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Abstract 

The minimal supersymmetric Standard Model contains two Higgs doublets 
which must mix via a mass parameter whose magnitude remains to be explained. 
We explore an extension of the minimal model to include a singlet Higgs field 
whose vacuum expectation value determines the mixing. We study the spectrum 
and couplings of Higgs bosons in this extended model, and compare them with 
those in the minimal model. We examine a number of limiting cases analytically 
and also make numerical studies of the extended model both with and without con- 
straints from the renormalization group analysis of a parent superstring-inspired 
GUT model. We establish the conditions for there to be a charged Higgs boson 
lighter than the IV*, and the circumstances under which there is no light neutral 
Higgs boson. With a particularly simple set of boundary conditions at the uni- 
fication scale, the renormalization group equations imply that one or more Higgs 
bosons are light enough to be found at LEP or SLC, and that many supersymmet- 
ric particles should be accessible to these accelerators and the Fermilab Tevatron; 
relatively few would require the SSC, LHC, or a TeV scale e+e- collider for discov- 
ery. Finally, we analyze the possible production mechanisms and phenomenological 
signatures of the different Higgs bosons at these machines. 

1. Introduction 

It is commonly agreed that the Higgs sector of the Standard Model is unsat- 
isfactory because the squared mass parameter p2 of the minimal Higgs potential 
V(H) = -p21H12 + X(IH12)2 is not naturally of order m&. Radiative corrections 
to ,v’ in the Standard Model are. quadratically divergent, being 0(f)A2 where A 
is a cut-off in the loops. Therefore, even if one could find an explanation why 
p2 was small at the tree level, one would be left with the question why radiative 
corrections were not much larger than the physical value of ~1~. These are the two 
aspects of the hierarchy problem of understanding why mH = &?p is much less 
than the Planck mass mpl and other candidates for a fundamental mass scale such 
as a GUT scale mx. 

Control of the radiative corrections so that a small value of p2 (and hence 
rn& and m$) becomes natural was the primary motivation of the supersymmetric 

Standard Model! A light Higgs sector (m‘$ << m&) is natural in a softly broken 
supersymmetric model since the quadratically divergent loop contributions cancel 
leaving a finite correction of the form 6rng = 0 (:) (rni - mg), where mg,F are 
the masses of the bosonic and fermionic partner particles circulating in the loops. 
In order to give masses to all the quarks and leptons, and to cancel gauge anomalies, 
at least two Higgs doublets HI, H2 are required in a supersymmetric version of the 
Standard Model.* The physical spin-0 particles in the minimal supersymmetric 

-7 F or reviews and references, see ref. 1. 
* In our conventions, HI is the Higgs coupled to’charged leptons and down-type quarks, Hz 

the Higgs coupled to up-type quarks. 
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Standard Model are then a complex charged Higgs C*, two neutral Higgs scalars 
Sr , S2 and one neutral pseudoscalar Higgs P (see ref. 2). The properties of the 
Higgs bosons, including masses, mixing angles and couplings? are determined by 
an effective scalar potential, V, which contains supersymmetric terms 

& = c IF;12 + c $ [D,12, 
i a 

(14 

where the F; are derivatives of the superpotential W with respect to scalar fields @: 
Fi G aW/aq+, and the Da are D-terms corresponding to the different factors of the 
gauge group SU(3)c x sum x U(l)y, with couplings g9, g, and g’, respectively. 
Most expected terms in W are trilinear, but there could in general be a bilinear 
term W 3 pHlH2 which would give 

6 3 p2 [lHd2 + lH212] (1.2) 

in obvious affinity with the squared mass term in the Standard Model. The effective 
scalar potential also contains soft supersymmetry-breaking terms of the general 
forms 

K = c 
i 

C AijkXijk$i&dk + h.c. 
i,j,k 

(1.3) 

where the parameters Aijk are expected to be of order m;, and phenomenology 
requires lrnil = O(mw). If W contains a bilinear term pHlH2, one would also 
expect a bilinear supersymmetry-breaking term 

VI 3 BpHlH2 + h.c. (1.4) 

where B is also expected to be of order m;. This latter term is essential if the 
pseudoscalar P is to avoid being an unacceptable electroweak axion in the super- 
symmetric Standard Model with 01 and ~2 # 0. With a term of the form given in 
eq. (14, 

-2Bp 
m$=- - 

sin2P * 
tanP-% : 

01 
vi = (OlH;olO) (l-5) 

and all is sweetness and light. 

Softly broken supersymmetry ensures that radiative corrections to p are now 
under control so that ~1 = O(mw) << mpl is technically natural, thus solving 
the easy part of the hierarchy problem. However, such a model does not provide 
any dynamical reason why ~1 should be so small in the first place. The simplest 
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mechanism that provides a dynamical source for a term of the form eq. (1.4) is 
the inclusionL3] of an additional singlet Higgs field N. Then, if the super-potential 
contains a trilinear term 

W 3 XNHlH2, (1.6) 

and if N develops a vacuum expectation value (N) - x, a bilinear HI Hz mixing 
term with 

p = xx (1.7) 

is generated.* In the presence of soft supersymmetry breaking, one would expect 
x = qw1> = qmw>, and hence p = O(mw) << mpl. Just such a mecha- 
nism operates in many superstring models based on Es [*I and SU(5) x U( 1) GUT 
groups I51 in which the renormalizable superpotential is purely trilinear, and auto- 
matically contains a coupling of the form (1.6) to some singlet field N. 

We should mention at this point, for completeness, that alternative mecha- 
nisms for generating the term in eq. (1.4) have been proposed:-” -If the vanishing 
of the tree-level values of p and B is due to an exact global symmetry of the theory, 
then non-zero values cannot be generated by higher order corrections. But such a 
symmetry could be broken. If the breaking is spontaneous, it should occur at a 
scale of order 10’ - 1012 GeV, in order for the couplings of the associated Gold- 
stone boson to be sufficiently weak to be phenomenologically acceptable. Then, 

*once supersymmetry is broken, radiative corrections could generate a Bp of order 
(;>(mi-m2,)!“’ If th e b reaking is explicit, a radiative generation of Bp could still 
occur!” Another mechanism!’ operating at the tree-level, would proceed via non- 

( > 
1 

n-l 
renormalizable terms in the superpotential of the form mpl c#P H1 Hz, where 

4 is a gauge singlet acquiring a vacuum expectation value at some intermediate 
mass scale (4) = A4 < mpl. Yet another recent proposal PI starts from a super- -. - 
gravity model whose superpotential is purely trilinear in the observable sector, 
but contains an explicit mass scale A4 - lOlo - 1011 GeV in the hidden sector 
which breaks local supersymmetry. If the Kahler potential mixes the hidden and 
observable sectors in a peculiar way, then a p - (M2/mpl) - mw is generated 
in the corresponding low-energy theory with softly broken global supersymmetry. 
Still, the origin of HI-HZ mixing presented in the previous paragraph seems to us 
the most appealing, and emerges in several of the phenomenologically acceptable 
superstring-based models. 

This paper is devoted to the phenomenology of the minimal extension of the 
supersymmetric Standard Model characterized by eqs. (1.6) and (1.7), focusing in 
particular on the Higgs bosons and on their couplings. The physical spectrum of 

- 

* As we will see in Section 2, in order to avoid an axion there must also be other terms in W, 
such as ;N”. 
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the extended model contains two additional neutral Higgs bosons: one a scalar and 
the other a pseudoscalar. In Section 2 we discuss the general form of the effective 
Higgs potential and obtain the mass matrices for the charged and neutral spin-0 
bosons. In Section 3 we consider various limits of the extended model, including 
that in which the minimal supersymmetric Standard Model is recovered. In Sec- 
tion 4 we explore the space of model parameters consistent with the fundamental 
requirement of a correct gauge symmetry breaking. We emphasize that charged 
Higgs bosons lighter than the IV* may occur in the model (in contrast to the 
minimal supersymmetric Standard Model), whilst the mass of the lightest neutral 
Higgs boson can range from a few GeV to 0 (100 GeV). In Section 5 we perform 
a renormalization group analysis of the parameters in the effective low-energy po- 
tential, assuming a simple plausible pattern of supersymmetry breaking within a 
possible embedding in a superstring-inspired GUT, e.g. SU(5) x U(1). We dis- 
cuss the resulting restrictions on the possible range of masses and parameters as 
allowed by the basic constraints considered in Section 4. In Section 6 we analyze 
the couplings in the extended model, discovering that it is possible for the lightest 
neutral Higgs to have small couplings to vector bosons. In Section 7 we discuss 
the phenomenological signatures of the extended model, contrasting it with the 
minimal supersymmetric Standard Model. Finally, in Section 8 we present some 
concluding remarks. 

2. Higgs potential and mass matrices 

The non-minimal supersymmetric model to be studied in the following is char- 
acterized by the superpotential 

W = huQucHz + hDQd”Hl + h,yLe’Hl + XHlHzN - ikN3 + . . . , (2.1) 

where gauge and generation indices are understood, and the sign of the kN3 
term has been chosen for later convenience. The dots stand for possible non- 
renormalizable terms that can be safely neglected when considering low-energy 
processes if there are no intermediate mass scales between mw and mpl, as we 
assume here. In comparison with the minimal supersymmetric Standard Model, 
the Higgs mixing term W 3 pH1 Hz has been replaced by the trilinear coupling 
W 3 X HI Hz N, where N is a gauge singlet. We remind the reader that the form of 
the superpotential is scale-independent: if bilinear terms are absent at tree-level, 
they cannot be generated by renormalization. 

Supersymmetric models with the structure (2.1) have already been considered 
in the literature, and several potential problems have been pointed outt6”‘: 

1. If k = 0, the lagrangian has a global U(1) symmetry corresponding to 

N+Ne ie HlH2 + HlH2e 49 
(2.2) 

which is spontaneously broken by the v.e.v.s of the Higgs fields. In order to avoid 
an unacceptable axion associated to this symmetry, one has to introduce into the 
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superpotential some additional coupling (like the kN3 coupling of eq. (2.1)) which 
explicitly breaks that symmetry. 

2. If the following two conditions are satisfied: (i) there are renormaliz- 
able couplings between the singlet N and superheavy chiral multiplets, and (ii) 
supersymmetry-breaking mass splittings inside the superheavy chiral multiplets 
are of order da, where M is some superheavy scale, then the hierarchy 

“I nzw << M tends to be destabilized by radiative corrections. However, there 
is no reason to expect that both of these two conditions are satisfied. For example, 
in a recently proposed superstring-inspired SU(5) x U(1) model[51condition (i) is 
violated. Even in models where (i) is satisfied, it might well be that inside super- 
heavy multiplets the supersymmetry-breaking mass splittings are O(m&): only in 
the presence of a specific mechanism for supersymmetry breaking can one make a 
definite statement. 

3. The lagrangian associated to the superpotential of eq. (2.1), even after the 
addition of the most general soft supersymmetry breaking terms, has a discrete 
23 symmetry, corresponding to a phase transformation of N of the form N + 
CVN o3 = 1, accompanied by suitable transformations of the remaining fields. 
Thii symmetry, if spontaneously broken in the vacuum, could create a serious 
cosmological domain wall problem. However, it has been shown in ref. 10 that 
a non-renormalizable term - N4/mpl in eq. (2.1) would prevent the density of 
domain walls from becoming large enough to cause cosmological problems, while 
being much too small to impact the low energy phenomenology of the model that 
we focus on here. 

Assuming that squark and slepton fields have vanishing vacuum expectation 
values, we can restrict our attention to the part of the scalar potential involving 
only the Higgs fields HI = (Hf , H-), Hz c (H+, Hi) and N 

VHiggs = VF + VD + Vsoft, P-3) 

VF =IX12[(IH112 + IHz(~)IN~~ + IKHz(“] + Ik121N14 
-(Xk*HlH2Nt2 + h.c.) - IA12(H,011,0H+*H-* + h.c.), 

(2.4) 

VD = $(H$H, + H,tZHl)” + $(lH212 - IHl12)2, P-5) 

V soft =mgl IHl I2 + m~21H212 + m&IN2 
-(XAxHlH2N + h.c.) - (;kAkN3 + h.c.). 

