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1 . C o u n ter  Physics 

1 .1 . P A R T I C L E S  A N D  E V E N T S  

A  P A R T ICLE is a  c o n c e p tua l  carr ier  o f conserved  q u a n tu m  n u m b e r s  Q ” 

b e tween  e v e n ts. 

A n  E V E N T  is a  r e g i o n  with i ncoming  a n d  o u tg o i n g  p a r ticles th r o u g h  wh ich  

q u a n tu m  n u m b e r s  a r e  conserved:  Cgi,  -  C Q b U l  =  0 . 
; - -  Accord ing  to  Cl ive K ilm ister m y  d e fin i t ion o f par t ic le is bas ica l ly  a  p a r a p h r a s e  

o f E d d i n g to n . I d o  n o t k n o w  h o w  E d d i n g to n  th o u g h t o f e v e n ts. They  c a n n o t 

b e , fo r  us,  th e  p o i n t e v e n ts o f E inste in’s spec ia l  relativity. W h ite h e a d  th o u g h t o f 

e v e n ts as  th e  over lap  b e tween  space- t ime reg ions;  in  h is  v iew, th is  over lap  cou ld  b e  

progress ive ly  n a r r o w e d  as  m o r e  a n d  m o r e  in format ion w a s  supp l ied .  I a m  f ish ing 

fo r  a  s imi lar  i d e a , b u t o n e  wh ich  e n c o m p a s s e s  th e  m u l tip le  c o n n e c tivit ies th a t 

p rec lude  th e  “p o i n t lim it” f rom ar is ing.  W e  m u s t n o t a l low th e  c o n c e p t o f a  pre -  

ezisicnt space- t ime to  c reep  in  by  th e  back  d o o r . P e r h a p s  th e  w o r d  “reg ion” u s e d  

in  m y  d e fin i t ion a l ready  carr ies to o  m u c h  c o n c e p tua l  b a g g a g e  wi th it. S u g g e s tio n s  

fo r  a  b e tte r  d e fin i t ion o f “e v e n t” w o u l d  b e  w e l c o m e . 

1 .2 . T H E  C O U N T E R  P A R A D IG M  

W e  start f rom cons idera t ions  as  c lose  to  c o n te m p o r a r y  e x p e r i m e n ta l  pract ice 

as  poss ib le .  W e  try to  p ick  c o n c e p ts th a t a l low a  s imp le  m a th e m a tical m o d e l  to  

b e  a b s tracted. G a z i n g  back  to w a r d  ear ly  p a p e r s  by  B a s tin  a n d  K ilm ister o n  th e  

in terpretat ion o f t racks in  a  c loud  c h a m b e r , I n o w  rea l ize  th a t m y  construct ion h a s  

in terest ing a reas  o f c o n tact  wi th the i r  th ink ing  in  th e  5 0 ’s. For  m e  a  “c o u n ter” is 

a n y  dev ice  occupy ing  s o m e  reasonab ly  wel l  d e fin e d  s p a tia l  reg ion  in  th e  laboratory ,  

wh ich  c a n  b e  act ivated (“f i red”) by  e i ther  a  mass ive  part ic le or  a  g a m m a  ray  wi th 

a  reasonab ly  wel l  d e fin e d  tim e  resolut ion.  It c a n  b e  th o u g h t o f as  c o n ta in ing  a n  

i% @ nal .“clock,” a n d  a  “m e m o r y ” wh ich  records  th e  tim e  o f f i r ing a n d  m a y  record  

w h e the r  th e  e v e n t c a n  b e  a t tr ibuted to  a  part ic le or  a  g a m m a  ray. 
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In  pract ice,  m u c h  o f th e  a p p a r a tus  wh ich  accomp l i shes  th is  space- t ime local -  

izat ion o f th e  c o u n ter  a n d  th e  e v e n t wi th in it is actual ly  ex terna l  to  th e  space-  

tim e  reg ion  wi th in wh ich  th e  e v e n t is p r e s u m e d  to  h a v e  occurred;  th e  d e tai ls  a re  

u n i m p o r ta n t in  ou r  a b s tract t reatment.  M u c h  o f th e  h a r d  work  in  e x p e r i m e n ta l  

par t ic le phys ics  is d e v o te d  to  m o d e l i n g  th is  reg ion,  th e  probabi l i ty  d is t r ibut ions o f 

par t ic les a n d  g a m m a  rays wh ich  pass  th r o u g h  it a n d  th e  probabi l i ty  d is t r ibut ions 

