 bins 

each, each set overlapping the next by 1 bin. Thus each of the 1201 bins is - 0.1 

units of E wide, which is very narrow compared to the bins we use for the larger 

lattices. There are lo5 events in each set, and for this run no weighting is used. 

To describe the parameters of this run we use the notation: [400 S (29-400), 4B, 

lo5 eu] . The numbers in parentheses give the subset of sets in which data is taken 
- the numbering begins at E = 1 and extends to E = -l/3. We stress that we are 

quoting the number of events per set, and that each event consists of a single hit 

on a single link. 

Fig. 6 shows the resulting curve for the entropy density. The maximum is 

almost at E = 0 - this is true up to 0(1/V) corrections in the strong coupling ex- 

pansion, cf. Eq.(4.6). Th e expected logarithmic divergence at E = 1 is clearly seen. 

What is most interesting is the region .3 6 E 2 .55, where neither of the analytic 

expansions apply, and where the curve shows the smallest second derivative. To 

examine this “crossover” region we use the data for s( 6) to construct (E) : 

(4% = 

F exP [v(sk + bk)] ek 

F exP [v(sk + bk)] * 
(5.1) 

Here the sum runs only over those bins in which we have data. Fig. 7 shows 

(Q)). The crossover region becomes, in this plot, the range of ,B with the largest 

derivative, ,B N 5.0. 

As explained in section 2, only a limited number of terms contribute to the 

sums in Eq. (5.1) f or a given p. If we normalize the largest term in the sum in 
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Fig. 6. The entropy density S( E.) f or a z4 lattice. The absolute position of the vertical 
scale is arbitrary 

the denominator to be 1, then we say that a term contributes to this sum if it is 

larger than some small number. Because the free energy varies rapidly with E away 

from its maximum, it matters little what we choose for this number. Using 10A3, 

we find for the 24 lattice that the maximum range of c occurs for ,8 - 5.0, and is 

1~ 1.0. For ,0 away from the crossover, the range which contributes is smaller. For 

example, at ,6 = 0, the range is N .4, while at p = 12 it is - .l. Thus, although we 

do not have data for E N_ 1, it is only for large p that this effects the calculation of 

(E). Here the largest p allowed is N 20. For larger lattices, with correspondingly 

larger V, these ranges of E decrease. 

What we are most interested in extracting from the entropy density are the 

zeroes of the partition function. We have 2 as a polynomial in the variable 
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0.6 

0 2 4 8 10 12 

Fig. 7. (E) as a function of p on a z4 lattice. 

u = exp [ - PPeflJg]. (5.2) 

Here B = S(b - 1) + 1 is the total number of bins, which have been partitioned 

into S sets each of b bins. ,B,g is in principle arbitrary, but we usually choose it to 

lie as close as possible to the critical coupling PC. For the 24 lattice data, however, 

we use /I,# = 0. 

2 is in principle a polynomial of (II-1)-th or d er in u, and thus has B-l zeroes. 

However, because we do not know sk for all k, we find the zeroes only of a truncated 

polynomial. For the 24 lattice this truncated polynomial is of order 1188. The 

resulting zeroes are shown in Fig. 8. Just as for (E), the truncation only effects the 

zeroes with large Re(P), i.e. with small 1~1. Had we used the full polynomial, the 
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Fig. 8. Zeroes of the partition function on a z4 lattice in the u plane. (a) All 1188 
zeroes. (b) An expanded view of the region near the origin. 
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zeroes closest to the origin would have moved, and additional zeroes with smaller 

1~1 would have appeared. 

I I 1 
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Fig. 9. Zeroes of the z4 partition function in the ,8 plane. Only zeroes in the upper 
half plane are shown. 

The most striking features of Fig. 8 are the almost total absence of zeroes close 

to the positive real axis, the accumulation of zeroes close to the origin, and the 

ring of roots at Iuj N_ 0.6. The ring is the manifestation of the crossover in the 

distribution of zeroes. If we show the zeroes in the ,0 plane, as in Fig 9, then the 

ring becomes a vertical band. Notice that the band contains those zeroes which 

most closely “pinch” the real axis. These figures should be compared to those for 

S17(2)[‘~on a 24 lattice, for which the pinch is less pronounced. 
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Fig. 10. (e(p)) for z4, d4 and 64 lattices. 

0.6 

0 2 4 6 8 10 12 

To investigate zero temperature QCD we have calculated s for 44 and 64 lat- 

tices. The parameters we use for the 44 lattice are: [lo00 S (50-lOOO), 4B, 5 x lo4 

ev] . Thus there are 3001 bins of size N 0.7, and we evaluate Sk for all but the 49 

sets close to E = 1. This calculation uses a weighting function, as do all subsequent 

ones. For the 64 lattice we use [lo00 S (300-450), 7B, 8.1 x lo5 ev]. Notice that 

the bins are larger, about 1.73 units of E, and that we use 7 bins per set. Fur- 

thermore, we only calculate s for values of E in the crossover region. We show in 

Fig 10 the resulting (c) for these two lattices, as well as that for the 24 lattice. No- 

tice the considerable movement of the crossover region between 24 and 44 lattices. 

Fig 11 compares our 64 data with that obtained by traditional Monte Carlo!17’181 

The agreement is good, within statistical errors, which, in our data, show up as 
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Fig. 11. Comparison of results for (E) b e t ween our results and data from traditional 
Monte-Carlo calculations, both on 64 lattices. Also shown is our data on a J4 lattice. 

the wiggles. Together with the comparisons with analytic expansions, this means 

that we have checked our method over the entire range of E. The 44 data are also 

shown on the graph to indicate how they differ from the 64 data. 

As one moves along the sequence of L4 lattices to larger L, we do not expect a 

phase transition to appear for non-zero ,L?. Thus, away from the origin, the zeroes 

should not approach the real axis as L + 00. Were there a phase transition, on 

the other hand, we would expect the zeroes closest to the real axis, ,&, to behave 

as Im(/30) N L- ‘iv. We have checked this for L = 2, 4 and 6. We show in Fig. 12 

that the data from these three lattices are actually compatible with v M  2.5. This 

rules out a first order bulk transition (V = 4), but cannot exclude a lower order 

transition. To do that we would need to calculate for larger L, which is beyond 
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Fig. 12. The scaling of the imaginary part of the zero closest to the real axis in the p 
plane is shown by plotting ln [Im(Po)] versus In L for L4 lattices with L = 2,4,6. 
The curve shows a best fit to a straight line, and has slope -2.46. 

our present resources. 