(2.6) 

The absence of an explicit soft supersymmetry breaking term of the form given in 
eq. (1.4) is a natural assumption. If such a term is absent at the grand-unification 
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scale then the renormalization group equations [“I imply that such a term is not 
generated in evolving down to the low energy scale. To fix unambiguously the 
notation, HlH2 E HfH!j’ - H-H+, a’ G (cl, a2, a3) are the Pauli matrices, and 
stars denote complex conjugation. In general X, k, Ax, Ak can be complex numbers. 
Redefining conveniently the global phase of the fields H2 and N one can always 
assume, without loss of generality, 

XAx E R+, 

Moreover, the requirement of no explicit 

kAk E R+. (2.7) 

CP violation in the scalar sector gives 

XL* E R. (24 

- 

In the real world, we know that CP-violating observables are small, so the as- 
sumption (2.8) may not require large corrections. A simple solution to (2.7),(2.8), 
which will be assumed in the following, is to take X, k, Ax, Al, E R. Making an 
sum X U(l)y gauge transformation, it is not restrictive to assume: 

v+ = H+ =O, ( > v2 I (Hi) E R+. (2.9) 

One can then write 

( VHiggs > ( = Let&al > + (r/charged) 7 (2.10) 

where 

WneutTal ) =X2(ls121v1)2 + 1~1~~; + lv112v;) + k21s14 - xlcv2(v,*z2 + vlz2*) 

+g2 ; g’2 ( lv112 - ?I,“,” + m&l lull2 + mgv,Z + mklxl” (2.11) 

-XAxv2(vlz + V;IC*) - +$(x3 + x*3) 

and 

V charged ) =lv-12 [rng2 + X21x12 + $(/vl12 + v,“) + $,lvll’ - V:)] 

+g2 + d2 
8 lv-14* 

(2.12) 

We now analyze the potential of eqs. (2.11) and (2.12). Note that, in contrast 
to the minimal case, in the present model one has to check for the absence of 
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charge-breaking minima with v- # 0. The condition for v- = 0 to be a local 
minimum is 

m2H, + A21x12 + $(lv12 + v,“) + f(lv12 - vg) > 0, (2.13) 

which is equivalent to the requirement that the physical charged Higgses of the 
model have positive mass-squared. It will be straightforward to delineate the pa- 
rameter constraints required in order that this be true. However, we will see 
later that condition (2.13) d oes not always guarantee that v- = 0 corresponds 
to a global minimum. Next we note that the presence of three different terms in 
(Keutral ) which depend on the phase of the vevs vr and z allows in principle for 
spontaneous CP violation. A sufficient condition for the vacuum to conserve CP is 

XL E R’, (2.14) 
- 

which we assume hereafter. If (2.14) holds, the minimization condition on the 
phases of vr and x gives rise to three equivalent vacua. Defining x E psei+O, 
vl = pl e41, for pa, pr E R+ they are given by 

40 = 0, 41 = 0; qhl = p, 451 = f; q$o = ;, 41 _ “3”. (2.15) 

We will work in the first of these vacua: as noted above, the degeneracy between 
them can be broken without impacting the low-energy physics we study here. 

For values of the parameters such that the minimum of Vfliggs corresponds 
to vr,vz, x > 0, one can use the minimization conditions to re-express the soft 
supersymmetry breaking masses rngl, rnkz, rng in terms of the three v.e.v.s and 
of the remaining parameters X, k, Ax, Al, 

m‘$ 1 =XAxF - X2(x2 + v,", + Akg + 
Vl 

g2 ; g’2 (v,” - vf), 

m2H, =XAxF - X2(x2 + VI, + Ak$ + g2 i g’2 (VI - v,"), 

v2 

rn$ =XAx y + kAkx - X2(vf + v;) - 2k2x2 + 2Xkvlv2. 

(2.16) 

Taking into account the constraint m2 - ’ 2 2 w - 2g (vr + v,“), one can then express the 
mass terms for the Higgs fields in terms of the six parameters X, k, Ax, Ak, x and 
tan p. 
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The physical charged Higgs field is given by 

C+ E cos ,OH+ + sin PH-*, (2.17) 

while the orthogonal combination corresponds to an unphysical Goldstone boson. 
The squared mass of the charged boson ((2.17)) is given by 

m& = m& - A2(vf + v,“) + A(& + kx)&, (2.18) 

which may be less or greater than m&, depending upon the relative sizes of the 
last two terms. (Note that the last term must be positive definite as a result of 
eqs. (2.7) and (2.14).) B ecause of their frequent occurrences, it will be convenient 
to define 

AX E Ax + kx (2.19) 

as well as 

V+jGj (2.20) 

re: 
V 

and also 

(2.21) 

(2.22) 

Decomposing the neutral Higgs fields into their real and imaginary components 

H; ,H:R •,- iHfI 
Jz 

H,o ,HiR + iHiI 1/2 NEN~+iN~ 
a ’ 

(2.23) 

the corresponding mass matrices decouple. After expressing H$ and H.& in terms 
of the neutral Goldstone boson Go - cos ,OHyI - sinPH.$ and of the orthogonal 
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combination of fields A0 s sin ,BHfI + cos ,f?H$, the squared mass matrix for the 
two physical ‘pseudoscalar’ neutral Higgses reads 

MS= 
ML& Xv(Ac - 3kx) 

Xv(Ac - 3kx) XAcy + 3kAkx + 3Xkvlv2 > 
(2.24) 

and the solution of its eigenvalue problem is a matter of elementary algebra. We 
first note that the resulting eigenvalues rn& and rnc2 are guaranteed to be positive. 
This is because both the determinant and the trace of M‘$ are positive given eqs. 
(2.7) and (2.14). It is most useful to write the results in terms of the entries in 

M$Z 
R S 

( > S T * 
Let us define the matrix Up to be that which transforms from 

the A”-N1 basis to the diagonal mass basis Pr-P2, i.e. 
- 

Writing 

we find 

-2s 
sin2y = ,/(T _ R)2 + 4~2 

T-R 
cos2y = ,/(T - R)2 + 4~2 

and eigenvalues 

mk~z = ; [(T + R) T I/-] , 

where 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

T * R = Mu-w:! + 3k(x& + X7-71~2) f 

XAcxv2 
S = Xv(Ac - 3kx) . 

X 0102 ’ 

(2.29) 
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The angle y may be chosen between 0 and 7r according to 

f [O,;] S<O, T> R 

[$$I S<O,T<R 

[;,%I S>O, T< R 

[+] S>O, T>R. 

(2.30) 

In terms of the original H~I-H~I-NI basis, the two physical pseudoscalar states are 
given as: 

(2.31) 

- 

Limiting cases of the pseudoscalar states are considered in Section 3, and exact 
numerical results in Section 4. 

The squared mass matrix for the ‘scalar’ neutral Higgses HFR, H& and NR 
takes the form 

j>: I Ay2 -Acx + y(2X2 - g2) v2[y - kx - AX] 

X -Acx + y(2X2 - g2) c9 + Arl q[y-kx-AX] . 

v2[y - kx - Ax] q[v - kx - AX] 4k2x2-kAkx + Axvlv2 
x 1 

x (2.32) 
It is not useful to present analytic results for the diagonalization of this matrix. 
We refer the reader to Section 3 for certain limiting cases, and to Section 4 for 
numerical results. 

As a general point of notation, for both the pseudoscalar and the scalar Higgs,, 
the components of the eigenvectors in the HF-H$-N basis will be denoted by P& 
and Sj, respectively, where i = 1,2,3 indicates HT, Hi, N, cr = 1,2 denotes PI, P2, 
and a = 1,2,3 denotes Sr, ,572, S’s, the mass eigenstates of eq. (2.32). It should 
be noted that we label the S, and P, in order of increasing mass. It will also be 
convenient to define a two component charged Higgs eigenvector 

c+ EC- T sinp - 
( > cosp ’ (2.33) 

so that C:, I = 1,2 denotes the two components given above. Finally, we define 
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the matrix Us as 

us = (2.34) 

Since we are assuming that the Higgs sector conserves CP, Us is a real orthogonal 
matrix. Thus, for instance, 

. (zj) = (;)+~w(~~)? 
or in component form 

- 

ReHf =q + -$[Si& +SiS2 +S3153] 

Re H; =v2 + 5 [S&Y1 + S,2S2 + S&] 

Re N =x +, 5 [SfSl + SiS2 + SiS3]. 

(2.35) 

(2.36) 

This eigenvector notation will be useful in specifying the couplings of the Higgs 
bosons to other particles and among themselves. 

3. Special Limiting Cases 

The specific predictions of the model described in the previous section depend 
on the physical mass eigenstates of the pseudoscalar and scalar Higgs mass ma- 
trices. The pseudoscalar mass matrix is 2 x 2 and can be easily diagonalized; the 
corresponding masses and eigenstates have been given in eqs. (2.28) and (2.31). 
The scalar mass matrix is 3 x 3, so no simple analytic expressions for the masses 
and the eigenstates can be obtained. Nevertheless, there are various limiting cases 
in which the scalar Higgs masses and mixing angles can be evaluated perturba- 
tively. In this section, we examine three limiting cases: (i) x >> 01, ~2, with X and 
k fixed; (ii) x >> vl,v2, with Xx and kx fixed (and non-zero), and (iii) x < 01 
and 02. Case (ii) is of interest, since in this limit the minimal supersymmetric 
model with two Higgs doublets and no Higgs singlets is obtained. This allows us 
to examine the nature of the deviations from the minimal supersymmetric model, 
due to the singlet Higgs field. It should be emphasized that not all of these limits 
may be numerically relevant to models which emerge from renormalization group 
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analyses. Moreover, unlike the case of &-based models,[” where x is related to the 
mass of a new 2’ gauge boson, and is therefore likely to be larger than 01 and 
~2, the parameter x in our model is not so constrained, and small values of x as 
in our case (iii) become possible. The analytic results obtained in this section are 
useful for two reasons. First, they provide a guide to the behavior of the system 
in general, and secondly they provide checks on the numerical analysis which we 
later perform. 

Limit of x >> 01, v2 [A, k fixed] 

We may diagonalize the scalar mass matrix (eq. (2.32)) perturbatively in the 
parameters WI/X and w~/x. In the formulas we present below, we shall assume 
that Ax is of O(x). In particular, our formulas break down if Ax increases faster 
than x as x gets large. Among the three scalar mass eigenstates, Sl, S2, and S3, 
we find that Sr and S2 are dominantly HI and H2 (with msl < ms,), and S3 is 
dominantly N, in the large x limit. In this limit, the tree-level (squared) masses 
are: 

- 
2 - 

mS1 - m2, cos2 2/3 + X2v2 [sin22,B - 6 (X - i(k + Ax/x)sin2p)2] (3.1) 

2 2Xx& cos2 
ms2 _ - 

sin 2p 
+ [m2, - X2v2] sin2 2/3 

X2v2(k + Ac/x)2 2,8 
- 

4k2 - * 
(3.2) 

2 

mS3 2 =4k2x2 - kAkx + $ X - i(k + Ax/x) sin2,B 
> 

+ X2w2(k + AC/x)2 cos2 2p 

4k2 - * 

(3.3) 

The corresponding mass eigenstates, in this approximation, are conveniently 
summarized by the matrix Us (see eq. (2.34)): 

cos p sin p &V [2X - (k + AX/X) sin ‘V] 

-sinP cos/3 zs 
(k+Ac/x) cos 2/3 

&--Sk 7 (3.4) 

us u,s, 1 

where 

[aA -(k+A~/x)sin2P]cosp _ (k+Axf)cosWsinP , (3.5) 
2k zzp - 2k 1 



- 

Xv 
G3 = z 

[2x - (k + Ax/x) sin 2p] sin p + (k + Ax/x) cos 2,B cos ,L? 
2k x 2k 1 , (3 6) 

zzp- 

and terms of 0 (A) h ave been dropped. Note that these forms imply that S3 is 
mainly Re N - i-at large x. 

Results for the pseudoscalar Higgs masses are: 

rn& = 3kxAk, 2 _ 2Xx& 
rnP2 - - sin 2p , P-7) 

and the mixing angle y of eq. (2.27) has th e lmit y + 7r/2, implying that PI is 1’ 
mainly Im N, while P2 is a mixture of Im HF and Im Hi. Thus, like S3, PI tends 
to decouple from non-singlet matter fields. This decoupling for these two Higgs 
bosons implies that they would be essentially impossible to produce or detect in 
the large x limit. 

By examining the above equations, we may make a number of useful remarks. 
First, we note that m2 s1 is not obviously positive. This imposes a certain constraint 
on the parameters of the model, in order that the vacuum be stable. To give an 
example, suppose that v1 = v2 (so that cos 2p = 0). Then rnil 2 0 implies: 

k2 Ik+$-A~; for v1 = 02 

If Ax is of O(x) then we deduce that Ax 5 2xX. This in turn imposes an upper 
bound on the value of the charged Higgs mass: 

rn& 5 2Xx2(k + 2X), for ~1 = v2 (3.9) 

(where we have displayed only the leading term in x). For 01 # 02, the expressions 
become much more complicated but similar conclusions can be drawn. 

A second condition can be derived by requiring that rnis > 0. To leading 
order in x, we obtain Ak 5 4kx. Note that in the limit of large x, all other 
scalar and pseudoscalar mass-squares are positive. However, even if the symmetry 
breaking vacuum is stable, we must check that it is a deeper minimum than the 
symmetric vacuum. This condition imposes a second independent requirement on 
our parameters. The general condition works out to be: 

X2v2x2 + (Xvlv2 - kx2)2 > XAvlvax + tkAkx3 + krniv’ cos2 2/? . (3.10) 

In the limit of large x, this second condition reduces to Ak 5 3kx, which is a 
slightly stronger requirement than the one previously obtained. 
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Next, we examine relations among the Higgs masses imposed by supersymme- 
try. First, we recall mass relations which have been obtained in other supersym- 
metric extensions of the Standard Model! In the minimal supersymmetric model, 
there is no singlet Higgs field N. In this minimal model, two parameters-tanp 
and one Higgs mass-are sufficient to fix the remaining Higgs masses and scalar 
Higgs mixing angle. The Higgs mass relations in the minimal model are: 

- 

mg=m$+m& 

1 
m&,s2 = - 2 ( 

m”p + m2, F J(ml, + m$)2 - 4mbm$ as2 2P 
> 

(3.11) 

(3.12) 

By convention, we take msl 5 ms,. Furthermore, there is only one pseudoscalar 
in the minimal model, which we denote by P. The above relations imply that the 
Higgs masses are restricted such that: (i) msl 5 mp, (ii) msl I rnzl cos 2/3/ 5 mz, 
(iii) rns, 2 mz, and (iv) mc 2 mw. Furthermore, eq. (3.12) implies the sum rule: 

2 - rnil +ms2 -m$+m2,. (3.13) 

&based models, in which the “low-energy” electroweak group is larger than 
sqqLxu(l)Y, inevitably contain extra SU(2),5 x U( 1)y singlet Higgs [4,1’&131 scalars. 
Note that the latter transform non-trivially under Es, unlike the N-field in our 
model which is a singlet under the full gauge group. In models with an extra 
low-energy U(l), eq. (3.11) is typically violated in the following fashion: 

m&=m~+m~-X2v2+0 mZ 
( > rnzt ’ 

(3.14) 

where 2’ is the new gauge boson resulting from the extra U(l), and is presumed 
to be heavier than the 2. On the other hand, the sum rule given in eq. (3.13), 
when appropriately generalized, remains true: WI 

TrMB = TrMi +TrM$ , (3.15) 

where the traces are taken over the scalar, pseudoscalar and the neutral vector 
boson mass matrices of the extended model. 