wh ich  shou ld  ( a n d  shou ld  n o t) b e  a t tr ibuted to  w h a t w e  summar i ze  as  “c o u n ter  ; -- 
f ir ings.” T h e  e n d  p r o d u c t is a  m o d e l  o f th e  a p p a r a tus  r e d u c e d  to  bits o n  ta p e  in  

s o m e  c o m p u ter  (or  s o m e  equ iva len t  fo r m  o f d iscrete m e m o r y  s torage).  E v e n ts a re  

a lso  reco rded  as  bits in  th is  c o n text. They  c a n  th e n  b e  u s e d  to  test  var ious  the -  

or ies  o f w h a t is g o i n g  o n , a lso  exp ressed  as  bits o n  ta p e . Th is  m a k e s  a  bi t-str ing 

m o d e l  fo r  th e  theory  part icular ly  appropr ia te ;  w h a tever  m a th e m a tics is u s e d  in  

fo r m u l a tin g  th e  theory ,  th e  ac tua l  compar i son  wi th e x p e r i m e n t is a lways  car r ied  

o u t a t th e  bi t-str ing level .  

Th is  pract ice ass igns  a  s p a tia l  reso lu t ion A z ,A y ,A z  a n d  a  tim e  reso lu t ion 

A t to  th e  c o u n ter. T o  g ive  m o r e  prec is ion  to  th e  m o d e l , w e  n e e d  two c o u n ters  a  

d is tance L  =  N L A X  a p a r t in  th e  x d irect ion,  a n d  c o u n ter  f i r ings a  tim e  interval  

T  =  N T A t a p a r t. In  o rder  to  m e a s u r e  T, w e  m u s t first synchron ize  th e  c locks by  

s e n d i n g  a  g a m m a  ray  to  o n e  a n d  re turn ing a  g a m m a  ray  back.  T h e  tim e  a t th e  

distant  c o u n ter  is, by  th e  E inste in c o n v e n tio n , ta k e n  to  b e  hal f  w a y  b e tween  th e s e  

two e v e n ts in  th e  re ference c o u n ter. E m p ir ical ly w e  fin d  th a t n o  s igna l  t ravels 

faster  th a n  a  g a m m a  ray; in  th e  a b s e n c e  o f fur ther  in format ion a n y  s igna l  wh ich  

t ravels c lose  to  th is  lim i t ing veloci ty,  wh ich  w e  cal l  c  if w e  n e e d  to  express  it in  

d imens iona l  units,  wi l l  serve  fo r  ou r  c lock synchronizat ion.  W e  r e d u c e  ou r  resul ts  to  

d imens ion less  fo r m  by  d e fin i n g  th e  ra t ional  f ract ion veloci ty  ,B  =  N I;A x /NTcAt =  

n p /d p  if th e  distant  c o u n ter  f ires a fte r  th e  re ference c o u n ter, a n d  th e  n e g a tive 

o $ :th is  ra t ional  f ract ion if th e  distant  c o u n ter  f ires first. E q u i v a l e n tly, w e  c a n  .a  
speci fy  two o the r  in tegers  by  n p  =  n 1  - n o , d p  =  n l  +  n o . T h e  s implest  bi t-str ing 
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model for these two events is then a string with nr l’s and no 0’s. Note that 

if these two numbers have a common factor Tp, this velocity specifies a periodic 

phenomenon which might repeat 2’~ times between the two counter firings. This 

simple fact, together with the observation that in the absence of further information 

this periodicity is not directly observable, is the basis on which we will build the 

“wave-like” phenomena of relativistic quantum mechanics. Note that T’/p is the 

distance a light signal will go during the time that the particle moves a distance ; -- 
/3Tp. We connect these spatial and temporal periodicities by the definitions 

/3X = 1; 2?rr = jX . (14 

We will see in due course that j is either integral or half-integral and in appropriate 

circumst antes can be unambiguously identified as the angular momentum quantum 

number in units of E = h/27r. 

l-3’. THREE COUNTERS 

We now extend our counter paradigm to three (or more) counters. Because of 

our eventual interest in a bit-string model, we reserve the counter labeled “0” and 

the integer no for special treatment. For l+l dimensional problems it will represent 

the origin of coordinates (0,O). For the moment we take counter “1” to be the first 

counter of interest with respect to counter “0”. We assign coordinates (x, t) to the 

firing of counter “1”. We have seen that for a fixed space and time resolution we 

have a unit of length Ax = cat, and hence can express all coordinates as integers, 

and all velocities as rational fractions. This is, for the moment, an artifact of our 

technological competence. We can generalize the situation by assuming that, at 

least for some class of problems, there is a Lorentz invariant length es = cto which 

has physical significance. In current experience .& is always much smaller than Ax, 

C&r quest for a finite and discrete relativistic quantum mechanics could be viewed 

as a quest for a precise operational meaning to give to es. We intend to show 
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that all other meanings es acquires in the practice of physics can be connected by 

finite, integer operations to our initial abstraction. For the moment, we will simply 

assume that we can give meaning to integer coordinates. 