To investigate the continuum limit of zero temperature SU(3) one would have 

to study the behavior of the zeroes with large Re(,L3) as L + 00. In the u plane, 

these are the zeroes closest to the origin. As pointed out in Ref. 7, one can deduce 

the beta-function from the way in which the zeroes closest to the origin move with 

L. However, as pointed out above, it is very hard to study these zeroes numerically 

because of the steepness of S(E), and it becomes progressively more difficult as L 

increases. It seems to us that traditional numerical methods of calculating the 

non-perturbative p-function are to be preferred. 

Because of this, we have concentrated our attention on the finite temperature 
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phase transition of SU(3). W e can study this by considering asymmetric lattices: 

L: x Lt, where L, > Lt. It is well established that such systems undergo a first- 

order deconfining phase transition for L, + co. As noted earlier, such transitions 

are expected to a have a particularly clean signature in the form of finite size 

scaling, Eq. (3.4). W e h ave made our most detailed study for Lt = 2. This means 

that we are looking at the infinite volume limit of a strong coupling lattice system, 

with no pretence that we are taking the continuum limit. Nevertheless, this system 

is known to have a first order phase transition, and thus it provides a good testing 

ground for our method. 

We have taken high statistics data for Lz x 2 lattices for L, = 6, 8, 10 and 

12. Given that the system is expected to undergo a first-order phase transition, 

there will be hysteresis effects. To control these, we employ a three-pronged attack. 

First, we make the sets as large as possible. Second, we concentrate most of our 

events in the region of c where both phases are coexisting. Third, we do both 

cooling and heating runs. Here heating means that we step through the sets in 

the direction E : [l + -l/3], while for cooling the direction is E : [-l/3 + 11. 

In practice it turns out that the cooling and heating data for S(E) differ only in 

the coexistence region. We increase the statistics in this region until the difference 

between cooling and heating runs is reduced to a tolerable level. We then splice this 

data onto that from lower statistics runs on either side of the coexistence region. 

When S(E) obtained by this procedure is plotted on a scale showing its full span 

(such as in Fig. 6), the cooling and heating runs are virtually indistinguishable. 

However, what appears in the partition function for a given ,B is the exponential of 

the free energy F = Vf. Thus it is better to plot f = s + ,BE with ,B chosen to be 

in the critical region. Furthermore, as discussed above, only a finite range of E is 

important. Thus, in Fig. 13, we plot the free energy densities for ,B = 5.088 on an 

expanded scale. This value of ,B is chosen to make f(e) as flat as possible near the 

maximum. The differences between the cooling and heating runs are now clear. 

There are various points to notice in Fig. 13. As expected, the curves have 

nearly the same shape for all L,. The width of the flat regions, which corresponds 
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heating 

-.-.-.-. cooling 

Fig. 13. Free energy density, f(e) = S(C) + 0, p = 5.088 on Lz X 2 lattices, 
L = 6,8,10,12. Continuous and dash-dot lines denote heating and cooling runs, 
respectively. All the curves are normalized to pass through zero at E = 0.4. 

. 

to the jump in (E) across the transition, is almost the same for all curves. All the 

curves show a dip at E - .43, the expected finite volume concavity in the entropy 

density. For L, > 6, the depth of the dips decreases with increasing L,. This 

decrease appears to be slower than l/V, so that the free energy F has a dip which 
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deepens as L, increases. There are also differences in the relative heights of the 

two peaks. These correspond to differences in the critical p, and we discuss these 

differences below. 

The statistical errors in the data are evident from the wiggles in the curves. 

We estimate the expected statistical errors using Eq. (2.8), with F = 400. The 

results are given in Table 1, together with the parameters of the runs. For each L, 

we have runs in both inner and outer ranges of E. It is only in the inner range that 

hysteresis is important, as we have checked explicitly. Thus we need only consider 

a single run in the outer range, while we need both a heating and a cooling run 

in the inner range. Splicing the data together yields the polynomials for which we 

find the zeroes, the order of which is also given in Table 1. 

For each L, we quote two errors. (&R/R);,,,. is the estimated statistical error 

propagated across the inner range. The corresponding error in f is given by 

(U)inner = ln (1 + (W&4 /V. (5.3) 

If f is held fixed at one end of the range, the fluctuations at the other end of 

the range are given by Sf. Half way along the range, the fluctuations are roughly 

fi smaller. For all L,, the differences between heating and cooling curves in the 

vicinity of the dip are larger than (&f)inner/1/2. This confirms what is apparent 

to the eye, namely that the wiggles in the curves are not large enough to explain 

the differences between heating and cooling runs. These differences are systematic 

errors due to hysteresis. 
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inner ev 

Table 1: Parameters of the runs used in the FSS analysis. The notation is defined in the text. 
The inner and outer ranges are given both in terms of the sets which they contain, and as ranges 
of E. ev refers to number of events per set. The “SR/R range” is that for which (6R/R)t,t,l 
applies. The CPU time is the total for a single run in the outer range and both a heating and a 
cooling run in the inner range. 

The other error quoted in Table 1, (SR/R),,,,l, is that propagated across the 

range of E which contributes to (E) for p = 5.088, in the sense defined above. This 

range, which is called the “SR/R range ” in the Table, lies between the inner and 

outer ranges. The errors are calculated taking into account the differing statistics 

in inner and outer ranges. The corresponding Sf is also quoted. Because the curves 

in Fig. 13 are all forced to agree at E = .4, which is very close to the beginning of 

the contributing range for all L,, Sf is the expected fluctuation in the value of f 

at the upper end of the respective ranges. Even though Sf is large enough to be 

visible in Fig. 13, it is still a very small effect for ,/3 GZ & M 5.088 because it is a 

shift in a region of the free energy which makes a very small contribution to (6). 