15 



We now investigate the extent of the sum rule violations in the non-minimal 
model described in Section 2. Using the exact forms for the pseudoscalar and 
charged Higgs masses. given in eqs. (2.24) and (2.32), we can write: 

21102 m& = Tr M$ + rn& - X2v2 - XAc- 
X 

- 3k(Xv1v2 + Akx) . (3.16) 

Even if we drop terms of 0(1/x), we see that that eq. (3.11) is violated. The extent 
of the violation bears some resemblance to eq. (3.14), but there are important 
differences. First, there is no 2’ in our model, which means that the large x 
limit need not be the relevant one. Second, even if we substitute the trace of the 
pseudoscalar mass matrix for mp, corrections to eq. (3.14) in our model are of 
O(x). Nevertheless, such corrections are still small compared to Tr M$ which is of 
0(x2) in the large x limit. The conclusion in our case is clear: the charged Higgs 
boson can be lighter than the W, unlike the case of the minimal model, where it 
is strictly heavier than the IV. 

Second, in our model (unlike the &-based models), the neutral boson sum rule 
(eq. (3.15)) is violated: 

Tr Mi = rni + Tr MS + 4k[kx2 - Akx - xvlv2] . (3.17) 

Not surprisingly, the sum rule violation is entirely due to the parameter k. Fur- 
thermore, there is no upper limit to the mass of the lightest scalar Higgs boson. 
In contrast to the minimal model, where S1 is necessarily lighter than the 2, we 
see that in the present case, msl can be arbitrarily large, as long as: 

sin2P > 
2x 

3k + AX/x * 
(3.18) 

If this condition holds, then rn& increases without bound as X2 increases. Of 
course, in order for the latter to be consistent with eq. (3.18), k must also increase 
at least as fast as X. Although this behavior is mathematically possible, it is clear 
that any perturbative analysis will break down if X or k are too large. Furthermore, 
the condition of perturbative unification restricts the size of X and k to be no larger 
than O(l), as we shall see in Section 5. Such a condition would therefore lead to 
an upper bound for msl of O(mz). 

Limit of x > ~1, v2 [Ix, Lx fixed] 

We have notkd above that the sum rules of the minimal model are violated in 
any model which contains a gauge singlet Higgs field. We can only restore the sum 
rules of the minimal model by taking the limit of our theory in which x + oo, X, 
k + 0, with Xx, kx, & and Ax held fixed (in which limit Ax is also fixed). As 
in the previous large x case, 5’1 and 5’2 decouple from S3, and Pr and P2 decouple 
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from one another, with S3 approaching Re N - x. The two pseudoscalars have 
masses as given in eq. (3.7). H owever, unlike the previous large x limit with X, k 
fixed, both these masses remain finite (as does ms,) when Xx and Lx are held 
fixed as x + 00. Which mass corresponds to PI and which to P2, depends on the 
relative magnitude of the two masses (which is not fixed in this limit). However, it 
is always the pseudoscalar Higgs with mass 3kxAk which approaches Im N. For 
the purpose of discussion, let us assume that it is this pseudoscalar which is the 
heavier of the two. By our naming conventions, we must then call this pseudoscalar 
P2.* In this case, the angle y defined in eq. (2.26) has the limit y + 0. Then, the 
S3 and P2 would be impossible to produce or detect at accelerators in the limit 
being considered. It is easy to verify that in this limit, ,!?I, S2 and PI satisfy all the 
equations (eq. (3.11)-(3.12)) of th e minimal model; i.e. the sum rules are restored. 
In addition, we may compute the S1-S2 mixing angle, o, in this limit: 

sin2a = 
-(l + y)sin2P 

d1-k y2 - 2ycos4p 

where, 

2XAcx 
Y= rnb sin 2p ’ 

(3.19) 

(3.20) 

(Here, we employ the notation of ref. 2, where -n/2 5 o 5 0.) By choosing Xx 
and kx appropriately, we can arrange for any value of cy we please (subject to the 
restriction just noted). Thus, this particular limit is indeed precisely equivalent to 
the minimal model. If a low-energy Higgs sector were to be observed, it would be 
important to check for deviations from the sum rules predicted by the minimal su- 
persymmetric model. It is interesting to note that although the sum-rule violation 
[see eq. (3.17)] was proportional to k, the deviation from the sum rule exhibited 
by the subset of particles S1, S2 and PI is proportional to X2. The reason for this 
is that for X = 0, the latter set of Higgs fields decouples exactly from S3 and P2, 
and the sum rule is then precisely obeyed. 

Limit of x < vl, 02 

The limit of small x is perhaps more interesting in that it seems closer to the 
typical result which emerges from the renormalization group analysis (see Section 
5). We now exhibit the Higgs boson masses, keeping terms through O(x). The 
tree-level (squared) masses are: 

rnil =irni(1-%) +2XAxxsin2a (3.21) 

* If the pseudoscalar with mass 3kxAk is the lighter of the two pseudoscalars, then y + 7r/2, 
and we must interchange PI w P2 in the following discussion. 
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m2s, = 
XAxv2 sin 2p 

+ 
2XAxx ~- 

2x sin 2p 
kAkx 

(3.22) 

(3.23) 

where o is the Sr-S2 mixing angle in the limit where x = 0. Explicitly, 

sin 2cr = 
[2X%2 - mb] sin 2p 

(3.24) 
rn$ cos2 2p + [2X2w2 - rni12 sin’ 2p 

cos 2cY = 
rn$ cos 2p 

. (3.25) 
m4, cos2 2p + [2X2v2 - rni12 sin2 Z/3 

Note that unlike in the large x limit, the sign of o can be positive or negative (i.e., 
we may take -7r/2 5 o 5 7r/2). Th e corresponding eigenstates can be read off 
from the mixing matrix Us given below: 

( 
-2x sin ,B - sina + Ccoscy coscv + Csino v sin 2p 

us = cosa + Csincr sina - Ccoscr -2x cos p 
v sin 2p 

2x cos(a+P) sin(a+@ 2x 
u sin 2p v sin 2p 1 1 

where we have defined C to be: 

c _ 2XAxx cos 2a sin[2(,L? - cr)] 
rnb sin 4p . 

It is also useful to give the pseudoscalar masses in the small x limit: 

2 _ XAxv2 sin 2,B 
rnP2 - 2x 

18Xkx2 
sin 2p 

+ 

2XAxx 
+ 2Xkv2 sin 2,B + - 

sin 2,B 
+ 3kAkx + 0(x2) . 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

Note that as x + 0, rng2 21 m&. 
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Regarding the field content of the Higgs mass eigenstates, it is important to 
note that in this small x limit, S3 + Re N - x and P2 + Im N. Thus, in this 
limit S’s and P2 decouple from ordinary matter and will not be easily produced or 
detected. This is clearly analogous to the situation found in the large x, fixed X, k 
limit, except that there it was the lighter pseudoscalar PI that decoupled. 

If we check the mass sum rules as before, keeping only the Higgs bosons Sr, 
S2 and PI, then the correct result through O(x) is Tr Mi = mb. Thus, unlike 
in the case of the minimal model, we find here that two scalars are lighter than 
the 2. (Curiously, if we define the trace to sum over all scalars and pseudoscalars, 
including the S3 and P2 states whose masses are growing like l/x, we find: 

TrMi = rn$ + TrM$ - 4kAkx (3.30) 

- 

which approaches the sum rule of eq. (3.15) as x t 0.) The charged Higgs mass 
satisfies: 

2XAxx 
rn$ = rn2, - X2v2 + - . (3.31) 

sin 2p 

Thus for small x, the charged Higgs boson is strictly lighter than the IV, so long as 
large values of Ax are not considered. (In any case, our small x expansion breaks 
down if Ax is too large.) Alternatively, one can use eq. (3.31) to set an upper 
bound on X at a given value of Ax and x: 

X2v2 < m2w -I- 
2Axxmw 

- vsin2P * 
(3.32) 

We can get more detailed bounds on the light scalar masses by examining eqs. 
(3.21)-(3.22). We find: 

m2,1 5 imh + l/ZmzAxx 
V 

(3.33) 

-m2, 1 z/ZnzzAxx - 
2 

5 rni 2 5 Ei 
2 

( 1 + J cos2 2/3 + 
V 

(2”’ -- 
4 

I) sin2 2p > . 

(3.34) 
The upper bound for mi2 ( for which there is no O(x) correction) results from the 
upper bound on X given in eq. (3.32). Th ere is also an upper bound on X coming 
from the requirement m$l 2 0: 

X2v2 -C rni + 
2Axxmz 

- wsin2P ’ 
(3.35) 

However, this is clearly weaker than that of eq. (3.32). Finally, we note that the 
requirement that the asymmetric vacuum be the global minimum (in particular, 
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that it be a lower minimum than the symmetric vacuum) leads to a lower bound 
for X. From eq. (3.10), keeping terms up to O(x), we find: 

X2v2 2 2m2, cot2 2p + 
2fiAxxmz I cos 2,4 

usin 2p ’ 
(3.36) 

The two conditions on X given in eqs. (3.35)-(3.36) are in danger of being incom- 
patible. This leads to restrictions on the other parameters of the model. Thus, at 
small x, eqs. (3.35)-(3.36) are consistent only if 

lm2, 
cot2 2p 5 - 2,2 + 0(x2)* 

Z 
(3.37) 

For example, in the tan/3 > 1 sector this is equivalent to tanp 5 2.09 up to 
corrections proportional to x. 

- 

4. Mass-Spectra without GUT-Scale Boundary Conditions 

In this section we shall give a sampling of the Higgs boson mass spectra, sub- 
ject to only the most basic requirements on the theory. The first requirement is 
that the vacuum expectation value of the potential, (Vneutral), be negative at the 
symmetry-breaking extremum. This implies that the symmetry-breaking configu- 
ration defined by eq. (2.16) is at least preferred over the local extremum where the 
vacuum expectation values of all Higgs fields are zero. The second requirement is 
that this symmetry-breaking extremum be a local minimum of the Higgs potential, 
eq. (2.10). Th is is guaranteed if all Higgs bosons have positive squared-masses. 
Finally, one should require that there be no color/charge breaking minimum that 
is preferred over the color/charge conserving minima we examine. We shall first 
survey the possible local minima without this requirement. We shall then discuss 
the constraints coming from including it in a simplified form, neglecting inter- 
generational mixing and considering only the potential terms involving the third 
generation squark doublet a and singlet @ (with the other squark singlet DC set 
to zero). Even with these simplifications, color breaking restrictions will depend 
on the parameters h, Ah, rn6 and rnc, associated with the colored degrees of 
freedom of the scalar potential. Here, h is the top-quark Yukawa coupling, Ah is 
the corresponding soft supersymmetry-breaking parameter, and rn?- and rnbC give 

9 
the soft supersymmetry-breaking mass terms for the fields a and UC, respectively. 
For further details see Appendix A. Additional restrictions might or might not be 
present depending upon the precise values of these parameters. 

Turning now to the non-colored degrees of freedom, the parameters at our 
disposal are X, k, T, tan ,B, Ax, and Ak. It is not possible to present a full exploration 
of the entire parameter space, and we impose the following restrictions on their 
values. 
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1. We will focus on values of X and k that are favored by the renormalization 
group equations to be discussed in the following section. There are two classes of 
such values. First, it is easily demonstrated that there are fixed points for X and k. 
If the GUT scale values for X and k are of order 1 or larger, the low energy values 
of these parameters will tend to be quite near their fixed point values: 

X N 0.87, k N 0.63. (4-l) 

The second class of values is that obtained by imposing special boundary con- 
ditions at the unification scale. These tend to be characterized by substantially 
smaller values of X, and will be considered in more detail in the next section. The 
corresponding mass spectra will turn out to be much more restrictive than those 
obtained for the values of eq. (4.1), and will be discussed in Section 5. 

2. Next we discuss values of T (defined in eq. (2.21)). Since x # 0 does not 
break any gauge symmetry, the parameter T = x/v is not constrained by neutral 
current experiments. We shall consider three choices for our survey, 

r = 0.1, 1.0, 10.0 ) (4.2) 

although the latter choice will turn out to be quite disfavored in the renormalization 
group analysis. 