We now introduce a notation which it will be easy to generalize. We concen- 

trate on two counters and two integers no and nl assumed to have no common 

factor. Then we can define 

; -- 
x0 := no - 121 = -x10; to1 := no + 121 = t10 

PO1 := 
n0 - n1 

no + nl’ 701 *- 2 *- t& - xi1 = 4nonl = +. . 

We also find that 

t2 01 - := -/& = (no + nd2 1 

4 4nonl = 1 - p& * 

(l-2) 

(1.3) 

Because of our relation between space and time units, tollo/c = (no + nl)to is 

simply the time it takes a particle with velocity ,801 to travel from counter “0” at 

(0,O) and cause an event in counter “1” at (x01, tol). We introduce a third counter 

“2”, with an associated integer n2 and define coordinates relative to (0,O) in the 

same way. But now we also have x12, t12 and quantities derived from them and/or 

from nl, n2 which no longer refer to counter “0” or no. This is our starting point 

for constructing finite and discrete Lorentz transformations. 

Boosts 

When we consider the connection between (x01, tol) and (x20, t2o) encoded in 

,812, we have the usual two options. In the realistic language we have supplied 

so far, these two coordinate pairs can be interpreted as two counter firings in 

counters “1” and “2” which are a distance 1x121 apart, for which the “obvious” 

@ isal explanation is the passage of a particle with velocity ,812. But, we can also 

take ,012 to encode the velocity in the Lorentz transformation which connects one 
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event described in two different coordinate systems. Either interpretation rests on 

the same algebraic facts: 

201 + 212 + 520 = no - ni + 721 - 722 + 722 - no = 0 (14 

1 + POlP12 

; -- 

(no t nz)(no - nl> + (no t nl)(nl - 122) 
(no + ni>(nl t n2) t (no - nl)(nl - Q) 

(14 

2nonl - 2nln2 no - n2 = = 
2nonl t 2nln2 n0 + n2 

= 02. P 

Or, succinctly, 

P 
o2 = PO1 + P12 

1 t POlP12 

A little algebra then suffices to show that 

(1.6) 

3720 = Y12(~01 t L312to1); t20 = 712(t01 t Pl2~01) (1.7) 

1-G p=l_P; y2 = i(P t p-l) * (l-8) 

i.e., the usual Lorentz boosts along the line connecting counters “1” and “2”. 

Rotations; Kepler’s Second Law For rotations consider two counters “1” and “2” 

equidistant from counter “0” and a distance Ar apart, where the equal distances 

are measured by light signals and Ar is measured by a particulate velocity, i.e. 

no + n1 = T = no $722; Ar=&n'+n2. 
nl - n2 

(1.9) 

Kepler found that the distance to an isolated object moving around a center sweeps 

c%$equal areas in equal times, which is known as Kepler’s Second Law. We now 

know that this is also true, in the absence of further information for an object 
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moving with constant velocity in a fixed direction past a center. Since we are con- 

sidering constant velocity, we assume that Ar is the same for equal time intervals. 

Using the fact that the square of the area of a triangle with sides a, b, c , called A2, 

is given by 

16A2 = (a + b + c)(a + b - c)(b + c - a)(c + a - b) (1.10) 

and hence in our case given by 
; -- 

16A2 = (2r + Ar)(2r - A~)(~AT)~ (1.11) 

or in dimensionless form by 

(1.12) 

where jAr = 2m. Since the distance of closest approach (“impact parameter”) is 

given by b2 = r2 - (Av-/~)~, we can also write the square of the impact parameter as 

b2 = e(1+l)Ar2 wheree = j - 3. We can then easily convert Kepler’s kinematic law 

into a recursion relation based on constant Ar by the initial condition r = ro = 7-l 

and the fact that a triangle with sides r,, r,+l, Ar has area A, given by 

(1.13) 

which is conserved, or by noting that b2 = ri - (n - i)2Ar2 is conserved. 