We stress that for p away from PC the range of E that contributes is much smaller, 
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and so the relative error in R propagated across this range is much smaller than 

that for ,B = &. 
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Fig. 14. Zeroes of the su(3) p ar 1 ion function on a 1z3 X 2 lattice plotted on the t’t’ 
u plane with peg = 5.088. Th e results are from the heating run, the parameters of 
which are given in Table 1. The polynomial is of order 1212. 

Fig. 13 shows that the shapes of the free energy density curves are nearly 

independent of L,, and that f is nearly flat. This provides a qualitative confirma- 

tion that the system undergoes a first order transition when L, + 00. To obtain 

a quantitative confirmation we use the movement of the zeroes of the partition 

function. In Fig. 14, we show the zeroes for the heating run on the 123 x 2 lattice. 

Notice how on this large lattice the flat region in f manifests itself as a crisp ring 

of zeroes in the u plane (cf. Eq. (3.8) ). The fact that the zeroes form a band, 
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rather than covering the whole plane, as in Fig. 8, is due to our truncation of the 

complete polynomial. This truncation does not effect the zeroes at the center of 

the band, including those in the ring, though zeroes at the edge of the band are 

not reliable. For discrete systems like the Ising model, zeroes often lie on lines. 

In particular, there is a line of zeroes which pinches the real axis. For our case, 

however, there is a general background of zeroes in which the ring sits, and from 

which only a few zeroes extend towards the real axis. The figure shows that the 

ring is not a perfect circle, and that the distribution of zeroes along the circle is 

not precisely uniform. In other words, Eq. (3.8), which was derived for an exactly 

flat free energy, is only a rough description of our data. 

0.05 

. 
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0.01 

0.00 

+ 
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+x 4 L,=lO 

+ X -3 L,=12 
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Fig. 15. Zeroes closest to the real p axis on Lf X 2 lattices, L, = 6,8,10,12. For 
each L, we show two zeroes corresponding to the cooling (X) and heating (+) runs. 
Note that the scale is the same for both real and imaginary parts. 
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In view of this, we concentrate on the zero closest to the real axis for our 

quantitative check of finite size scaling. We give in Table 2 the positions of these 

zeroes for the eight runs (cooling and heating for L, = 6, 8, 10 and 12). Fig. 15 

plots these positions in the complex /3 plane. The major difference between cooling 

and heating runs is in the real part of ,B. What we expect is that a heating 

run, which starts in the high temperature phase, remains in that phase slightly 

beyond the transition point, so that the zero has a smaller real part. A cooling run 

should display the opposite metastability. This is indeed the pattern we observe 

for L, = 10 and 12. H owever, for L, = 6 and 8, the opposite behavior is seen. It is 

still true for these lattices, however, that the cooling run dips down more quickly, 

and for longer, to the right of the left peak. This is what one would expect from 

hysteresis. What one would not expect is the sharper rise, in the cooling runs, up 

to the right peak. We do not understand this behavior, though we are confident 

that it is a systematic effect, not due to statistical fluctuations. -. 

In view of these uncertainties we can say little about the variation of Rep with 

L.* This is, in any case, not a universal phenomenon. In contrast, the imaginary 

parts of the zeroes are much less sensitive to hysteresis, since they are related to 

the latent heat of the transition. Indeed, Imp is expected to satisfy the universal 

scaling formula, Eq. (3.4). We test this by fitting ImPc(Ls) to the form: 

-deff 
ImPc(Ls) 04 L, . (5.4) 

This corresponds to a straight line on a log-log plot, and we show our data on such 

a plot in Fig. 16. We assume that the correct answer is the average of the heating 

JC Ref. 9 gives the data for Re& for Lt = 2 from which a FSS analysis can be done. Their 
results are 5.071, 5.086, 5.092 and 5.0945 for L, = 5, 7, 9 and 11, respectively. These num- 
bers show a different trend from ours, and appear to extrapolate to a higher infinite volume 
limit. However, we cannot make a direct comparison, because Ref. 9 used helical boundary 
conditions, whereas we use periodic boundary conditions. Furthermore, the criterion used 
in Ref. 9 to determine ,& involves the Polyakov line, and differs from ours. Nevertheless, 
the infinite volume limits should agree. It may be that either we or the authors of Ref. 9 
have underestimated the systematic errors. 
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Fig. 16. The scaling of the imaginary part of the zeroes closest to the real axis in the 
p plane for Lz X 2 1 a ices with L, = 6,S, 10,12. We plot In [Im(P,(L,))] VS. tt’ 

ln (L,). The straight line is the fit corresponding to Eq. (5.4), with de8 = 3.016. 
( X ) and (+) denote cooling and heating runs, respectively. 

and cooling results, and therefore we fit to the eight points giving equal weight to 

each. The error estimate is based on assuming that for each L both the heating 

and the cooling results are separated by one standard deviation from the central 

value. The fit yields the result de8 = 3.02 f 0.05. The expected result for a first 

order transition is den = l/ v = 3.0. Thus our data provides a good quantitative 

confirmation that the SU(3) d econfining transition is first order. 
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Table 2: Partition function of SU(3) on a L, x 2 lattice: zeroes closest to the Re /I axis as function 
of L,. The two measurements for each L, are from a heating and a cooling run, respectively. 

6. CONCLUSIONS ’ 

The calculation of the zeroes of the partition function by measuring the spectral 
. 

density is a novel and powerful tool with which to study statistical systems and 

their phase transitions. 

The partition function as function of temperature is defined in the whole com- 

plex plane, but with traditional Monte Carlo methods one can only simulate statis- 

tical systems at real temperature or coupling. Even though in the laboratory there 

are no complex temperatures, it is important to realize that what is observed at 

real temperature results from the analytic structure in the complex plane. A useful 

analogy is a three-dimensional object which is first observed from one particular 

angle. What one sees is a two dimensional projection, with many features com- 

pletely obscured, until one is given a chance to observe the full three dimensional 

structure. 

Thus the singularities which, in the thermodynamic lim it, manifest themselves 

as phase transitions at real temperature, exist even in relatively small systems, 

albeit in the complex plane. In addition, many phenomena which are observed on 

the real axis, such as the rapid crossover from strong to weak coupling, can be 

traced to the complex zeroes of the partition function. 
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It is only with the advent of the spectral density method (SDM)[““’ that the 

study of the complex analytic structure for complicated systems has become feasi- 

ble. 