3. The value of tan ,L? is largely determined by the top quark mass. We shall 
see in the following section that the renormalization group analysis of radiative 
symmetry breaking always leads to tan ,B values that are larger than 1. This result 
is not peculiar to the particular model that we are discussing; it appears to be 
a general feature of all phenomenologically viable theories that incorporate low 
energy supersymmetry and radiative breaking of the electroweak symmetry: For 
the purpose of illustrating the mass spectra, we shall take tan@ = 1.5 at each r 
value. To give a feeling of the sensitivity to tan ,L?, we shall also consider tan ,L3 = 4 at 
r = 1. We also note that at r = .l there are no allowed solutions once tan/3 ;5 3.3. 

4. Turning to the remaining parameters, we first note that, at fixed X, k, r 
and tanp, a choice for Ax determines the mass of the charged Higgs boson, mc. 
The remaining parameter, Ak, does not enter into mc but must be specified in 
order to fix the masses of the scalar and pseudoscalar Higgs. Our procedure will 
be to explore the allowed range of rnc for the X, k, r and tanp values specified 
earlier, (using mc to fix the value of Ax) and scan over all allowed values of &. As 
mentioned in Section 2, the pseudoscalar Higgses are guaranteed to have positive 
mass-squared, and the allowed range of Ak (recall & > 0 in our phase convention) 
will be determined by imposing 

oL?utraz) < 0, rnB > 0. (4.3) 
Typically, there is a restricted range of mc over which solutions are possible. 
Within this range & = 0 is always an allowed value and the maximum value of 

A- However, this has not yet been proven as a theorem. 
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& is determined by failure to satisfy one of the constraints of eq. (4.3). As Ak 
increases from 0, if (Vneutral) > 0 is encountered before rn& < 0, then there is a 
lower bound on msl, whereas in the converse case the lower bound on m,yl is 0. 

Our results are presented in figs. la-d. A number of features of these results 
are worthy of comment. First, we note that the tan,B = 1.5 results plotted are 
not very different from those obtained at tan ,B = 1. (The smaller value of tan ,B 
yields slightly lower minimum and maximum mc values for r = 1 and 10.) The 
graphs indicate that at small r = 0.1 there is never a non-zero lower bound on 
mS1, whereas at r = 1 and 10, there are regions of mc where msl cannot be zero. 
At tan/3 = 1.5, mc = 0 is allowed for r = 0.1, but for r = 1 or 10 there is a 
significant lower bound on mc. At r = 1 the lower and upper bounds on mc 
increase significantly in going from tan ,0 = 1.5 to tan@ = 4. In the following 
section we shall find that extreme values of r are disfavored for the simplest grand- 
unification boundary conditions at mpl. Thus, the r 2 1 results might be regarded 
as most interesting. For such r values, all Higgs boson masses lie below 1 TeV for 
reasonable values of tan /3. 

Nonetheless, it is interesting to see how closely the r = 0.1 and r = 10 numerical 
results correspond to the r -+ 0 and r --+ oo cases, respectively, studied in the 
previous section. We will only mention a few interesting points. Consider the r + 0 
limit. First, we observe in fig. la that mq and ms3 are, indeed, approximately 
degenerate, as anticipated from the r + 0 limit discussion. We also see from fig. 
la that, for moderate tanp, mc = 0 is allowed but that mc cannot exceed N mw. 
This again agrees with our limiting case analysis. Also fig. la reveals that msl is 
always < mz, that rns, is of order mz, and that rns, is quite large, in agreement 
with eqs. (3.33), (3.34), and (3.23), respectively. However, in one respect we are 
rather far from the strict r + 0 limit. The fixed-point value of X2 that we are 
considering is quite a bit larger than the r + 0 upper bound of ig2 implied by 
eq. (3.32), with x = 0. The reason for this is that the term proportional to Axx is 
not small, since Ax is large. Thus, our r = 0.1 results are not in a domain where 
the strict perturbative approach of Section 3 is applicable. For example, for the 
plots of fig. la we typically find Ax - 500 GeV, implying that the Axx term of 
eq. (3.32) is as large as the “leading” rn& term. Indeed, if no upper bound on Ax 
is imposed, there is no upper bound on X in the r + 0 limit. 

Turning to the large r limit, we note that by combining eqs. (2.18) and a 
bound on mc of the type found for tan,B = 1 in eq. (3.9), we predict that the 
charged Higgs mass should lie within a rather definite range of values. For instance, 
at tan,B = 1 eq. (3.9) predicts an upper bound on rnc of - 3600 GeV, for the 
fixed-point values of X and k and for r = 10. We see from fig. lc that this is rather 
close to the tan/? = 1.5 numerical result. Similarly, the rough limit of & 5 3kx 
obtained from eq. (3.10) is found to be approximately correct in our numerical 
scan at r = 10. Finally, we oberve from our figures that there are indeed two 
rather massive scalar Higgs boson states, and that only S1 can be relatively light 
at large r, in agreement with eqs. (3.1)-(3.3). 

Let us now return to the question of whether or not there are minima of the 
scalar potential that break charge and/or color and that are lower than the local 
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minima we have examined above. Consider first the question of charge breaking in 
the sector of the scalar potential not involving colored fields. Any one of the local 
minima associated with the curves plotted above has completely determined values 
for all the parameters appearing in the scalar potential of eq. (2.2). We may then 
search for charge-breaking minima that have a lower value of ~~~~~~~ This occurs if 
the vacuum expectation values appearing in eq. (2.13) can readjust themselves in 
such a way that ~~~~~~ is more negative while at the same time the (negative) rng2 
term overtakes the other terms, and the coefficient of 10-1~ in eq. (2.12) becomes 
negative. Indeed, we find that this does occur for some of the local minima solutions 
plotted earlier. The effect on the mass-spectra is not, however, very marked. The 
primary result is the elimination of the lowest charged Higgs mass solutions for a 
given value of r. For instance, for the fixed point X and k values, at r = 0.1, mc 
values below N 5 GeV are eliminated! while at r = 1, mc values below N 170 GeV 
yield a preferred charge-breaking mimmum. We expect the solutions with mc near 
0 in the r = 0.1 case to be modified by Coleman-Weinberg[141 loop corrections in 
any case. In addition, we find that the charge-breaking minimum is generally only 
10 to 20% below the charge-conserving local minimum, so that tunnelling would 
be slow. Therefore, in our coupling constant plots to be given later, we will retain 
all solutions with charge-conserving local minima. 

We now consider including the colored degrees of freedom, as discussed in 
more detail in Appendix A. We will assume that the colored fields are all parallel 
in color space. Any conditions that we obtain in order to avoid color breaking will 
therefore be only necessary and not sufficient. However, we note that the SU(3) 
D term (see Appendix A) tends to prefer the parallel configuration. Of course, 
a full renormalization group analysis within the context of the model and with 
definite grand-unification boundary conditions is required in order to determine 
the various parameters associated with the colored degrees of freedom of the scalar 
potential relative to those we have already considered. Examples of such scenarios 
will be considered in the following section. Here, we confine ourselves to picking a 
particular local minimum among those found earlier, and computing the boundary 
in Ai-m% 

Q 
space (for fixed h) which separates the region where color breaking is 

preferred from the region where the particular local minimum being considered is 
the true global minimum. We have chosen to examine the local minimum specified 
by the following parameters: r = 1, tan/3 = 1.5, X = 0.83, k = 0.67, mc = 
220 GeV (corresponding to Ax = 88.4 GeV), Ak = 303 GeV. In addition, we shall 
choose h = 0.5; this is in the general range given by the renormalization group 
solutions considered later. We have also chosen to take rn‘$= = rni. The boundary 

is given in fig. 2. Typically, when color breaking is preferred, the colored field 
vacuum expectation values u and uc (of the left and right-handed stop fields) are 
non-zero and roughly equal. The only other large vacuum expectation value for 
these minima is 2)2, which increases as one moves along the upper (color breaking) 
side of the boundary in the direction of larger Ah. Not surprisingly, it is these three 
vacuum expectation values that occur in association with the hAh term in Vsoft, 
as given in Appendix A. Various suggestions have appeared in the literature P51 -as 

to what types of conditions guarantee that color breaking is not preferred. Our 
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results do not appear to correspond to any of these previous suggestions. They 
c appear to follow more along the lines of the considerations given in ref. 16; as 

shown there, additional subtleties associated with negative mass-squared terms in 
. the soft supersymmetry-breaking potential, and spontaneous symmetry breaking, 

invalidate the naive bounds. 

5. Renormalization Group Analysis 

In this section we consider the constraints imposed by the renormalization 
group equations (RGE) on the parameters of the scalar potential. First, we point 
out the existence of infrared fixed points for the superpotential parameters X and Ic, 
which can be taken as upper bounds on their possible experimental values. Then we 
make a more detailed analysis of the parameter values which lead to an acceptable 
pattern of electroweak symmetry breaking and sparticle masses, assuming that 
supersymmetry breaking can be parametrized at the grand-unification scale by a 
universal gaugino mass term, with the other soft supersymmetry-breaking terms 
generated by radiative corrections. These preferred parameter values are then 
used in the general formulae of Section 2 to make specific predictions for the Higgs 
boson masses within the ranges allowed by the general analysis of Section 4. Very 
stringent constraints on the sparticle masses and on the top quark mass are also 
obtained. 

The renormalization group equations for our model can be trivially obtained 
from ref. 11 and will not be reported here. Let us only stress again our earlier 
remark about linear and bilinear terms in the soft supersymmetry breaking po- 
tential: examining the structure of the renormalization group equations for such 
terms one can check that, if they are absent at one scale, then they must be zero at 
every scale, provided there are no linear or bilinear superpotential terms. In em- 
ploying the renormalization group equations, we make the usual approximation of 
neglecting inter-generational mixing and the Yukawa couplings of the light quarks 
and leptons, keeping only A, Ic, the top Yukawa coupling h and their soft potential 
counterparts. It is consistent to neglect the bottom quark Yukawa coupling as long 
as tan /3 << rnt /mb. The parameters that we evolve are therefore the gauge cou- 
plings gA and the gaugino masses MA [A = 3,2,1 corresponds to sU(3)c, sU(2),5 
and U(l)y, respectively], the Yukawa couplings h, A, k and the corresponding tri- 
linear scalar couplings and soft scalar masses, Ah, Ax, AI, and rnK, rnz 

Q UC’ m$1, 

m&, mg. It is customary to assume the following boundary conditions at the 
unification scale Mx : 

91 =92 =93 -9u, 

Ml=M2=M3-Mu, 

h=hU, X=Xu, k=ku, 

m‘L=m2_ - 
Q UC - "HI 

2 - 2 =mH, -msGrng, 

Ah = Ax = Ak G Au. 

(54 
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In our renormalization group equations, we distinguish between two differ- 
ent regimes. We call M susy the typical scale of the dominant soft supersym- 
metry breaking terms. For reasons to be discussed below, we will assume that 
Mu >> mu,Au. Hence, we can identify Msusy with the gluino mass rnj E MS, 
and we must have Msusy N rni 2 140 GeV to avoid unacceptably small slep- 
ton masses. For renormalization scales Q between Msusy and Mx we use the 
supersymmetric one-loop renormalization group equations, which are known to be 
a good approximation when Msusy < Q. A precise treatment of all the dif- 
ferent particle thresholds around and below Msusy would be very complicated. 
To simplify life, we compute all the soft supersymmetry-breaking parameters and 
minimize the effective potential at Q = Msusy. To establish the connection with 
the low-energy values of the gauge couplings and of the top quark mass, we use 
non-supersymmetric renormalization group equations between mw and Msusy *. 

We note that, in the supersymmetric one-loop approximation, the evolution 
of the dimensionless couplings is not affected by the soft supersymmetry-breaking 
parameters. This allows us to identify non-trivial infrared fixed points for the 
Yukawa couplings X and k, corresponding to the initial values Xu, ku + co. For 
Q = Msusy 21 mw, we find: 

X N 0.87 k N 0.63. (5.2) 

These values can be taken as upper limits on X and k, as was already done in 
Section 4. 

In the following, we will restrict ourselves to a particularly simple choice of 
boundary conditions: 

Mu#O, mu,& = 0, (5.3) 
so that supersymmetry breaking can be described in terms of the single parameter 
Mu. While (5.3) seems to be favoured in some superstring-inspired supergravity 

models:171 the main motivation for assuming (5.3) here is its simplicity! We note 
that we must choose Mu to be positive in order to generate positive Ax and Ak 
values (as required in our conventions) beginning with the boundary condition 
AU = 0. If we recall from the introduction, eq. (1.7), that the effective p pa- 
rameter corresponding to that of the minimal supersymmetric model is positive 
in the conventions of this paper, we see that the renormalization group equations 
with boundary conditions (5.3) imply that the gaugino mass and the effective p 
parameter must have the same sign. This is to be constrasted with the minimal 
supersymmetric modeltzl where, in general, one must also allow for ~1 to have sign 
opposite to that of the gaugino mass. 