For straight line motion at constant velocity, we have already noted that 

our rational fraction velocities imply a periodicity in time. This implies, in our 

relativistic theory, a periodicity in space, as summarized in Eq. 2.1. To connect 

the periodicity for straight line motion to the periodicity for circular motion we 

note that r is the radius of a circle about the point which cuts the straight line 

at two symmetric positions a distance Ar apart. Measuring r in these units, we 

f$@ that 2nr = jX is the distance traveled in a circular orbit which returns to 

its starting point with period 2’~. [DeBroglie used precisely this relation to derive 
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Ar Ar Ar Ar Ar 

Figure 1. Kepler’s Second Law for straight line motion, 

the Bohr energy levels of the hydrogen atom.] Identifying Ar with X, we find that 

(A/X2) = e(e+ 1)(1/2r)2. Thus th e unit for linear periodicity in space and for area 

conservation in motion relative to a point are related by 1/27r independent of the 

system of units. For more details see my discussion of Galileo’s measurement [l] 

of T- and my discussion of dimensional quantization [2]. 

1.4. THE RQM TRIANGLE 

We can now generalize our treatment of integer lengths and times to a purely 

relative treatment in which any one of three counters can be the referent counter 

and any one of three directions can be the referent direction. Given three positive- 

definite, finite integers n;, n j, nk with the three indices i, j, k finite, distinct, cyclic, 

positive-definite integers, i.e., 

ni, nj, nk, i, j, k, E 1,2,3, . . . , N; N fixed; i # j # k # i cyclic (1.14) 

we can define 

t ij Z= ni + nj; tij/3ij Z= ni - nj Z= Xij = -Xji 
_- .-- 
*+. . 

2 
Tij l= $3 t?.- 2 Xij = 4ninj = t~j(l - p,“j) := t~jr;“i 

8 
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Figure 2. Kinematical interpretation of the three integers ni, nj, nk. 

with the consequences that 

tij@ij t tjk@jk t tki@ki = 0 (1.17) 

-pij _ @ .ik t Pki - 
’ + @ jkPki ’ 

(1.18) 

Further, since 

ltij - tjkl 2 tki 5 tij + tki (1.19) 

we can define 

(1.20) 

and draw a triangle (see Figure 2) with sides tij, tjk, tki and angles 

cos ek .= a(tij,tjk; tki) = tfj t $k - %  

tijtjk tijtjk * 
(1.21) 

Any one side can be interpreted as a combined rotation and boost taking the 

&x&ion-and velocity of one event to another event with respect to a third event, 

as we will now show. 
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The figure can be thought of as three counters with associated clocks- 

synchronized using the Einstein convention-which keep a record of the time of 

arrival or departure of a signal, and whether it was a particle or indistinguishable 

locally from a gamma-ray (see Section 2.2). Using units with c=l, the distances 

between the counters i, j, k are simply tij, tjk, J!kia If we launch a signal with veloc- 

ity Pij from counter i toward counter j and simultaneously launch a signal with 

-@ki from i toward k which, on arrival at k, triggers a signal from k to j with ve- 
; -- 
locity -pjk, the signals from i to j and from k to j will arrive simultaneously at j. 

This explains why, if we pay proper attention to signs, we obtain the usual Lorentz 

velocity addition law independent of how far away counter k is from the ij path. 

Note also that our cyclic convention can be used to define a direction out of 

the plane of the triangle whose sign reverses either if we change our convention 

from cyclic to anti-cyclic or if we interchange two of the indices. Clearly this 

is the “parity” transformation P. In contrast to classical relativistic kinematics, 

our &-rite assumption forces us to consider transformations which do not conserve 

parity. Further if we reverse all velocities-which corresponds to time reversal 

T-this discrete transformation produces the same result as the (cyclic t) anti- 

cyclic) parity operation. Consequently the physical paradigm we use to interpret 

the formalism automatically guarantees that at this stage the theory is invariant 

under P2, T2, PT and TP. Full CPT invariance will have to wait until we define 

conserved quantum numbers analagous to and including electric charge. However, 

if we include forward or backward “motion in time” in order to define a conserved 

difference between the number of particles and the number of antiparticles, or 

- left-right motion in a single direction to conserve helicity, we can immediately 

invoke these conservation laws to construct finite and discrete solutions to the 

Dirac equation in ltl dimensions [3]. 