By improving upon the method of Refs. 6,7 we have been able to carry out a 

high-precision FSS analysis of the rounding of the finite temperature deconfinement 

transition for pure gauge SU(3). 

What is the future of the spectral density method? For the remainder of this 

section we explain our tentative answers to this question. Traditional methods 

are probably favored for mapping out phase boundaries, for identifying strong first 

order transitions, and for calculating correlation functions. On the other hand, the 

SDM is the method of choice for detailed quantitative studies of phase transitions. 

Thus we imagine the SDM as a tool to be used once traditional methods have 

-. mapped out the interesting range of coupling constants. 

An important exception are systems with complex actions. These have been 

very hard to study using existing methods. From the standpoint of the spectral 

density method, however, there is no fundamental difficulty. After all, in finding 

the zeroes we are using a complex action already. It will be very interesting to see 

how the spectral density method fares on some simple examples. 

The main reason why we think that the SDM should be used only for detailed 

studies is the rapid increase in the computer time needed as V is increased. As we 

discussed in section 2, the time required grows as V2 for a first order transition. 

It is simple to generalize this to higher order transitions: the time scales as V2iud, 

where d is the dimension in which the transition is occurring.* For a first order 

transition vd = 1, while for second order transitions 1 5 vd 5 2. Thus at the 

boundary between second and third order transitions the time required scales as 

V. 

* This scaling law is derived by assuming that one need only measure s for those E which 
contribute, in the sense defined in section 5, to the partition function at the critical coupling. 
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These scaling laws should be compared with that for traditional Monte-Carlo 

methods, for which the time required increases as V. For first and second order 

transitions, it seems naively as though the SDM will be slower for large V, with the 

discrepancy getting smaller as the order of the transition is decreased. However, 

this comparison is somewhat misleading. The scaling law for traditional Monte- 

Carlo assumes that one need simulate only for a fixed number of couplings as V 

increases. This may be true if one is interested only in a qualitative picture of the 

phase structure, or in calculating correlation functions. But, as we argue below, 

to make a quantitative study of a phase transition one may need to use more 

couplings for larger V, making the time required the same for all methods. If so, 

then the SDM is favored, because it allows the most straightforward calculation of 

the critical exponents. 

That the spectral density method may be competitive for detailed studies can 

be seen as follows. Operationally, the procedure we use has close similarities with 

both canonical and microcanonical methods. The energies are restricted to a small 

range, as with a microcanonical method, but within each set we generate a canoni- 

cal ensemble. To determine the order of the transition one needs to know, directly 

or indirectly, the functional form of S(E) close to the critical point. One does this 

in the canonical method by scanning in ,8, while in the SDM and microcanonical 

methods one scans in E. Whichever method one uses, however, one is collecting data 

from the same range of E. The different methods are simply packaging this data 

in different ways. Thus, even though it is hard to compare the various methods 

directly, one should need roughly the same amount of data for all methods. 

It is worthwhile illustrating these general arguments with a specific example. 

Consider a system with a strong first order transition. To search for this transition 

in the canonical ensemble, one looks for flip-flops between states and/or coexistent 

phases. In a microcanonical approach one searches for S-shapes in the plot of 

(c) versus pY1 The corresponding phenomena in the SDM are the flat free energy 

and the concavity in the entropy. Taken together, they provide a clear qualitative 

signal for a strong first order transition. However, one needs to calculate the 
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density of states across the entire flat region in order to get this signal, and it 

is this which makes the time required grow like V2. Most of the time is spent 

sampling configurations containing both phases in varying proportions. This is an 

overkill if one simply wants to establish the existence of the transition. In fact, 

one need only sample configurations containing wholly one phase or the other, 

and show that they can coexist, as is done in the canonical ensemble. This is 

why traditional methods are favored for identifying strong first order transitions. 

But to investigate the rounding of the transition, as done in this paper, one needs 

to know the relative proportions of phases as a function of p. Thus, directly or 

indirectly, one must fully investigate the flat region, and this will take roughly the 

same time with all methods. The SDM is then favored because of its quantitative 

measurement of the rounding, as illustrated by the results presented here. 

As part of a detailed study of a phase transition it may be necessary to make 

. the SDM more sensitive by using multi-dimensional bins. For example, in our 

SU(3) calculation we could have made use of the Polyakov loop. This is the 

[“I order parameter for the deconfinement transition. In conventional Monte Carlo 

calculations it has been essential for determining the position of the transition 
P,l3,201 on large lattices. It can be included in the spectral density approach by 

using two dimensional bins in the energy-Polyakov line plane. In each such bin 

the weighting function would use an effective ,8, and a source term coupling to 

the Polyakov line. The main advantage of two-dimensional binning would be an 

improvement in the sampling of configuration space. In particular, there are three 

components of the high temperature phase, characterized by different values of the 

phase of the Polyakov line. If one bins only in E, as we did above, the system 

has to wander between these phases on its own. Using two-dimensional bins, one 

can force the system to be in one or other of the phases. This will reduce the 

systematic errors, though inevitably at the expense of increasing the amount of 

computer time needed. 

There are two systems for which the sensitivity of the SDM may be needed, 

and for which two dimensional bins may be essential. Both inhabit the murky area 
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at the boundary of first and second order transitions. The first is the U(1) pure 

gauge theory in the fundamental/adjoint coupling constant plane. The nature of 

the line of phase transitions remains controversial despite much work. To use the 

SDM, one should tile, with two dimensional bins, the critical region of the coupling 

constant plane. We are beginning a study of this model. 

The second theory is QCD with two or three light dynamical fermions. One 

would have to use two dimensional bins in the energy--($$) plane. In each such 

bin one would use an effective /3 and an effective quark mass. In at least some 

existing algorithms, e.g. the exact algorithm of Ref. 22, it is straightforward to 

calculate (&L) ft a er each link is changed, as would be necessary. This is a very 

challenging project, which should probably wait until two dimensional binning has 

been tested on a simpler system. Nevertheless the potential reivards are very large: 

one would be able to study the transition for all quark masses at once. 