* Since Msusy is in general not much larger than mw, the reader might wonder why we 
introduce this new threshold. The reason is that, if one uses naively the supersymmet- 
ric renormalization group equations, some of the parameters (e.g. m$) have very large 
variations between MSUSY and mw , making such an approximation unreliable. 

t Note that the assumptions mu # 0, Mu = Au = 0 and Au # 0, mu = MCJ = 0 would not 
correspond to phenomenologically acceptable scenarios. 
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We now describe in detail our renormalization group analysis. Using as physical 
i input the values a! em(mw> and Q~(wv), we compute the unification mass Mx, 

the unification coupling au E g&/4r and sin2 ew(mw) as a function of Msusy . 
. For instance, for c~~~(rn~) = l/127.9, a3(m~) = 0.115 and Ms~sy = 200 GeV 

we find: 

Mx = 1.4 x 1016 GeV 
1 

9 Q7J = 24.9’ 
sin2 0w(mw) = 0.231. (5.4 

Then, for any given set of boundary values (hi, Xv, Icu), we compute all the relevant 
parameters at the scale Q = Msusy. After checking that our phase conventions 
X4x > 0, kAk > 0 are satisfied, and that X, k > 0 in order to avoid spontaneous CP 
breaking, we perform a computer search for a global minimum of the neutral Higgs 
potential (2.11). Th en, we include charge and colored degrees of freedom in the 
scalar potential (as described in Appendix A) and check that the complete effective 
potential does not have minima of lower energy which break color and/or electric 
charge. Moreover, we keep only minima which satisfy the following conditions: 

X,~1,~2 # 0, 

f < &yg7 Jg$ J$ < 20* 

This allows us to give masses to all quarks, leptons and Higgs bosons and pre- 
vents instabilities with respect to radiative corrections and/or small variations of 
the renormalization scale Q z Msusy. Up to this point, the procedure is inde- 
pendent of the primordial gaugino mass Mu, which can be factorized out of the 
renormalization group equations and of the effective potential. We then fix Mu by 
requiring: 

rn2W = g22(yw)(wf + w,“) = 81 GeV. 

Then we compute the complete spectrum of the model, and we verify that the 
following phenomenological constraints are satisfied. 

Constraints on slepton masses. We require: 

& > 0 to avoid a AL # 0 vacuum, 

mkk, m,-, > 25 GeV as required by e+e- data[“‘, (5.7) 

IJ rni, + rng > 47 GeV as required by UAl data.[lgl 

Constraint on chargino masses. Denoting by 2: the lightest chargino eigen- 
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state, we require 

ma: > 25 GeV as required by e + - data[“‘. e (5.8) 

ASP constraint. This experiment puts a combined limit on the masses of 
the charged sleptons and of the lightest neutralino, denoted here by 2:. A 
sufficient condition to avoid any conflict with the ASP data istzol 

4 rn& R + (6 m-p)2 > 65 GeV . (5.9) 

Constraints on squark and gluino masses. To avoid any conflict with the lim- 
its imposed by UAl and UA2 data:‘] we require 

rn5 > 70 GeV, mg > 70 GeV. (5.10) 

Moreover, in order to avoid instabilities in the effective potential we impose WI 

mg, rni < 500 GeV. (5.11) 

Two important consistency tests on the spectra are the following. After com- 
puting the top quark mass, we verify that the condition tan ,0 << mt/rnb is satisfied 
and that 45 GeV < rnt < 200 GeV, as required by UAl”“’ and neutral current 
data!*’ After computing the gluino mass rn6 [from Mu through the renormaliza- I . 
tion group equations), we verify that M,q~sy N rni. Both tests are satisfied by all 
our solutions: since the typical gluino masses are between 140 and 260 GeV, our 
results are given for Msusy = 200 GeV. 

After observing that the properties of the electroweak vacuum are mainly de- 
termined by h,y and Xv, whilst a wide range of ku values is allowed, we have used 
for our searches an array of (hv, Xv) values, for the three representative values: (a) 
kv = 0.01; (b) kv = 0.1; and (c) ku = 1. The region of the (hu, Xv)-plane which 
gives vacua satisfying all the constraints is given by the area in figs. 3a-c labelled 
by the large capital ‘A’. The solid line delimits the regions where charge and color 
conserving vacua satisfying eq. (5.5) can be obtained. For values of hv that are too 
small and/or for values of Xv that are too large, one is unable to satisfy eq. (5.5), 
while values of hv greater than N 0.18 tend to generate charge-breaking minima: 
as we will see, this puts strong constraints on the top quark mass. The regions de- 
noted by the letter ‘B’ are excluded by the constraints (5.7) on the slepton masses, 
and the regions denoted by the letter ‘C’ are excluded by the constraint (5.8) on 
the lightest chargino mass. The constraints (5.9), (5.10), and (5.11) are weaker and 
do not restrict further the allowed region. Typical ranges of variation for the most 
relevant parameters, corresponding to allowed solutions, are collected in Table 1. 
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A number of comments are in order. As apparent from the restricted range of 
acceptable hu (or h) values, the allowed range of mt is strongly constrained 

75 GeV 5 mt 5 93 GeV. (5.12) 

Of course, one has to keep in mind that this prediction is a consequence of the 
boundary conditions (5.3) and could be slightly weakened when taking into account 
threshold effects, higher loop corrections and uncertainties in the input parameters 
aem and as(rnW). Also, th e a 11 owed minima correspond to relatively light 
sparticle masses: 

rni 5 260 GeV, rni 2 240 GeV, rnnt 5 64 GeV, rn%y 5 36 GeV, 

rnc 5 37 GeV, m,-, 5 85 GeV, m,-, 5 57 GeV. 
(5.13) 

These results should give encouragement to physicists at the FNAL Tevatron col- 
lider, LEP and SLC. To reemphasize, the demand that the renormalization group 
evolution yield an acceptable scalar particle sector (with the observed electroweak 
symmetry breaking, and no charge or color breaking) has led to a highly constrained 
spectrum for all the remaining particles of the model. 

Passing now to the Higgs sector, on which the present analysis is focused, we 
see that many Higgs bosons are light enough to contemplate searches for them 
at LEP and SLC. Note, however, that all our solutions correspond to squark and 
gluino masses safely above the range of values which should soon be excluded by 
the CDF experiment at the Tevatron. Furthermore, the lightest mass generated by 
the renormalization group equations for the scalar Sr is 4.6 GeV: so that it escapes 
the CUSB limitsr5’ Moreover, 5’1 can contain a significant N component, so that 
its couplings and possible radiative corrections to its mass can be considerably 
weaker than in the minimal case. Also S2 and the lightest pseudoscalar Pr can 
be significantly lighter than the 2. The charged Higgs boson is never lighter than 
the W, but never heavier than the 2: this depends on the fact that relatively 
small values of X (X 5 0.28) are favoured by our solutions. The phenomenological 
prospects in experimental searches for these Higgs bosons will be discussed in detail 
in the following sections. Two more comments on our results are in order. First, 
our solutions never allow r to be substantially larger than 1 and, indeed, r < 1 is 
favored (see Table 1): this is related to the fact that x >> ~1,272 requires rn& to be 
negative and large, which can never occur if the singlet N can have only the small 
Yukawa couplings X and k. Second, the lightest supersymmetric particle (LSP) 
can be either the sneutrino V or the neutralino 2:: the first possibility is favoured 
for high values of X, the second for small values of X. The lightest neutralino 3 is - 
in general a full mixture of gr, g2, fi, IV3 and 5, with a dominant fi2 component. 

* This is related to the fact that our solutions turn out to have tan /? > 1.4. For tan p strictly 
equal to 1, mS1 = 0 since the determinant of the scalar mass matrix is zero in that case. 
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A few final observations are appropriate before closing this section. We have 
seen that the assumption of the boundary conditions (5.3) implies X < 0.28 (sub- 
stantially lower than the fixed point value), r 5 1.7, and k 5 0.54. It is interesting 
to ask to what extent the renormalization group restrictions on the remaining pa- 
rameters are stronger than those imposed by the general constraints of eq. (4.3). 
In order to explore this question we have focused on a representative solution of 
the renormalization group equations. For the initial values hu = 0.171, Xv = 0.1, 
ku = 0.1, we obtain at Msusy = 200 GeV: 

X = 0.128, k = 0.097, T- = 0.64, tan,B = 2.04, (5.14) 

and 

Ax = 28.6 GeV, Al, = 0.7 GeV. (5.15) 

The Higgs boson and sparticle masses obtained for this solution are given in Table 
2. To investigate how restrictive for the Higgs boson masses the X, k, r values of eq. 
(5.14) are, we now ignore the specific results of eq. (5.15) from the renormalization 
group equations and scan in rnc and Al, in the manner of the earlier analyses of the 
fixed point X, k values. In fig. 4 we display the mass spectra of the pseudoscalar 
and scalar Higgs bosons for the values of X, k, r, tan/? of eq. (5.14), but with no 
restriction on Ax and Ak. From this figure, it is clear that the small values of X 
and r generated by the renormalization group equations in the above special case 
allow only for a very narrow range of possible Higgs masses in comparison to the 
large X values explored in the previous section. 

6. Higgs Boson Couplings 

In this section we discuss the various couplings of the Higgs bosons that are 
of primary phenomenological interest. In particular, we shall be interested in the 
extent to which the phenomenology of the present model deviates from that of 
minimal supersymmetry and J!& string based models. The latter models have been 
explored in detail in refs. 2, 13, and 26. 

We will explore four basic classes of Higgs boson coupling: a) couplings of a 
Higgs boson to vector boson pairs; b) couplings of a Higgs boson to quark pairs; 
c) couplings of a Higgs boson to another Higgs boson and a vector bosom and d) 
self-couplings of the Higgs bosons. We shall employ the formulation discussed in 
ref. 26, which makes use of the Higgs eigenvector notation, H(j) (j = 1,2,3 for 
Hf, Hi, and N components, respectively). In order to obtain Feynman rules, the 
couplings quoted below should be multiplied by i; the appropriate combinatoric 
factors are already included. 
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HVV Couplings 

i When CP is conserved, the pseudoscalar Higgs have no VV couplings. The 
VV couplings of the scalar Higgs bosons are: 

. 

9s,w+w- =9mw [ cos PS, + sin &S,“] gp” 

z [cos PS, + sin PS,“] gp” , (64 
9s,zz = 

where a = 1,2,3 for ,571, 5’2, or 5’3, respectively, and ~1 and u are the Lorentz indices 
for the two vector bosons. Note that the sum of the squared couplings is equal to 
the Standard Model result, due to the orthonormality of the S, states. 

Hqtj’ Couplings 

All the Higgs bosons have couplings to quark-antiquark pairs. The couplings 
are summarized by the following formulas. First for neutral Higgs bosons we have 

---9mu s,2 
9so?Aii 2mw sin@ 

-9md sj - --- 
“add - 2mw cos p 

iy5g-h Pi 
gpau’ii = 2mw sin p 

iY59”d %i 
gPadd = zrnw cosp’ 

(6.2) 

where u and d are generic up and down type quarks, a = 1,2,3, and cy = 1,2, for 
the scalar and pseudoscalar Higgs, respectively. For the charged Higgs boson, we 
find 

’ SC-ud,C+da = 2~mw [(md tanp + mu cot p) f (md tan p - m, Cot p)y5]. (6.3) 

HHV Couplings 

Once again, we can use the eigenvector notation to succintly summarize these 
couplings. We adopt the convention that all momenta and particles are incoming. 
We will use p to denote the Lorentz index of the vector boson. For W-C+($)Sa(p) 
(a = 1,2,3) we have 

gwrchs, = F(p - P’)~ [S,” cos p - S,’ sin p]. 

For W-C+(p’)Pa!(p) ((Y = 1,2) we have 

9wrc*p, = 7 (p - P’)~ [Pi cos p + Pi sin /3]. 

(6.4 

(6.5) 
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For ZSa(p’)Pa(p) (a = 1,2,3, (Y = 1,2) the coupling is 

. ig 9ZSaPa = 2 cos flw (p - p’)P [Pz cos p + PA sin /3] [S,” cos /3 - S,l sin p] . (6.6) 

Finally, for ZC+(p’)C-(p) and yC+(p’)C-(p) we obtain 

9zc+c- =“z”c”o”sy; (P - P’Y 

9++c- =e(p - P’Y. 
(6.7) 

HHH Couplings 

In summarizing the Higgs boson self-couplings, it will be convenient to establish 
a notation closely related (b u not identical) to that in ref. 26. Using the pseu- t 
doscalar and scalar eigenvector matrices 7’: (o = 1,2) and Si (a = 1,2,3) where j 
can take on the values 1,2,3, and the charged Higgs eigenvectors Ci,Ci 1 = 1,2 
of eq. (2.33), we define the symbols 

I-I;: E c s(gs; 
a,b,c perms. 

n ypky Es; [Pp; + ly$] (6.8) 
nijk 

a+- I=s; [c$" + cic$] . 

In Habc7 a, b, c can take on values from 1 to 3. In IIapr, a can take on values 
from 1 to 3, while /3,r range from 1 to 2. Finally, in II,+-, a can take on values 
from 1 to 3. It should be noted that in the above definitions, all sums are to be 
performed regardless of whether or not some of the a, b, c, ,B, y, or i,j, k are equal. 
For example, in the case of all scalars II$j = 6S13S23S33 and II:;: = 6(S,3)3. Because 
the expression for the Higgs boson trilinear self-couplings are somewhat lengthy, 
we defer them to Appendix B. Contributions to the self-couplings arise from all 
the terms of the scalar potential of eqs. (2.3)-(2.6). 