Thanks to the velocity addition law derived from the conventional clock 

s-$@hronization convention, the paradigm obviously has an Lorentz-invariant sig- 

nificance. We have established formal Lorentz invariance for boosts along a line 
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and rotations in a plane in Section 2.3. The RQM triangle gives a succinct descrip- 

tion of a combined rotation and boost using only relative coordinates specified by 

three integers. We can use this integer construction to replace matrix representa- 

tions of Lorentz transformations by simple bit-string discriminations, simplifying 

the analysis of relativistic particle kinematics, once we accept integer length or 

bit-string quantization. 

;Momentum space 

We have used a space-time paradigm for our R&M triangle because space-time 

thinking (“kinematics”) is so imbedded in the history and language of physics. But 

as abstract mathematics, we could just as well take p = p/E as ,8 = x/t to describe 

the particulate connection between two events. The translation into operational 

terms would connect our theory to S-Matrix theory rather than to space-time 

relativistic quantum mechanics. Since no one has yet given empirical evidence to 

show that either language is false to facts in its application to the same agreed 

body of data, we assume that this translation will be easy in our theory. 

3+1 dimensions 

Our discrete physics allows only 3 macroscopic space dimensions and one 

universal ordering (“time”) [4]. N evertheless, to extend our RQM triangle to 

RQM tetrahedra which can be described by three orthogonal dimensions turned 

. . out to be more difficult than might be thought at first sight. 

In a plane, there are many Pythagorean triples u2 + b2 = d2 and corresponding 

inner products that vanish. Integer coordinates are easy to define relative to any 

set of them. Finding three simultaneous Pythagorean triples turned out to be more 

difficult. The problem is pointed up in our context by a theorem and corollary 

proved by Michael Gryk [5]. 

Theorem: 

%,-Given a Pythagorean triad u2 + b2 = d2 where a, b, d have no common factor 

other than unity, then a is even and b is odd, or visa versa. 
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Proo j  

T h e  h y p o thes is  exc ludes  th e  case  w h e n  b o th  a re  e v e n , so  w e  n e e d  on ly  s h o w  

th a t th e  case  w h e n  b o th  a  a n d  b  are  o d d  is imposs ib le .  S ince  b o th  a re  o d d , the i r  

squares  a re  o d d , th e  s u m  o f the i r  squares  is e v e n , a n d  h e n c e  b o th  d 2  a n d  d  m u s t 

b e  e v e n . W ri t ing 

u = % z,$l; b = h b + l;d = h d  
; --  

w e  h a v e  th a t 

4 n i t 4 n a  t 4 n ~  t 4 n b  t 2  =  h -L : . 

H e n c e  

2n i  t 2 %  t 2n i  $  2 n b  +  1  =  2n i  . 

B u t- th e n  th e  left h a n d  s ide  is o d d , a n d  th e  r ight  h a n d  s ide  is e v e n , wh ich  is 

imposs ib le .  Q E D  

This  is obv ious ly  a  m o d e r n  vers ion  o f a n  o ld  G reek  p r o o f. B u t th e  Corol lary ,  

is-to m y  know ledge-nove l .  

Corol lary :  

G iven  six in tegers  a , b , c, d , e , f wi th n o  c o m m o n  factor  o the r  th a n  unity,  th e n  

th e  th r e e  e q u a tio n s  

u 2  +  b 2  =  d 2 ; b 2 + c 2 = e 2 ; ,2 + u 2 = g 2  

c a n n o t s imu l taneous ly  b e  sat isf ied. 

P r o o f 

S u p p o s e  a  is e v e n ; th e n  by  th e  T h e o r e m , b  is o d d . T h e n  by  th e  T h e o r e m , 

i$$ ie  s e c o n d  e q u a tio n  ho lds ,  c  m u s t b e  e v e n . B u t th e n  b o th  a  a n d  c a re  e v e n , 

c o n tradict ing th e  h y p o thes is  th a t th e y  h a v e  n o  c o m m o n  factor.  Q E D  

1 2  



However, there is no need-other than parsimony-to assume that the prob- 

lem has to be solved by three Pythagorean triples with no common factor, as Clive 

Kilmister was quick to point out [6]. He eventually tracked down the minimal 

example, which was found by Euler: 

a = 44, b= 117, c=240 

:tith hypoteneuses 125, 244 and 267 as you can easily verify. Rather than work out 

an explicitly coordinate representation here, we will wait till the bit-string model 

and its simplifications are in hand. 