Note added: 

After the completion of this work we received a paper by K. Bitar (FSU-SCRI-S7- 

33). in which the method of Ref. 7 is applied to SU(2) at finite temperature. 
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APPENDIX A 

This appendix serves three purposes. First, it gives a more rigorous derivation 

that the weighted random walk yields the correct density of states. Second, it 

explains how we optimize the parameters of our hit matrix. And, third, it fills in 

the details of our discussion of statistical errors. 

To discuss the justification for our method, we first imagine that there are no 

restrictions on the energy. Assuming that the algorithm is ergodic, imposition of 

the Metropolis step means that configurations appear with probability proportional 

to the weight W(c). The distribution with respect to E will thus be N(c)W(c)dc. 

Let the hit matrix, which moves from one configuration (U) to the next (U’) be 

C(U, U’). It is a probability distribution: 

J [dU’]C(U, U’) = 1 , 

and, for simplicity, we take it to be symmetric. The probability that a configuration 

of energy density ~1 will jump to 62, is given by the kernel 

1 
K(EI, ~2) = N(cl) 

J 
[dUl+l - 6) 

J 
[dU’]C(U, U’)min S(c2 - 6’) 

+ &I - 62) 

Nkd 
/[dU]h(el - 6) /[dU’]C(U, U’)max [o, 1 - !$!$I. 

(A4 
Here E is the energy density of the configuration U, c’ that of configuration U’. The 

second term represents rejection in the Metropolis step. The kernel acts on a prob- 

ability distribution D(Q) representing an ensemble of Monte Carlo simulations, 

probability conservation being guaranteed by 

J dc’K(c,e’) = 1. 

It is convenient to define the hit matrix in energy density space: 

(A.3 

&,E~) = J J [dU] [dU']S(t;, - +'(U, U’>&2 - c’>. 
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This is still symmetric, and satisfies 

J [d&(cl, ~2) = N(Q). 
We can now rewrite the kernel 

In this form the symmetry of K is manifest: 

N(+++l)I~( ~1, ~2) = N(~2)W(~2)1+2, ~1). (A4 

It is straightforward to verify that the ensemble distribution D(ci) = N(ci)W(ci) 

is an eigenvector of this kernel with eigenvalue 1. 

We now consider energies confined within a set. The kernel taking such con- 

finement into account, I(“““, is defined implicitly by: 

&+1(f) = J ~n(c’)~=y, c) = J dc’D&‘)Ii’-(c’, 6) + D&) J de’I+, 6’). (A.5) 

in in out 

Dn(c) is the ensemble probability distribution after the n-th application of Kc”“, 

with c is restricted to be within the set. Integrals labelled “in” and “out” run over 

energies within and outside the set, respectively. The last integral represents the 

rejection of a change when the energy goes outside the set. Kc”” satisfies the same 

symmetry property as I(, Eq. (A.4). 

Using the fact that the original kernel conserves probability, we can rewrite 

(A.5) as 

D,+1(~) - D&) = J dt’[D,(c’)IC(t’, E) - D,(+-+, et)]. in 
It is straightforward to verify that the r.h.s. vanishes if Dn(c) x N(c)W(c), i.e. 

this form is an eigenvector of I(““” with eigenvalue 1. All other eigenvalues have 
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modulus less than one. Since equation (A.5) represents the procedure that we 

actually use, it is evident that no complications are introduced by restricting oneself 

to a limited range of E, or by using a weighting function. 

We next turn to the optimization of our hit matrix C. We want to move as 

quickly as possible through configuration space, but to do so we must balance 

two competing effects. Clearly, if we make the hit matrices differ more from the 

unit matrix each step is larger. On the other hand, large steps are more likely 

to be rejected by the Metropolis criterion, and/or by the requirement that the 

energy stay within the set. If too many steps are rejected we move more slowly 

through configuration space. The criterion we use to optimize the step size is that 

the second largest eigenvalue of the confined kernel be minimized. The second 

largest eigenvalue, Xi, represents the dominant transient effect. After a number 

of events n such that X;L << 1, the probability distribution for events is essentially 

. independent of the starting position, i.e. each such event is independent. For 

Xr such that 1 - Xi < 1 a rough estimate of the number of events needed is 

n 7 l/(1 - Xi). By minimizing this number, we minimize correlations, and thus 

minimize the statistical errors in our result. 

To calculate Xi, we partition the set into many energy subintervals, each much 

smaller than the bins, and collect the matrix K as a histogram. The second 

eigenvalue and eigenvector are determined by numerical iteration of equation (A.5), 

having projected against the leading eigenvector. Let S denote the “hit size”, i.e. 

the parameter(s) determining the distance of the hit matrices from unity. For a 

given set we minimize Xi with respect to S. This procedure is repeated for a series 

of different sets in the range of interest, and for different lattice sizes. We find that 

&in. varies significantly between sets, while near the minimum Xr is a very shallow 

function of S. Thus we can choose one value of S which is nearly optimal for all 

sets of interest. 

We will present numerical results for a “typical” set in the region of the phase 

transition. This set contains b bins of size 1.5 units of E. To a very good approxima- 
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tion the density of states varies exponentially within this set, and by construction 

our weighting functions are pure exponentials: 

If ck = kAc + const. are the energies at the centers of the bins, then we can 

characterize the weighted density of states, by the parameter x 

&&c) = N(a)W&) oc xk; x = =P [V(Pw - Pset)At]. 

In this notation, perfect weighting corresponds to 2 = 1. We take our typical 

set to have Pse. = 5.0, so that with no weighting z = l/1808. Partial weighting 

corresponds to values of 2 between these extremes. 

-. Fixing the hit matrix parameters to their optimal values for x = 1, we have 

calculated Xi for a variety of values of x and b. The results for b = 4 are given in 

the first 6 rows of Table 3 (only the first and third columns are relevant for the 

moment). For x = 1 the result is Xi N .9965, so it takes about l/(1 - Xi) N 300 

events to decorrelate, with each event moving N 6/J%% - 0.35 units of energy. 