Results for Couplings in Special Limiting Cases 

In Section 3 we considered several limiting cases of our model. In this section 
we discuss results in these same limits for some of the Higgs couplings of interest. 
At large x, simple expressions for all couplings are possible, while at small x we 
shall focus only on those involving vector bosons, since the quark couplings do not 
take an especially simple form. In quoting results for the quark couplings we factor 
out the common expressions -igmq/(2mw) or -gy5/(2mw) which appear in eq. 
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(6.2). For the vector boson couplings, as given in eqs. (6.1) and (6.4)-(6.6), we 
present the results by retaining only the factors in brackets in the above equations. 
We will denote the relative coupling strengths so obtained by the symbol R..., 
where the subscript will indicate the particular coupling considered. For example 
we define 

gs,w+w- = gmw%,w+w-, gw-c+s, - ;(P - ~‘)~Rw-c+sa, 

gpauti = $R~,uii, - i9 
(P - P’)~Rzs,P,. 

(6-9) 

W 9ZSaPa = 2 cos (jw 

Limit of x >> VI, 7.~2 [-Ax, k fixed] 

We use the explicit form of the Higgs scalar mixing matrix given in eq. (3.4) to 
compute the scalar Higgs couplings. From the formulas given in the previous sub- 
sections, the couplings of interest are easily obtained. Consider first the couplings 
involving vector bosons. In the large x limit we find: 

1 
Rw-cw,, RZP~S~ N 0 22 , 0 (6.10) 

, (6.11) 

Rw-0~3, RZP2S3 N 
Xv(k + AX/x) cos 2p 

2kx A -2k ’ iizp > 

(6.12) 

and 

Rs,wtw-, Rs,zz N 1+ 0 , (6.13) 

1 
Rs,w+w-, Rszzz N 0 22 , 0 

(6.14) 

&w+w-, Rs3zz - -$y [2X - (k + Ax/x) sin2,8] . 

For the quark couplings we obtain: 

Rsluti, Rsldd N 1~ 
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R92uti7 --R~zuii - cot P, (6.17) 

2x cot 2p 
Rw-c-u-3, RZPA N 21 7 

RS,dd, RPzdd N -tan/?. (6.18) 

We remind the reader that the pseudoscalar state, PI, not appearing in the 
above equations is that which decouples from non-singlet fields, as does S3 as seen 
for example in eqs. (6.12) and (6.15). Additional amusing phenomenological points 
can be inferred from the above formulae. For example, at an e+e- collider, at large 
r the 5’1 would be produced only via WW or Z* + 2 + &, while 5’2 and P2 would 
be produced via Z* + P2 + S2. Note also that the couplings of 5’2 and P2 to down 
quarks are enhanced relative to the Standard Model, while their couplings to up 
quarks are suppressed, when tan p > 1. 

Limit of x >> VI, 7.~2 [Ax:, kx fixed] 

As already discussed in Section 3, this limit is such that Sr, S2, and PI play 
the role of the two scalar and one pseudoscalar Higgs bosons of the minimal super- 
symmetry model. As expected, they have exactly the same couplings as found in 
ref. 2 for the two scalar and one pseudoscalar Higgs of the minimal supersymmetry 
model. On the other hand, 5’3 and P2 are completely decoupled and will not be 
detectable. The above remarks assume that it is the heavier pseudoscalar (P2) 
which is nearly pure Im N in this limit, as discussed above eq. (3.19). On the 
other hand, if the parameters should be such that the lighter pseudoscalar (PI) is 
nearly pure Im N, then we must interchange the roles of Pi and P2; P2 would play 
the role of the minimal model pseudoscalar, and PI would decouple. All couplings 
involving a single P2 would then turn out to have the opposite sign from the con- 
vention employed in ref. 2, due to the fact that in this case y + 7r/2. However, 
this sign is purely a phase convention, and has no physical consequences. 

Limit of x << VI, v2 

Once again we use the explicit form of the Higgs scalar mixing matrix appropri- 
ate to this case, eq. (3.27), t o compute the Higgs couplings. We find the following 
results in the small x limit: 

RZPA co@ 4 4XAxx 
cos 2a - 

Rw-cw,, sin2(P a) - - 
rnb sin 4p 

1 9 (6.19) 

Rw-c+sz, Rz4.92 - - sin@ - cr) 1 + 
4XAxx cos 2a cos2(p - a) 

rnb sin 4p 1 , (6.20) 

(6.21) 
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and 

Rs, w+ w-7 Rs,zz - sin@ - a) 1+ 
4XAxx cos 2a cos2 (p - CY) 

m2, sin 4p I 
, (6.22) 

Rszw+w-, Rs,zz - co@ - a> 
4XAxx cos 2a sin2 (,0 - CY) 

m2, sin 4p 1 7 (6.23) 

-2x 
&w+w-, Rs3zz - - . 

V 

As expected, we see that 5’3 decouples in this limit, as does the P2 state not 
appearing in the above formulae. They will be hard to produce and detect. 

Of course, the above limiting cases are rather special and we shall see that 
typical results are often such that the vector boson coupling strengths are shared 
among all the Higgs bosons, and that none of the latter are completely decoupled. 
For this purpose we must turn to a numerical study of the Higgs boson couplings. 

Numerical Results For Coupling Constants 

Among the above couplings it will be useful to present some results for those 
that are critical to Higgs production at hadron or e+e- colliders. At a hadron 
collider, the two most important production modes are gluon fusion via a heavy 
quark loop (sensitive to the qij couplings of the Higgs) and IV+ IV- fusion to the 
Higgs (dependent upon the VV coupling). At an e+e- collider 7 e+e- + vv + H 
via W+W- fusion and associated production via e+e- + Z* + 2 + S will yield a 
usable cross section for a Higgs with sizeable VV couplings, while pair production 
modes such as e+e- + y* -+ C+C- and e+e- + Z* + S + P must be used 
for the remaining Higgs. Thus we first examine the VV couplings of the various 
neutral scalar Higgs bosons, 5’;. The magnitude of gvvsi relative to gvvHsM, 
defined as Rvvsi in eq. (6.9), is plotted as a function of mc in fig. 5a for some of 
the representative choices of tan ,B, r, X, and k considered for the mass plots given 
earlier. In particular, we focus on the two fixed point value cases characterized 
by tan@ = 1.5 and moderate r, r = 0.1 and r = 1. In analogy to previous plots 
related to these cases, at each mc a maximum and minimum value for a given 
coupling is given as obtained by scanning over the values AI, consistent with eq. 
(4.3). 

We see that in the fixed point cases the heaviest scalar Higgs boson S3 tends 
to have VV couplings that are 2 20% of the Standard Model value. This implies 
its production cross section will be 5 4% of the Standard Model value at the same 
Higgs mass, for any production mode requiring the VV coupling. Results for the 
lighter two scalar Higgs bosons are more dependent upon the charged Higgs mass 
(and hence exact scalar mass) and upon the precise k, r, and X case considered. 
We see that it is possible for one of the two light scalars to have most of the 
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VV coupling, but that they might also share relatively equally the VV coupling 
strength. It is clearly possible for the lightest scalar 5’1 to be weakly coupled (unlike 
the minimal supersymmetry case), but this is not preferred for cases generated by 
the full renormalization group analysis. 

Turning to the quark couplings, we present results for the uu and dd couplings 
of both scalar and pseudoscalar Higgs bosons in figs. 5b and 5c. The values of tan p, 
r, X, and k are the same as those considered in fig. 5a. Clearly, there is a large 
amount of variation in the possible coupling strength relative to that found in the 
Standard Model. Generally speaking, every scalar Higgs boson is strongly coupled 
either to down quarks or to up quarks. However, it is the top quark couplings 
which are most relevant in production via gg fusion at a hadron collider and in 
Higgs decay. The figures show that it is possible to have substantial suppression in 
this coupling. Turning to the two pseudoscalars, we observe that qtj couplings of P2 
are generally quite weak, while PI has roughly half the Standard Model strength in 
the coupling-squared. Only that pseudoscalar which is strongly coupled to quarks 
will have a substantial gg fusion cross section at a hadron collider. 

In fig. 5d we plot the value of Rzsp, defined in eq. (6.9). A value of Rzsp - 1 
results in an e+e- + Z* + S + P cross section of order 0.1 unit of Rpt z a/apt, 
in the absence of phase space suppression. We see that PI is likely to be strongly 
coupled to the 2 and at least one of the scalars, whereas P2 is generally weakly 
coupled for these moderate r values. 

The dependence of these results on tanp is quite significant. Only the VV 
coupling is fairly independent of tan p. In general, for increasing tan p values the 
dd couplings are greatly enhanced at the expense of the uu couplings, and large 
changes in the ZSP couplings also occur. 

As a further illustration of the relative coupling strengths, we present results for 
the explicit renormalization group solution of eqs. (5.14)-(5.15), i.e. with A,J (and, 
hence, mc) and Al, fixed at the precise values determined by the renormalization 
group equation evolution. These appear in Table 3. Note that the VV coupling 
is shared quite equally among the three scalar Higgs, that all have somewhat 
suppressed couplings to uu and somewhat enhanced couplings to dd, and that 
ZPlS; couplings are very weak. The PI would thus be very difficult to produce 
at a e+e- collider. In contrast, the light masses for all the S;, combined with 
their having at least l/4 the maximum possible VVSi and Z* + 25’; squared 
couplings, imply large production cross sections in e+e- collisions. For Sl, 5’2, 
and P2 LEP and SLC would be appropriate machines. For instance, 2 + SrZ+Z- 
and 2 + SzZ+Z- decays are kinematically allowed and are determined largely by 
the size of the W loop diagram. As a result they would occur at roughly l/3 the 
SM rate. The small P2 mass and large SiP2.Z couplings also imply substantial 
branching ratios for the decay of a real 2 to Sr P2 and S2P2. The S3 would be 
best produced via e+e- -+ Z* + ZS3; a new generation of e+e- collider, with 
fi ;S 300 GeV, would be most appropriate. At a hadron collider, real 2 decays 
would be a significant source of SlP2 and S2P2 pairs. In addition, gg fusion would 
yield substantial inclusive cross sections for the 5’1, S2 and P2, and be a primary 
production mode for S3. Another possibly useful source of Sl,2,3 production would 
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be via IV* + WSl,2,3. Regarding PI, the absence of VV couplings and its weak 
coupling to tf imply that it is very weakly produced, just as in e+e- collisions. 
Obviously, the weak PI couplings are due to the fact that it has a large Im N 
component. We defer discussion of the charged Higgs and of the decays of the 
Higgs bosons for this special case to the following section. 

To summarize, we have focused in this section on examples in which the value of 
r is moderate. Results at large x >> Q,O~ are somewhat different, especially for the 
pseudoscalars. However, moderate to small r is strongly preferred by the renor- 
malization group. We have seen that the larger parameter space of the present 
model, as compared to the minimal supersymmetric extension of the Standard 
Model, allows for greater structure in the Higgs boson couplings. For example, 
the lightest scalar Higgs boson is not always the one with strongest VV couplings. 
Correspondingly, the cross sections for Higgs production exhibit considerable va- 
riety. Generally, we find that some Higgs will be very difficult to produce (in 
particular, either PI or P2 tends to have a large Im N component, and would be 
unobservable) while others will be relatively easy to make. 

7. Higgs Boson Decays and Branching Ratios 

In the previous section, we have explored the couplings of the Higgs bosons 
of the theory to other Higgs, vector bosons, and quarks. These are the couplings 
that are crucial for production of the Higgs bosons as already outlined. They also 
lead to important Higgs decay modes to final states such as: quark plus antiquark, 
vector boson plus lighter Higgs, a pair of vector bosons, and a pair of lighter Higgs. 
However, in considering the decays of the Higgs bosons, we must also include 
the additional channels involving the supersymmetric states, in particular decay 
modes containing two neutralinos, a neutralino and a chargino, two charginos, or 
a pair of squarks or sleptons. The relevant couplings are easily obtained from the 
diagonalization procedures for the Higgs boson, chargino, neutralino, squark and 
slepton mass matrices that have already been discusssed or refered to in previous 
Sections. We will not give explicit expressions here; they may be found in ref. 26, 
expressed in terms of the Higgs, neutralino, and chargino eigenvectors. (Note that 
the neutralino and chargino mass matrices and states are identical in the & case 
considered there and in the present case.) 

However, there are several crucial points regarding these latter channels that 
will allow us to simplify our branching ratio analysis. First, in the model considered 
in this paper, we have seen that squark masses are never less than 0 (100 GeV) 
and more typically a factor of two or so higher. In contrast, there can be very 
light neutralinos and charginos, and even the heaviest neutralinos and charginos 
are lighter than the squarks. Thus, except for the heavier possible Higgs bosons 
in the fixed point parameter cases investigated in Section 3, squark decays are not 
allowed, whereas a significant number of neutralino-chargino channels are. Even 
for the heavy Higgs bosons with mass 2 0 (250 GeV), for which squark chan- 
nels might be allowed, the neutralino-chargino channels will be dominant. This 
same remark also applies for all Higgs masses in comparing channels with a pair 
of sleptons (which can be relatively light in our model) to channels containing a 
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pair of neutralinos or charginos. This is due to a feature of the squark-slepton 
versus chargino-neutralino couplings to Higgs. The typical squark-squark coupling 
to a Higgs boson is proportional to gmw or gmz leading to a partial decay width 
r(H + a - g2m&/mB. In contrast, the fermion trace associated with Higgs 
decay to a neutralino or chargino pair state brings in Higgs mass factors yielding a 
partial decay width I’(H + 22) - g2mH. Thus the neutralino and chargino chan- 
nels will have a natural enhancement factor of order m&/m2, relative to squark 
and slepton final states. As a result, if both types of decays are kinematically 
allowed, and since the relevant mH values are significantly above mw, the Higgs 
decays into squark and slepton pairs are not an important contribution to the total 
decay rate. This was illustrated in the case of the minimal supersymmetric model 
in ref. 2. Thus we have dropped the squark and slepton channels from our analysis. 