1.5. THE DOUBLE SLIT EXPERIMENT; lo 

We have reduced our “counter paradigm” to the specification of three arbi- 

trary, finite integers associated by our rules of correspondence to three laboratory 

counters and their firings under specified circumstances. But our units of length 

and time, although connected (10 = cto), remain arbitrary. We can reduce the 

arbitrariness by showing that for a beam of particles whose measured p is suffi- 

ciently well defined incident on two slits a distance w apart, there is a sequence 

of maximum counts a distance r away with a spacing s. This gives us a charac- 

teristic length C = sw/r which we can identify with the spuciul periodicity in our 

theory X = l//3 and check that the spacing s does vary inversely between them 

an .even integer w = 2n. The problem is to give with p. Our Lorentz invariance 

then allows us to calculate the invariant length to = @? for this class of particles. 

Since I have given a detailed analysis of this experiment elsewhere [7], I will not 

take space here to discuss it in the language of this paper. 

Clearly by taking any one type of particle as a referent, we can establish a 

particulate length scale in terms of rational fractions of this unit, and use it rather 

&@i momentum conservation to describe the kinematics of particle scattering pro- 

cesses. We will work all this out, including the reduction to Mandelstam variables, 
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on another occasion. As we discuss in our contribution to ANPA 13 already men- 

tioned [l], we cannot give mass a universal significance until we construct gravi- 

tation, Even then it takes either baryon number conservation or lepton number 

conservation to give an absolute significance to the particulate mass scale. 

2. Bit-Strings 

We collect here recent formal and informal results that will allow a formal 

structure congruent with the above physical arguments to be constructed. 

2.1. DISCRIMINATION AND CONCATENATION 

We specify a bit-string 

a(S) = (eye; . . . ef 

by its S ordered elements 

ef E 0,l; s E 1,2, . . . s; OJ, . . , S E ordinal integers 

P-1) . . 4) 

(2.2) 

and its norm by 

(2.3) 

This is the usual Hamming measure for bit-strings. 

Define the null string by O(S), et := 0 for all s and the anti-null string by 

l(S), ei := 1 for all s. If we take the null string as the reference ensemble, the 

n&@er of “1” ‘s in th e string (i.e., the Hamming measure) as the attribute, and 

changing the Hamming measure by one unit as the computational step, then this 
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norm satisfies McGoveran’s definition (FDP, Sec. 3.2, p.28) of uttribvte distance. 

With this definition, attribute velocity is given by 

T&(S) := u(S)/S . (24 

Define discrimination (@) by 

,a .- 5 .- (et-ei)2; a$b:=(...e~$*...e~~*)=b$a P-5) 

from which it follows that 

a@a= O;a$O=a. (2.6) 

Define a(S) by 

ii:= a@ 1; hence a@S@l= 0. (2.7) 

Distinct strings which are discriminately independent, or d.i., are those which when 

combined by discrimination in all possible non-repetitive ways do not produce the 

null string. Discriminately and anti-discriminately independent strings, or d.i.u.d. 

strings are d.i. strings which also do not produce the anti-null string. Note that 

this definition implies that a singZe “diadic” string cannot be either the null or the 

anti-null string. 

Since discrimination is only defined for bit-strings of the same length S, 

we can often omit reference to the string length, as we have done above. 

However, when the norm and the anti-null string are involved we need to know the 

string length. In particular 

p(s)/ = s; lzi(S)I = S-a(S) . (2.8) 

For two strings a(&), b(S b we define concatenation (II) by ) 
_: .-- 
xc:- . 

4lb ._ a 4 ek .-es, sE1,2,...,su; ek =eg,j,1,2 ,..., sb,k=s,+j 
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a(S, = (. . . ef . . . e50)jj(. . . eg . . . e&) (2.9) 

= . ..e 4 ( k”’ (2.10) 

Hence 

4%) + b(Sb) := b(&)llb(Sb>l = b(&)lla(&)l (2.11) 

but note that in general aljb # blla. 