As we increase b we find to very good accuracy that l/(1 - Xi) 0: b2, as expected 

from a random walk. Thus for 13 bins of size 1.5, roughly the largest set we 

use, Xi N .99965, so it takes 3000 events to decorrelate. As x is decreased, Xi 

decreases to 0.825, its value for no weighting. For all x < 1, we find that Xi is 

nearly independent of b. Thus, when there is little or no weighing, it takes only 

5 - 10 events to decorrelate, however large the set. This is because the non-leading 

eigenvector, like the leading eigenvector, is concentrated in a small, fixed range of E 

at one end of the set. Given this quick decorrelation, one might be concerned that 

the unweighted method is competitive with that using weighting. The remainder 

of the appendix is intended to allay such concerns. 

Our measurements are not made from an ensemble, but rather by averaging 

along a particular Markov chain. To calculate the dispersion, we need to average 
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over all possible chains. In order to make the analysis more simple we break up 

the continuous energy interval of the set into bins. I<““” is then represented by 

a “transfer” matrix T;j which gives the probability of moving from bin i to bin 

j. Although the following analysis goes through whatever the size of the bins, we 

will apply the results to bins of the size that we use in our numerical work. Thus 

we will continue to use b for the number of bins per set, and to characterize the 

weighted density of states by the parameter x introduced above. In general, x is 

the amount by which the weighted density of states decreases from the center of 

one bin to that of the next. 

The transfer matrix must have two properties. Conservation of probability 

requires 

c Tij = 1. 
i 

. T must also satisfy the same symmetry condition 

required symmetry property is (no sum on indices) 

(A-6) 

as I<“““, equation (A.4). The 

(A-7) 

These two properties insure that xi is a left eigenvector of T with eigenvalue 1. 

The corresponding right eigenvector has all components equal. 

To calculate the errors we introduce the generating function of chains 

qq = C(MITM]n-l)ij; M~dic~g[e”~,...,e”~]. (A-S) 
j 

2; is a sum over all possible chains of length n, which start at the i-th bin: 

-G(z) = C P(C) exp [C aknk(C)] 
c k 

(A.9) 

In the sum each chain C is weighted by its probability P(C), while nk(C) denotes 

the number of times the k-th bin appears in C and 6i represents the CY~ collected 
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into a vector. In terms of Zi we have 

(A.lO) 

Zi=O’ 

Introducing the diagonal matrix X, X;; = xi, we can construct a symmetric matrix 

F- 

in terms of which 

.qq = M3 x-3 [@q]” x3 M4. 

. 
Let the eigenvalues of T(Z) be x,(G), with X,(Z) the largest in magnitude. Then, 

for large n, one can show that 

. 
8=0’ &cl’ (A.ll) 

up to corrections of 0(1/n) and 0(X:/X:). 

To evaluate Eq. (A.ll) we need X0 for small G. This can be obtained using 

perturbation theory in ? - T(G = 0). We have constructed ?(a = 0) to have the 

same eigenvalues as T, so that X0(6 = 0) = 1. First order perturbation theory 

yields 

fk is the leading left eigenvector of T, which shows that one gets the same answer 

from averaging over chains as one does from an ensemble average. Second order 
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perturbation theory gives 

hklfk - fkfi + z&i-$ A, -g&I(p) 

p=l 1 - XP 

. (A.12) 

Here, V/J(P) is the p-th eigenvector of T(d = 0), with eigenvalue X,, and the sum over 

p excludes the leading eigenvector p = 0. As required, xk fk = 1, and XI, ck[ = 0, 

i.e. the fractions sum to 1 with no dispersion. 

The first term in Eq. (A.12) is the dispersion expected for uncorrelated events. 

The second term is the correlation in the dispersion introduced by the constraint 

xk fk = 1. The final t erm contains the effects of the correlations between events. 

If there are no such correlations, then X, = 0 for p 2 1, and the last term vanishes. 

As the correlations increase, and in particular as X1 --+ 1, this term increases 

. because of the factor 1 - X, in the denominator. It turns out that, for our typical 

set, this term is completely dominant for z = 1, and gives the largest contribution 

for x < 1. 

We apply this formalism to transfer matrices which act on bins of our typical 

size, 1.5 units of E. This gives us directly the expected statistical errors on the 

numbers we measure. By working with such large bins we are ignoring the detailed 

statistical fluctuations of the data, but these are of little interest. Since each event 

moves an energy much smaller than the bin size, these “coarse-grained” transfer 

matrices only contain entries for movement to the same bin or to adjacent bins. T 

should also be independent of the position within the set, except for edge effects, 

since the sets cover only a tiny range of E. These requirements, together with 

equations (A.6) and (A.7), determine 2’ uniquely to be 

T(x,A);,i+l = (l -2*)x, T(x,A);+l,; = (l ; *) : i = 1,b - 1; 

T(x,A)l,l = 1 - (l -2*)X; T(X,A)b,$ = 1 - f : 
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qx, A);,; = 1 - (l - *p + x) : i = 2, b - 1. 

Only non-zero elements are shown. For each x there is a single parameter A. 

This we adjust so that the Xi matches onto that found by the numerical method 

described above. This gives us a coarse-grained kernel which has the same leading 

eigenvector and the same dominant transient effects as the continuous kernel we 

actually use. 

The kernels T(x, A) are sufficiently simple that we can evaluate (A.12) analyt- 

ically. In particular, the eigenvalues are 

(1 - X,) = (1 - A) - cos(pr/b)& + q) ; p= l,b-1. (A.13) 

Notice that for x = 1, and fixed A, 1 - Xr c( l/b2 for large enough b. This is the 

same behavior as shown by the numerically determined kernels. Thus, A can be 

kept constant as b is changed. This is physically reasonable, since A determines 

the size of the off-diagonal elements of T, and these should be independent of b. 

Eq, (A. 13) shows that for x << 1 all the eigenvalues collapse to a common value, 

1 - x, = (1 - A)/2, independent of b. This is again in accord with the numerically 

determined results for X1, as long as A is held fixed as b is varied. 

. 