We will illustrate the range of possible Higgs branching ratios in the fixed point 
cases of eq. (5.2) with tan/3 = 1.5 and r = 0.1 or r = 1.0, denoting them by their 
T values in what follows. We remind the reader that in each case we will present 
results obtained by varying over all Al, and mc values that give an acceptable 
symmetry breaking minimum. We have adopted a gluino mass of rnj = 200 GeV 
and a top mass of 70 GeV. Note that the value of my, in combination with the 
stated vacuum expectation value parameters and X, Ic choices, completely fixes the 
chargino-neutralino mass matrix and couplings. This is because a choice for ma 
determines as well the 5’U(2)~ and U(1) g au g ino masses via the renormalization 
group equations. We present our results in fig. 6, which is divided into six parts, 
one for each of the Higgs bosons Sr , S’s, S3, Pr , P2 and C+. In each part we have 
used the value of mc to specify where in mass space (see fig. 1) for a given Higgs 
boson we are. Each part contains two windows corresponding to the two different 
cases outlined above. As in fig. 1, at fixed mc we have varied the remaining 
parameter AI, over the entire range allowed by the requirement of an acceptable 
local scalar field minimum. Thus, for each channel plotted we give the maximum 
and minimum branching ratios, obtained in the course of the AI, scan, as a function 
of mc. The channels considered are: 

1. the sum over all @ quark antiquark pair channels-dominated, of course, by 
the heaviest allowed quark antiquark pair; 

2. the analogous sum over all @ lepton antilepton pair channels; 

3. the sum over all HH Higgs pair channels; 

4. the sum over all VH Higgs plus vector boson channels; 

5. the sum over all VV vector boson pair channels; and 

6. the sum over all Fg neutralino and chargino pair channels; 

Combined, these comprise the bulk of allowed decay modes. Fortunately not all 
the above channels appear in the case of any one Higgs boson. Those that are 
present are indicated on a given figure along with the curve legend. 

We will make a few general observations regarding the content of these figures 
in the case of each of the Higgs bosons. 
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S1 : For all choices of f, the 5’1 can be very light, in which case its decays 
are dominated by QQ and .@ channels. The particular channel or combination 
of channels is determined by the precise value of m,yl. For ms, > 2mb the 
138 channel is dominant, with @ being small. For 2mb > msl > 2m,,2m, 
the r+r- mode is dominant with the CC mode also significant but suppressed 
relative to Standard Model expectations by mixing angle factors. If m.yl < 
2m, the ss mode dominates; this possibility, however, is disfavored by our 
renormalization group analysis. An exception to this dominance by qq and @ 
occurs for r = 0.1 when msl > 2mc (recall that the charged Higgs mass can 
be very small in this case). When allowed, the S1 + C+C- mode becomes 
dominant. At T = 1, neutralino-chargino modes may enter and in certain 
mass regions even be dominant. 

S2 : In the r = 0.1 case we see that 5’2 decays are dominated by bb or HH 
final states, with the latter being dominant when allowed. Regarding the 
latter, at low mc (s 40 GeV) the C+C- mode is allowed and dominant. 
At higher mc this mode is forbidden; but provided the Al, parameter is 
chosen so that m,yl is small, S2 --+ ,571 5’1 will be the dominant decay. At 
r = 1, the decay possibilities are much more complex. We see that WW 
and 22 decay modes can be very important for some Al, choices at a given 
mc, but that at the same mc it is also possible to choose Al, so that HH 
modes (mainly &Sr and, when kinematically allowed, Pr PI) are dominant. 
In addition, in the central region of rnc the 5’2 mass drops below 2mw and 
bb decays become very important. Finally, we see that neutralino-chargino 
decays (mainly Frzl) emerge as a significant component of the 5’2 decays. 

S3 : At r = 0.1 we are not ‘far removed from the small II: limit in which the 
S3 tends to decouple from non-singlet particles. However, there remains a 
large coupling to neutralinos and charginos. Thus the 2% modes dominate 
with Xl Xl -+-- being the most important component. We see that this channel 
is followed closely by VV and then HH. The HH modes are PlPl, S1&, 
SrS2, and C+C- . At a lower level we find VH decays where the latter is 
ZPl or W*Cr (in ratio 1:2). At r = 1, we see a large selection of modes, 
including tt, HH, VV and 2x”, the latter two emerging mainly at higher mc 
(and, hence, ms3) values. 

P1 : At r = 0.1 only bb decays are important, or r+r- where bb is forbidden 
at the lowest Pr masses. At T = 1 we see that Pr decays are dominated by a 
combination of tt and 22 modes, although at low mc the VH modes enter 
significantly. 

Pa : At r = 0.1 we have a situation closely analogous to that for the S3 at 
this same r value; the P2 has suppressed couplings to all but the chargino- 
neutralino modes, which are dominant. Among these the F+g- modes are 
the most important. The next most important channel is VH, including 
W*Cr, ZSr, and 25’2. At a still lower level we find HH modes, dominated 
by S3E3. At r = 1 tf and FF modes (largely F-?-g-) are dominant except at 
low mc values where VH modes (W*Cr is often the largest, but 25’1, ZSz, 
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and Z’S’3 can be substantial also) become crucial. 

C+ : At r = 0.1 only CS decays are important. At r = 1 the primary channel 
is tb with F+F” .modes becoming significant at large mc. 

It is also useful to tabulate the predicted branching ratios for various channels 
in the representative renormalization group solution, with parameters as detailed 
in eqs. (5.14) and (5.15). In particular, for this table AI, and mc (which determines 
Ax) are fixed. The masses of all the particles for this particular renormalization 
group solution were given in Table 2. The couplings appeared in Table 3. The 
branching ratios for a variety of interesting channels appear in Table 4. We see 
that among the neutral Higgs bosons, bb is the dominant mode except in the case 
of S3 where HH modes are dominant. For the S3, among the HH modes the P2 P2 
mode is the largest with a BR of 0.38, followed SrSl with BR N 0.19. The 5’3 also 
has some 22 decays, with total BR N 0.05. None of the neutral Higgs bosons is 
heavy enough to have any VH or VV decays. In the case of the C+, its mass is 
too small to allow the tb mode, and, as a result, its decays are dominated by FtFy. 

Let us briefly consider prospects for detecting the Higgs bosons in the special 
renormalization group case, given the branching ratios described in the previous 
paragraph, and the production cross sections outlined in the previous section. 
Consider first e+e- collisions. Detection of the S1,2 Higgs bosons at an e+e- 
collider would be straightforwardr7’ either in 2 + Sr,2Z+Z- decays or 2 + S1,2P2 
decays. In the latter case, one would search in final states containing two bb pairs; 
backgrounds would probably not be a problem. S3 production via Z* + S3.Z would 
require a fi 2 300 GeV machine; [“’ the dominance of 5’3 t HH modes would 
lead to Zbbbb final states, which’would probably be detectable. PI is essentially 
hopeless because of its small production rate. Detection of the charged Higgs 
boson would also not be straightforward. Even though the y* + C+C- cross 
section at a e+e- collider with fi ;2 300 GeV[2*‘2s1 would be of order l/4 unit 
of &t, the $$gy decays for both the produced charged Higgs would make direct 
mass reconstruction impossible (the z would be the LSP). Turning to a hadron 
collider, we first consider detection of 2 + &2P2 events. Unfortunately, the -- 
bbbb final states would presumably have large QCD backgrounds, so that discovery 
in this mode might prove difficult. A detailed study is required. The S3 scalar 
Higgs definitely falls into the category of “Intermediate Mass” approaches?’ Its 
mass is such that only the production-detection mode of IV* + W(+ ZY)S(+ bb) 
could be employed! While current studies 1321 of this mode have yielded optimistic 
results for scalar Higgs with mass above mz and with full Standard Model VV 
couplings, it is likely that the reduction in cross section by a factor of - 3 + 4 for 
the S’s, combined with its mass being near that of the 2, will make this Higgs more 
difficult. The PI, which has no VV couplings and is weakly coupled to quarks, 
will be essentially impossible to observe at a hadron collider. The most useful 
charged Higgs production mode would be gb + C+t, followed by a trigger on the 
spectator t quark?’ The FrFy decay might provide a sufficiently clean missing 
energy trigger to allow detection; a detailed study is needed. 
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In summary, Higgs boson decays in this theory are complex and many channels 
must be examined before one can be certain of discovering or excluding a Higgs 
boson of any given type in any given mass range. In addition, even though the 
generally expected Higgs boson masses are fairly modest, the most useful produc- 
tion cross sections are often not as large as in the corresponding Standard Model 
Higgs boson case. The most uniform example of this latter statement occurs at 
small r, where the 5’3 and P2 tend to decouple from non-singlet particles including 
the Standard Model quarks and gauge bosons. Thus we typically find that one or 
more of the Higgs bosons will be difficult to detect at both an e+e- collider and a 
hadron collider. 

8. Conclusions 

We have argued that a supersymmetric model in which a singlet Higgs field is 
present, in addition to the two Higgs doublet fields that are absolutely required, 
provides an attractive solution to the p-parameter naturalness problem of the min- 
imal supersymmetric model. We have also noted that such a singlet field is present 
in most superstring models with low-energy N = 1 supersymmetry, including the 
attractive SU(5) x U(1) f our-dimensional superstring model!’ We have then pro- 
ceeded to explore the implications of such a theory for the Higgs boson sector, 
assuming that only trilinear couplings enter into the superpotential (as is automat- 
ically the case in the simpler superstring approaches). The physical Higgs bosons 
of the theory comprise three scalars (5’1, S2, and S’s), two pseudoscalars (PI and 
P2), and a charged Higgs pair (C*). While there are, in principle, a number of pa- 
rameters that need to be specified in order to determine the theory, we have found 
that the renormalization group and grand-unification constraints impose surpris- 
ingly stringent restrictions on the allowed range of these parameters, especially if 
the entire source of supersymmetry breaking at the grand-unification mass scale 
Mx is from a common gaugino mass, Mu!‘71 The resulting phenomenology for the 
Higgs bosons is complex, but with many regularities. For instance, as in earlier 
investigations of other N = 1 supersymmetric modelsf1’2’12’131 we find that there is 
always a light scalar Higgs boson with mass s 0 (150 GeV). The introduction of 
the singlet field allows us to have charged Higgs masses lighter than mw (unlike 
earlier models) but the corresponding parameter choices are not preferred by the 
renormalization group analysis. In general, several of the other Higgs bosons will 
be fairly heavy, but always below 1 TeV in mass except in extreme cases. Despite 
the generally modest mass scale for the Higgs bosons, we have seen that detection 
of all of them will represent a formidable challenge-production cross sections can 
be small and decays can be complex or subject to large backgrounds. 

For the allowed renormalization group solutions where supersymmetry is bro- 
ken only by the gaugino mass Mu at Mx, we have solved for the masses of all 
physical particles. The constraint imposed by requiring that the vacuum structure 
be that observed in nature (i.e. no charge or color breaking, but standard elec- 
troweak symmetry breaking) is very powerful indeed. Only a very narrow range 
of choices for the basic trilinear couplings of the superpotential yield allowed so- 
lutions. The predicted range of masses of all the physical particles is very small, 
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and appears in Table 1. We find a top quark mass between 75 GeV and 93 GeV, 
a gluino mass between 140 GeV and 260 GeV, and light charginos, sleptons, and 
sneutrinos. In addition, all Higgs bosons have mass below 100 GeV, with the 
lightest scalar certainly accessible at LEP and SLC. Indeed, if there is any truth to 
this general approach the next few years should provide an abundance of new and 
exciting physics, in particular allowing our first experimental probes of the Higgs 
boson sector that is at the basis of electroweak symmetry breaking. However, in 
exploring the Higgs boson sector, we have seen that it will be necessary to consider 
a variety of different decay channels, with! in particular, channels containing lighter 
Higgs boson pairs, a vector boson plus a hghter Higgs, or neutralino-chargino pairs. 
The resulting final states should all be explored more thoroughly with regard to 
important backgrounds and experimental cuts. Overall, this study makes explicit 
the fact that we must not rely on studies conducted purely in the context of the 
Standard Model in assessing the ability of new colliders and detectors to study the 
Higgs sector. 
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APPENDIX A 

Potential Including Top and Bottom Squark Degrees of Freedom 

In this appendix we give the full scalar field potential, after including top (both 
left and right) and bottom (left only) squark fields through the superpotential 
coupling hQUCH2 and the associated soft supersymmetry-breaking terms. We 
have made the approximation that all the colored fields are parallel in color space. 
We shall discuss later the justification for this approximation and describe the 
generalizations that would be required to include full color degrees of freedom. 

We begin by listing the simplifications that may be made by employing the 
gauge and phase degrees of freedom of the scalar fields. Our notation for the 
squark scalar fields is 0 for the top-bottom doublet (fi,L)), and cc for the top 
squark singlet field. 