2.2. INNER PRODUCT, TRIANGLES AND TETRAHEDRA 

THEOREM 1: 

Iff(S) and g(S) and hfs(S) := f(S) $ g(S) are d.i.a.d. 

then the three Hamming measures f,g, hfs specify a triangle with sides of these 

integer lengths, angles 

COS egh,, = 
g2 + h;g - f 2 

Qhf 9 
(2.12) 

CC’S 8h,9f = 
h;g +f2 -g2 

2hfg.f 

and area A whose square is given by 

A2 = $(f +g+ hfg)(f+g - hfg)(g + hfg - f)@fg + f - 9) * (2.13) 

3$e proof is easier if we first use the following theorem to establish the triangle 

inequalities, 
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THEOREM 2: 

If the conditions of Theorem 1 are met and we define 

nfg .- = *- Cf leief 

720 := Ef=,(l - el)(l - ei) (2.14) 

then 

__ f = nf + nfg; g = ng + nfg; hfg = nf + ng; S = nf + ng + nfs + n~ (2.15) 

and 

A2 = (S - ndnfngnfg * (2.16) 

Once we note that E~=,l = S, that nf $ ng = Cf=,(bl - bi)2 is the definition 

of hfg = If(S) $ g(S)/ and that, by definition, nf, ng, nfg are positive integers or 

zero, the triangle equalities 

If - gl L hfg L f + 9 

lg-hfgl Sf Igthfg (2.17) 

_- .-- lhfg - f I I9 5 hf, + f 
xc:*. - 

follow. From these, the results of Theorem 1 follow by standard methods. 
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Comment 

The triangle inequalities do not, by themselves, exclude the case of a “triangle 

with zero area”. Zero length sides are excluded by the d.i.a.d constraint. The case 

of zero area occurs when the lengths of two sides add to the length of the third side. 

This occurs when one of the three integers nf, ng, nfg vanishes. If none of the three 

vanish f + g = nf + ng + 2nfg > hfg and the area of the triangle cannot vanish. 

;This gives us a straightforward way to impose this restriction, if we so desire. 

The triangle inequalities make it sensible to define the inner product between 

two strings. 

THEOREM 3: 

If the conditions of Theorem 1 are met and we define 

x(S) 0 y(S) := 2zy cos e,, := x2 t y2 - Ix 63 Y12 (2.18) 

then 

f(S) 0 hfg(S) •t g(S) a hfg(S) = h!g = If CB g12 = hfglf $ gl . (2.19) 

Proof: 

2[f(S)Ohfg(S)tg(S)Ohfg(S)]=f2th2fg-g2tg2th!,- f2 = 2h;,. (2.20) 

CORROLARY: 

If 

a $ b 6 c $ d = O(S) 

then 

.-- a 0 hab t b 0 hab = c 0 hab $ d 0 hab 
=& . .A 

where hab( S) = a $ b. The proof is trivial because a $ b = c $ d. 

(2.21) 
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.-  1[ - -  

T H E O R E M  4 : Th ree  d .i.a .d . bi t-str ings speci fy  two te t rahedra,  wh ich  a re  

chi ra l  pairs.  A ll fou r  faces  o f th e  te t rahedra  a re  spec i f ied by  th e  s a m e  tr iangle,  a n d  

oppos i te  e d g e s  h a v e  th e  s a m e  l e n g th . T h e  th e o r e m  fo l lows f rom th e  d e fin i t ions 

h a b ( S )  :=  a (S)  C l3  b(S) ;  hbc (S)  :=  b (S)  $  c(S);  hca (S)  :=  c (S)  $  a (S)  

l (s) #  h a & )  :=  a  $  b  $  c  #  O (S)  (2 .22)  

‘2 n d  th e  i m m e d i a te  c o n s e q u e n c e  th a t 

h a b ( S )  4 3  h b ,(S ) @  h & S )  =  o(s)  * (2 .23)  

T h e  necessary  a lgeb ra  fo r  th e  p r o o f is supp l ied  by  th e  d e fin i t ions 

.- 

n a  :=  E ,ez( l  - ei)( l  - e i )  

nc :=  Ese i ( l  - ei)( l  - e i )  

n a b  :=  E S e te 8 ( 1  - e i )  

n b c  :=  C ,eie i ( l  - e t) 

% a  :=  ZC,e~e~( l  - e i )  

n o  :=  C ,(l - bz)( l  - ei)( l  - e i )  

s  :=  C ,l (2 .24)  

wi th th e  i m m e d i a te  c o n s e q u e n c e s  th a t _ : .-- 
% .y . 

s =  n 0  t %  t n b  t nc  t n a b  t n b c  t % a  t n a b c  
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U = na t nab t wa t nabc 

b = nb + nab -I- nbc t nabc 

C = nc t nbc t %a t nabc 

h ab = %  t nb t nbc t %a 

hbc = nb •i- nc t nab •k %a 

hca = na i- %  t nab t nbc 

habc = 72, •k nb t %  t nab, . 

The geometrical consequences are indicated in Figures 3 and 4. 