We use these kernels to evaluate the error in R, the ratio of events in the edge 

bins of a range of B bins. For a given x we fix A once and for all by matching the 

numerically determined value of Xr for b = 4. We then vary b, and also n;,, the 

period with which we record events. It is straightforward to include the effect of 

n;, # 1 in the above formalism. The result for the dispersion in R, for N total 

events, is 

(A.14) 

’ 
up to corrections of 0(1/B). The fig ure of merit F should be as small as possible. 
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A selection of the results are given in Table 3. These are all for typical bins 

of width 1.5 units of E, and Pset = 5.0. The Table is broken up into five sections 

illustrating the effects of: (1) re d ucing and eventually removing the weighting (no 

weighting corresponds to l/x = lSOS), for b = 4 and nin = 1; (2) increasing the 

number of bins holding x = 1 (perfect weighting); (3) increasing n;, holding x = 1; 

(4) increasing the number of bins with no weighting; and (5) increasing n;, with 

no weighting. These results are discussed in section 2. 
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. 

Table 3: Results for the figure of merit LF defined in equation (A.12). For a complete explanation 
see the text. For a blank entry one should read the last non-blank entry above it. 
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APPENDIX B 

In this appendix, we describe the numerical methods that allow us to solve 

the polynomials. Typically, the polynomials have more than 1,000 coefficients, 

perhaps even as many as 10,000 terms. The dynamic range of a polynomial is 

defined to be the maximum magnitude difference of those terms. The dynamic 

range of the polynomials experienced in this research has been as large as 4,400 

orders of magnitude - 104400. 

There are seven important factors in the development of a robust computer 

program for solution of such polynomials: (1) The iteration algorithm; (2) the 

deflation algorithm; (3) the search algorithm; (4) th e need for an internal represen- 

tation of very large numbers; (5) the implementation of arithmetic operations for 

such an internal representation; (6) a scheme to estimate the error of the results; 

and (7) a determination of the amount of precision needed by the solution. Of these 
. 

seven, the first three are of general interest while the remaining four are specific 

programming details of purely technical interest. We shall discuss the first three 

topics in detail below. The most important is the search procedure. This is because 

both the iteration and the deflation algorithms suffer from severe inadequacies. 

The Iteration Algorithm 

The iteration algorithm of first choice is Newton’s method. This method is 

very easy to program and it converges quite fast. Its major problem is its lack of 

absolute convergence. Unless the starting point is close to the zero sought, there 

is no assurance that Newton’s method will converge to that zero. Thus, it is most 

important to have a good search algorithm. 

Given a good search algorithm, capable of locating a zero of the polynomial to 

an accuracy of at least 4 decimal figures, Newton’s iteration will yield 16 decimal 

figures of accuracy in just one or two steps. 

Consider the following polynomial with real or complex coefficients: 

co + ClX + c2x2 + c3x3 + . . . . + c,xn . (B.1) 
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Assuming that there is a single zero, real or complex, close to the origin, Newton’s 

method will give the first estimate of the root as 

x0 = --c&l . (B.2) 

The method proceeds by substituting x0 into the polynomial and its derivative to 

find the next values for ~0 and cl. This step is repeated until one knows the root 

to the desired accuracy. 

Three things should be noted in the above discussion: (1) One must move off 

the real axis into the complex plane to find complex zeroes. Even if the coefficients 

of the polynomial are real, so that zeroes appear in complex conjugate pairs, one 

cannot simply “sit” on the real axis and hope to evaluate both zeroes of a pair. (2) 

The assumption of a single zero near the origin is vital. If there should be more 

than one zero near the origin, the method will not converge. In our solution of 

polynomials, at the point of application of Newton’s method, the next nearest zero 

is several orders of magnitude farther away than the nearest zero. (3) A multiple 

zero is not dealt with in the above discussion. 

The Deflation Algorithm 

Once a zero of the polynomial has been found, the degree of the polynomial 

can be reduced by one. This is done by factoring out, by synthetic division, the 

calculated zero from the original polynomial. The resultant polynomial of reduced 

degree is called the deflated polynomial and the reduction process is called defla- 

tion. 

It is well known that deflation must be done with great care. In general, 

accumulation of errors in the estimate of the known roots will cause the deflated 

polynomial to separate away from the original one: the zeroes of the former will 

no longer coincide with the remaining unknown zeroes of the latter. Furthermore, 

in general the dynamic range of the deflated polynomial will be larger than that 

of the original polynomial. Conventional wisdom has it that the proper way to 

minimize these problems is to deflate the zeroes in order of increasing magnitude. 
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This is much easier said than done. For example, the polynomial 

1 - xsoo, 

has 500 zeroes of equal magnitude, uniformly spaced over the unit circle. Any 

attempt to solve this example by deflating the polynomial as the zeroes are found in 

an orderly sequence around the unit circle will fail after about the 30-th zero. This 

is in spite of the fact that those 30 or so zeroes are calculated to a precision better 

than 12 decimal digits. The deflated polynomial will have completely separated 

from the original by that time. The “size” criterion in the determination of the 

deflation order is useless when all the zeroes have the same, or nearly the same, 

magnitude. Therefore there must be some additional criterion or strategy with 

which the search is to proceed if the deflation algorithm is to remain stable. In 

principle, one could attempt to develop a computer program to solve polynomials 

without deflation. In practice, however, such programs are not feasible, as they 

would suffer from a host of extremely severe difficulties. 

‘We shall now discuss such a search procedure which is suited for deflation. 

As far as we know, there is no general theory which addresses this issue. On the 

other hand, we have discovered a heuristic algorithm which provides a robust and 

stable search strategy, on top of the basic magnitude criterion. We refer to this 

algorithm as the “balanced” approach, drawing on the analogy between the zeroes 

of the polynomial around a circle and some weights around the rim of a wheel. 

If one finds the zeroes and deflates the polynomial in a sequential order around 

the circle, the analogous weights around the wheel are removed primarily from 

one side. Such a wheel will become unbalanced and no longer spin true. In the 

following, we describe the intuitive reasoning which went into the development of 

the heuristics. 

The above mentioned analogy is quite proper, because in general the deflated 

polynomial has a larger dynamic range than the original one. That will be true 

unless the zeroes are removed in a balanced manner, in which case the resulting 
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dynamic range will be no larger than the initial one. Since on any real computer 

the precision and magnitude are limited, an increasing dynamic range is disastrous, 

because in practice it will eventually cause the deflation process to fail. 