1. sum transformations may be used to set V+ = 0. 

2. The phase of the N field may be chosen so that LAI, E R+. 

3. The phase of HI can be chosen so that XAx E R+. 

4. The phase of cc can be chosen so that hAh E R+. 

5. The phase of H2 can be chosen so that 02 E R+. 

6. The phase of a can be chosen so that u = E R+. 
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7. Finally, it turns out that the above conventions imply that the phases of V- 

and d E 
(7 

D enter only in the combination w-*d, so that we may choose 

dER+. 

The most general form for the vacuum expectation value of the resulting potential 
is given below. 

(I$“‘> =$ [-,wl,” - 10-1~ + w; + ;u2 + id2 - $1uc/2,2 

_ (@J(2)) 2[( 1~11~ + lo-l2 + v; + u2 + d2)2 

- ~(Iv~I~v~ + lwl12d2 + W~U' + 1~~1~~~) + 4ud(wiw- + wlw-* )I 
( v,su(3)) =!$ [u2 + d2 - lu’7”] 2 

(VF) =x2 [(IWll” + lx12)v22 + (IVII” + b-12)l~12 

+ h2 [(u” + d2) Iuc12 + (Iuc12 + u2)w;] 
+ k21X14 -XkW2(W~2*2 +WiZ2) 

- Xh 
[ 
U(WQX~* + w;Z*u’) + d(w-xuc* + w-*cc*u~) I 

(A.3 

(v&l) =m& (lwl” + Iv-12) + m&w; + m$lxl” 
+ +$u2 + d2) + m~cluC~2 - XAx(wla: + w15*)w2 

k AI, - +x3 + x*~) - hAhw2u(uc + uC*), 

WV 

where we have taken X, k, h relatively real in order to avoid explicit CP breaking. 
This does not, however, guarantee that there is no spontaneous breaking of CP. 
If u,d # 0 then there is no choice for the signs of Xk and Xh that guarantees 
that the potential minimum occurs when all fields have zero phase; the phase 

dependent term in (v,s”(2) ) enters with the wrong sign in comparison to all the 

other phase dependent terms which would be minimized for zero phase if Xk, Xh E 
R+. However, we shall only explore color breaking for Xk, Xh E R+, since we are 
only interested in assessing whether minima of the pure Higgs potential, found 
subject to this constraint, are true global minima. 

As stated earlier, the above potential has been written in the approximation 
that all the colored fields (u, d, and uc) are parallel in color space. We will not ex- 
plore the complete color space degrees of freedom because of the greatly increased 
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complexity of analysis that would result. We argue that this is a good approxima- 
tion when u, d and uc are of the same order as WI, ~2, Z. Since gs is much larger 
than X or k for the solutions that we have obtained using the unification boundary 

conditions of eq. (5.1), the largest single term in the potential is ( V~v(3)). An 

examination of the full color structure of this term reveals that it is minimized for 
configuration in which u, d and uc are all parallel in color space. More generally, 
however, we must regard any restrictions that we discover on our potential param- 
eters, through requiring the u, d, uc = 0 at the global minimum, as being necessary 
but not clearly sufficient. 

The procedure followed as part of the renormalization group investigation of 
Section 5 was the following. Given a set of parameters obtained by evolving from 
the grand-unification scale Mx down to Msusy, beginning with initial choices for 
Xv, ku and hU and the boundary condition (5.1), we required that the resulting 
low energy parameters yield a global minimum of the complete potential such that 
all the neutral Higgs fields, and only the neutral Higgs fields acquire non-zero 
vacuum expectation values. This required examining not just the Higgs potential, 
but rather the complete scalar field potential as delineated above, including the 
colored fields G and cc. Overall there are 11 degrees of freedom after making use 
of all independent phase rotations and sum x U(l)y gauge transformations. 

They are: or, w;‘, ~2, 5, x*, w-, w-*, u, d, uc and uc*, where u = (u>, d = (E), 

u - UC . C- 
l-> 

As noted above, u and d can be taken to be real, but the potential 

form is such that there is no simple set of choices for the relative signs of the 
potential parameters which guarantees that the other v.e.v.‘s are real. (Only in 
the sub-space where either d or w- is zero is this possible. This contrasts with the 
case where the colored field v.e.v.‘s are ignored.) Thus, for a given set of low-energy 
parameters, we have numerically searched the 11-dimensional v.e.v. space for all 
local minima of the full potential, and determined which is the global minimum. 
If the global minimum is not of the desired type we discard the solution. 

Our procedure in practice was to first consider the scalar potential without 
including colored degrees of freedom. We then searched for solutions starting from 
the boundary conditions (5.1) such that at the potential minimum the requirements 
of eq. (5.5) were met and charge breaking (w- # 0) was not present. Once such a 
solution was obtained we then turned to the full scalar potential, including colored 
degrees of freedom as specified above, and determined whether there was a color 
breaking (u, d, or uc # 0) minimum of still lower energy. We found that this never 
occurred, i.e. the requirements of eq. (5.5) and w- = 0 for the scalar potential 
without colored fields already selected solutions that did not break color once the 
colored degrees of freedom were included. This is the case because the values of m2^. 

Q 
and rniC generated by the renormalization group equations are quite substantial in 
comparison to the other mass parameters of the low-energy potential. As a result, 
non-zero values of the colored field v.e.v.‘s are disfavored. Of course, if we choose 
to ignore the results of the renormalization group equations and allow rnK, rnic 

Q 
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i 
and Ah to take on arbitrary values, then color breaking minima can result, as we 
saw in Section 4. 

. 

APPENDIX B 

Trilinear Higgs Self-Couplings 

In this Appendix, we summarize results for the trilinear Higgs boson self cou- 
plings using the II symbols defined in eq. (6.8). The results are as follows. 

-2 
9 

--sS&P-i = 2Jz [ ( ng - @&) 02 + (n$ - II$g wl] 

+$ 
ng + q3p: + qg] + SIIg 

4 

+ $ [ <e”p”, + eggi + (@3,3, + n~~9w2 + (IIi3,3, + II;gwl] W) 

+ Xkfi[(n$?? -II;“,“, - qg) x + ($I$$ - rI$3 w2 

+ (;fl:R - n$+l] + k2 &I;3,3 . 

-2 
9 

-gsasbsc = 2Jz 
- [ pq;: - n:;3v2 + p:;: - le)Vl] 

- 3 [nS; + I-I;;;] + k2&‘I;;,3x 

+ 5 [pq,3 + n3v2 + (II:;,3 + ng,z)vl + p:;,2 + ng:)x] 

P-2) 

+ xr,fi[-&I~;,zv, - ;II;;:v, - IIf$x] . 
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9 I2 

-9s,c+c--= z K 
n222 

a+- - n::l_> w2 + (n$- - Hi?-) Vl] 

+ -$ [ pqy + nqy- + I-I$- + n52-)w2 

+ p::1_ + rI:2+2- + HZ”:- + nq:2_),1] 

Ml 

$243 
-[II;?- + II;?-] + Ak&II;:2_ 

x2 
+ Jz [(II;z,z- + II::‘-)x - n5Lv2 - II$Wl] * 
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TABLE CAPTIONS 

1: Typical ranges of parameters and masses for the allowed solution regions of 
fig. 3, obtained assuming that gaugino masses are the dominant source of 
supersymmetry breaking at the unification scale. 

2: The Higgs boson and sparticle masses for a representative solution of our 
renormalization group equation constraints: X = 0.128, k = 0.097, r = 0.64, 
tan@ = 2.04, Ax = 28.6 GeV, Ak = 0.7 GeV (corresponding to hU = 0.171, 
Xu = 0.1, ku = 0.1 and Msusy = 200 GeV). See eqs. (5.14) and (5.15). 

3: Coupling strengths, as defined in eq. (6.9), for the renormalization group 
solution specified in eqs. (5.14) and (5.15), and already considered in Table 
q L. 

4: Branching ratios of the various Higgs bosons to a variety of interesting chan- 
nels, for the special renormalization group solution of eqs. (5.14) and (5.15). 
See Tables 2 and 3 for the masses and couplings of the states involved. 
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Table 1 

Parameter kv = 0.01 kv = 0.1 kv = 1.0 

hv 0.16 to.18 0.16 + 0.18 0.16 i 0.18 

hJ 0.01 + 0.14 0.03 +- 0.16 0.08 + 0.29 

h 0.48 i 0.52 0.48 + 0.52 0.48 + 0.53 

x 0.058 t 0.15 0.077 to.18 0.11 + 0.28 

k 0.01 0.096 to.10 0.51 + 0.54 

4 (GeV) 160 i310 160 ~310 160 t310 

AA (GeV) 19 ~38 18i38 18~37 

Ak (GeV) 0.03 i 1.3 0.13 + 1.5 0.94 f 2.9 

mt (GeV) 76 i93 76~91 75 ~89 

tan@ 1.4 i4.4 1.4 + 4.2 1.4 t 4.2 

r 0.28 + 1.7 0.34 + 0.67 0.25 + 0.40 

rni (GeV) 140 ~260 140 ~260 140 ~260 

rnd (GeV) 110’+240 110 ~240 110 e-240 

rnc (GeV) 6.1 + 37 4.0 + 36 1.8 +36 

r-n,-, (GeV) 46 + 85 47t85 47 $85 

m,-, (GeV) 32 t 57 33+57 33 i57 

‘72%: (GeV) 25 +63 25~63 25 ~664 

rngy (GeV) 4.8 i 27 5.9 t 32 10~36 

mc (GeV) 81~89 82t90 83 ~90 

mp, (GeV) 4.7 i 9.3 21+33 28 e-52 

mpz (GeV) 23~44 27~49 49 f 94 

msl (GeV) 4.6 + 17 5.5 + 20 5.8 ~225 

ms, (GeV) 12~40 30t48 60~885 

ms, (GeV) 93 f 95 93 f 95 93 i 98 
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Table 2 

Higgs boson and sparticle masses in the special case. 

Particle Mass (GeV) Particle Mass (GeV) 

Sl 15 mi7 23 

s2 38 n-6, 67 

s3 95 mER 46 

Pl 31 mn: 49 

p2 39 
ma,+ 

123 

Cf 86 m%: 23 

mt 83 mFi!I 33 

mii 204 m%! 36 

mi 177 m%: 78 

m- t1 130 mn: 120 

m- 
t2 

229 
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Table 3 

Higgs. boson reduced couplings in the special case. 
. 

Sl 

0.56 

0.35 

1.45 

0.1 

0.42 

s2 

0.6 0.57 

0.42 0.97 

1.36 1.1 

0.09 0.2 

0.36 0.8 

s3 Pl 

0.12 

0.49 

p2 

0.48 

1.98 

Table 4 

Higgs boson branching ratios in the special case. 

Sl s2 s3 Pl 

0.92 0.81 0.13 0.96 

0.08. 0.03 0.005 0.04 

0 0.16 0.82 0 

0 0 0.05 0 

p2 

0.96 

0.04 

0 

0 

C+ 

0.01 

0.006 

0 

0.99 
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FIGURE CAPTIONS 

. 
1) Maximum and minimum masses for the neutral Higgs bosons as a function 

of the charged Higgs mass mc. For mc values outside the range plotted 
there are no allowed solutions satisfying eq. (4.3). We have taken X = 0.87, 
k = 0.63 and: a) r = 0.1, tanp = 1.5; b) r = 1, tan@ = 1.5; c) r = 10, 
tanp = 1.5; d) r = 1, tan /3 = 4. 

2) Color breaking boundary in Ai-rnz space. For details see text. 
Q 

3) Region of the (hu, Xv)-plane allowed by the different constraints discussed 
in the text. The region within the solid outline corresponds to hu, Xv values 
that give charge and color conserving vacua, which also satisfy eq. (5.5). 
Within this region the constraints on the slepton masses, eq. (5.7), removes 
regions labelled by the letter ‘B’ (outlined by dashes), and the constraint 
on the lightest chargino mass, eq. (5.8), removes the regions labelled by the 
letter ‘C’ (outlined by dots). Th e remaining fully acceptable solution region 
is indicated by the large capital ‘A’. Three representative values of ku have 
been considered: a) ku = 0.01; b) ku = 0.1; c) ku = 1. 

4) Higgs mass spectra as a function of mc, for the parameter choices of eq. 
(5.14): X = 0.128, k = 0.097, r = 0.64, tan/3 = 2.04. 

5) The magnitude of the relevant Si and P; couplings, relative to the standard 
coupling strengths as defined in the text, as a function of mc. The values 
X = 0.87, k = 0.63, tanp = 1.5 and r = O.l,l are considered. For each 
value of mc, maximum and minimum values of the couplings are plotted, 
obtained by scanning over values of & which satisfy the contrsints of eq. 
(4.3). Th e o f 11 owing couplings are considered: a) VVS; couplings (i = 1,2,3); 
b) couplings to UU; c) couplings to dd; d) ZS;Pj couplings (i = 1,2,3, j = 
192). 

6) The branching ratios for the different Higgs bosons as a function of mc. At 
each mc, maximum and minimum values of a given channel’s branching ratio 
(as obtained by scanning over allowed & values) are given. See the text for 
a detailed description. The different plots are for: a) 5’1; b) 5’2; c) S3; d) PI; 
e) P2; and f) P. 
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Color Breaking Boundary 
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Allowed Parameter Region Boundaries 
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