A h ab B B h ab A 
2-82 71OCM 

Figure 3. External chiral tetrahedra. 
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-  .  S W . -  

; --- 

A B C  

/’ 
C  /’ 

Figure  4 . D e c o m p o s i tio n  o f th e  invar iant  te t rahedron.  

2 :3 . S T A N D A R D  R E P R E S E N T A T IO N  

W e  n e e d  a  s tandard  n o ta tio n . Cons ide r  I s t r ings o f H a m m i n g  m e a s u r e  h ; with 

P ick a n  arbi t rary p a r a m e ter  h o  2  H  +  1  a n d  d e fin e  th e  str ing l e n g th  to  b e  

S  =  H  +  n o . T h e n  a  s tandard  representa t ion  fo r  h ;(S ) is 

h i (S)  =  O (h> l lO(h2> l l  . . . IlO (h ;-l> ll l(h;> llO (h ;-tl> ll . . . IlO (h r> l l o (ho>  . (2 .26)  

Further,  d e fin e  

h jk  . . . =  h i  $  h j  $  hk  $  . . . . (2 .2 7 )  

& $ e  th a t hl,  h 2 , hs  a n d  h  1 2 3  discr iminate  to  th e  nu l l  s t r ing a n d  d e fin e  th e  bas ic  

te t rahedron  in  te rms  o f th r e e  integers.  h 1 2 , h 2 s , h s 1  d e fin e  th e  invar iant  t r iangle  
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in terms of the same three integers, and these seven strings give a specific way to 

describe level 2 of the combinatoriaZ hierarchy. The relation to Kilmister’s notation 

should be spelled out. 

2.4. BIT-STRING STATISTICS 

We can define a second measure on a bit-string by the number of “bends”-the 

number of times a sequence of l’s changes to a sequence of O’s or visa versa-which 
; “-- 

we call k. McGoveran [8] invented the following way to compute k given a(S). 

Form the string a’(S - 1) defined by 

6;’ := (bi - b;+,)2; s E 1,2, . . . ) s - 1 . (2.28) 

Then 

k := ja’(S - l)/ = Ef;i(bz - bi+,)2 . (2.29) 

The problem posed is, given a string with Hamming measure a of length 

S 2 2a + 1 characterized by k bends to show that the relative probability of having 

such a string is d/k! independent of S. I call this McGoverun’s Transport Theorem 

because he proved it in FDP and discussed it at subsequent ANPA meetings. 

Kilmister was not convinced until I developed a bit-string argument which I gave 

in various drafts of our paper on the Dirac Equation and related reports at ANPA 

and ANPA WEST meetings. Kilmister noted that this is similar to the counting 

of states in Bose-Einstein statistics, so I start the discussion above there rather 

_ than with bit-strings. I hope this will prove useful. 

To prove the theorem for a string with Hamming measure a, lengths S 2 2u-t1 

and k bends, note that, since k is the number of bits in a string of length S - 1, 

the total number of such strings is 

-c-- - - (S - l)! 
= (S - 1 - k)!k! * 

(2.30) 
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Further the a l’s which occur in the Ic “boxes” (Le., sequences of l’s between 

bends) can be assigned in uk ways. Consequently the total number of ways we can 

have a string with the specified parameters S, a, Ic is 

(S - l)!ak 
w% u, Ic) = (S - 1 - k)!k! ’ (2.31) 

However, as in Bose-Einstein statistics, the permutations among the arbitrary 

;orderings of s are indistinguishable, so the factor (S - l)!/(S - 1 - Ic)! can be 

divided out, leaving the desired result that the relative probability that a string 

with a l’s and Ic bends normalized to unity for k = 0 is simply 

uk 
P(u, k; S 2 2u i- I) = Icl . (2.32) 

For independent strings, which we can take to be of the same length so long as 

this lower limit on the length is satisfied for all of them, the number of cases is 

proportional to 

which is the starting point for the derivation of Bose-Einstein statistics [9]. Note 

that if we construct our standard bit-string representation by arbitrary, indepen- 

dent choices of the integers hi, it automatically provides a precise representation 

for Bose-Einstein statistics. 

But much more follows. Once we have McGoveran’s transport theorem, we 

can construct the relativistic Schroedinger (Klein-Gordon) and Dirac equations. 

Going from the non-interacting to the interacting system simply requires the in- 

troduction of discrimination and working out the proper rules of correspondence 

with laboratory practice in particle physics. Working out the details will take a 

book, which I am writing [lo] 
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