The requirement for a balanced solution is further reinforced by the fact that 

one cannot deflate the complex zeroes in conjugate pairs. We have repeatedly 

attempted to implement a scheme whereby the conjugate pair is deflated together, 

while more or less maintaining the balanced approach. All such attempts failed. 

We have examined various means of implementing the balanced search order. 

The simplest approach is to rotate forward a certain angle from the last zero found. 

For example, a go-degree rotation implies that if the first zero is on the positive 

real axis, the place to search for the next one will be on the positive imaginary axis. 

The third place would be on the negative real axis, etc. Such a scheme is certainly 

balanced but it fails. The result of a go-degree rotation has the appearance of 
-. 

a 4-bladed propeller. This propeller may be balanced, but the weights’ analogy 

suggests that the deflation should proceed in a manner which is not only balanced 

but also uniformly distributed. 

In order to find an optimal rotation angle an experiment was performed using 

a 3,000-degree polynomial. The rotation angle was varied from zero to go-degrees, 

in l-degree increments. Nearly all the runs failed. Some failed after only about 30 

zeroes, some after about 100 zeroes, some after several hundred zeroes, and some 

after more than 2,000 zeroes. Rotation angles smaller than 25-degrees produced 

very poor results. The rotation angles near 30, 45, 60, 75, and go-degrees also failed 

fairly early. That was taken as an indication that one must avoid rotation angles 

which are at or near simple integer fractions of 360 degrees, such as 360/4, 360/5, 

360/6, etc. The most likely reason is that in these cases the search order is balanced 

but not uniform enough. We have therefore examined the higher fractions in the 

immediate neighborhood of l/9 and empirically determined the optimal rotation 

angle to be 40.7-degrees. As a fraction of 360-degrees, this lies between 6/53 and 

7/62, both relatively far removed from simple fractions. 
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This has proven to be the correct search procedure for a deflation-based solu- 

tion of polynomials. It has been successful for all the polynomials tested to date, 

including an example of degree S,OOO. 

The Search Algorithm 

As the preceding discussions indicates, the search algorithm is of utmost im- 

portance for a robust polynomial solver. Yet, not one text on numerical analysis 

deals with this subject. The requirements for a good search procedure are: (1) 

absolute convergence; (2) insensitivity to nearby zeroes; (3) capability of locat- 

ing multiple-order zeroes; (4) ability to self-start ; and (5) fast convergence. In 

addition, a good search algorithm should be also a good iteration procedure. 

We would like to remind the reader that Newton’s method is an “inverse” 

method. All such methods suffer from a lack of absolute convergence. This is 

because in between the roots there are many points of zero derivative, where an -. 
inverse method will yield a next guess that is infinitely far away. 

In order to avoid that problem, we have developed a “reciprocal” method based 

on a simple ratio test for convergence. This method fulfills all five requirements 

listed above. It is used in the search algorithm and not in the iteration algorithm, 

because Newton’s method is so simple. Once a starting point close enough to the 

root is obtained by the reciprocal method, Newton’s method is fast and reliable. 

The reciprocal of a given polynomial, Eq.(B.l), can be written as the sum of 

partial fractions.* The partial fractions are:- 

T(X) = kl 
-+ 

k2 k3 
-+- 

x - a1 x - a2 x - a3 (B-3) 

Here, ~1, ~2, u3 are the roots of the original polynomial (real and/or complex), 

and kl, k2, k3 are the residues. We further assume that these partial fractions are 

ordered so that al 5 u2 5 ~3, etc. 

* The partial fractions are used here for derivation purposes only, and are never actually 
evaluated. 
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Concentrating our attention for the moment on the first fraction and, without 

loss of generality, considering the case of El = 1, we have the Taylor series 

r(h) = -& - + - $ -. . . - (h/a1 >” - . . . , 
a1 

P.4) 

where h is the step size used to expand the series. We apply the ratio test for con- 

vergence, and eliminate the common negative signs and the ai in the denominator. 

The ratio R is given by 

(h/a1 1” 
R = (h/al)n-l = & ’ P-5) 

This simple result has two important implications: (1) The Taylor series for an 

isolated simple pole (the reciprocal of a single zero) is a perfect exponential. On a 

semi-logarithm plot, this Taylor series will appear as a straight line. (2) When the 

step size for expansion is equal to the location of the zero (h = al), this straight line 

will be perfectly horizontal. Therefore, the reciprocal algorithm is an extremely 

simple one. If we can assume that there is an isolated single zero, two adjacent 

terms of the Taylor series of the reciprocal of the polynomial can yield the location 

of that zero. 
h 

a1 = - 
R (B.6) 

Since the step size h is under our control and therefore known, the location of the 

zero can be easily found. 

Of course, this is an oversimplified picture. Widening the scope a bit, we 

include the next nearest zero as follows. The general Taylor term for a sum of two 

partial fractions is given by 

n - th term = - h (h/a,)” b( h/a$ - 
a1 (32 

= kl(;yl)” 1 + ;(al,a2)“+’ . - 
[ 1 1 P.7) 

Since al < a2, the second term within the square brackets will be negligibly small 

65 



when n is large. This is independent of the relative magnitudes of the two k’s. One 

merely needs to advance to a higher order term of the Taylor series to overcome 

the necessity of including the Taylor term for the second zero. 

Thus the reciprocal method consists of (1) evaluating the Taylor series for the 

reciprocal of the polynomial and (2) examining the ratio R for a sufficiently high 

order, where it becomes a constant. All the effects of the secondary zeroes will be 

washed out at such a higher order. Equation (B.6) is the basis of the reciprocal 

algorithm. 

Of course, real life is not that simple. Iiowever, in the reciprocal method 

there are no inherently debilitating conditions similar to the non-convergence of 

the inverse methods. We do have to be concerned with finite computers, finite 

length Taylor series, closeness of the secondary zeroes, multiple zeroes, and the 

like. But, they can all be accounted for in the fine tuning of the final computer 

code for the algorithm. Details of such fine tuning do not deserve attention here. 
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