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I. INTRODUCTION 

Quantum chromodynamics (QCD) h as b een very successful in describing the high- 
energy interactions of quarks and gluons; however, despite nearly two decades of lat- 
tice simulations, attempts to extract from the theory reliable quantitative information 
on the low-energy properties of hadrons have not been fully successful. 

Recently, a new approach has been suggested [l] which advocates combining effec- 
tive field theory and lattice techniques to study hadrons composed entirely of heavy 
quarks. There are many good reasons for doing this. Such hadrons are the simplest to 
an2lyze since the quarks are nonrelativistic. Simulations which use a nonrelativistic 
QCD (NRQCD) t ac ion instead of the usual Dirac action are far more efficient since 
the heavy-quark propagator can be computed as an initial-value problem in a single 

. . sweep through the lattice. The Dirac propagator is a boundary-value problem which 
must be solved iteratively using many sweeps. Also, the fermion doubling problem _~ 

.does not occur in’the nonrelativistic theory. Heavy quarkonia, such as the + and Y 
mesons, are small so that lattice volumes presently used are sufficiently large, and 
their properties are fairly insensitive to both light-quark vacuum polarization effects 

_ _. _ [2], which are very expensive to simulate, and to heavy-quark vacuum polarization. 
- Simulations of heavy quarkonia do not suffer from a rapid reduction in the signal-to- ___ -- 

noise ratio which is a serious shortcoming of the static approximation used to study 
heavy4ight systems, such as the D and B mesons. Quarkonia are well understood; 
this makes possible good control of systematic errors which is necessary for precise 
tests of &CD. Furthermore, an abundance of experimental data on quarkonium states 
is available to which the simulation results, such as level splittings, decay constants, 
and wavefunctions, may be compared. 

NRQCD is an effective cutoff field theory constructed from a set of nonrenormal- 
izable interactions specified solely by the symmetries of &CD, the chosen regulator, 

.bcality, and the accuracy desired. It is essentially a low-energy expansion of the 
_ Dirac theory in terms of the expectation value v of the heavy quark velocity in a typ- 

ical heavy quark hadron. An action which includes all spin-independent relativistic 
interactions suppressed by v2 relative to the leading terms and all spin-dependent cor- 
rections up to order u4 has previously been formulated using a lattice regularization 
scheme [2] d an is here referred to as lattice NRQCD. To fully define lattice NRQCD, 

_ the coupling coefficients of the interactions appearing in the action must be specified. 
These are process and momentum independent and are uniquely determined (for a 
given regulator) by requiring that lattice NRQCD exactly reproduces the results of 
continuum QCD at low energies. 

Since the role of these couplings is to absorb the relativistic effects arising from 
..- highly-ultraviolet QCD processes, one expects that they may be computed to a good 

a&&oximation using perturbation theory, provided the quark mass A4 is large enough. 
The simplest way to proceed is to evaluate various scattering amplitudes both in 
&CD and 1 a tt ice NRQCD and adjust the couplings until these amplitudes agree to 
the desired order in v and the QCD coupling g. In this way, one obtains coupling 
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coefficients which are power series in g2(A), where A is the cutoff of the effective 
theory. The cutoff A must be large enough so that 0(9”(A)) corrections to the 
effective couplings are small, making a perturbative analysis meaningful. However, 
power-law divergences generally occur, producing terms such as g2(A)A/M which 
render perturbation theory useless if A is made too large. 

In this paper, the lowest-order corrections to the heavy quark self-energy in lattice 
NRQCD are calculated using weak-coupling perturbation theory. The action formu- 
lated in Ref. [2] h h w ic includes spin effects is used. Similar to an earlier study [3], 
the mass and wavefunction renormalization parameters required to match continuum 
QGD are obtained, as well as a necessary overall energy shift. Lattice NRQCD is 
briefly described in Section II. The Feynman rules are derived in Section III and 
the self-energy calculations are presented and discussed in Section IV. A tadpole 
improvement scheme in which all link variables are resealed by a mean-field factor 
(link variable renormalization) is also studied. Taking into account the mean-field 
corrections introduced by this scheme, the coefficients of g2 in the heavy quark renor- 
malization parameters are found to be small. Section V offers conclusions. 

_ _. _ II. LATTICE NRQCD 

Standard renormalization group techniques are used to formulate the NRQCD 
action. First, since the physics of heavy quark systems is dominated by momenta 
P N ‘Mi << M, where M is the heavy quark mass, an ultraviolet cutoff A - A4 is 
introduced. The Dirac action can then be replaced by a nonrelativistic Schrodinger 
action in which the quark and antiquark degrees of freedom essentially decouple. 
However, new local interactions must be added in order to compensate for the loss 
of the discarded relativistic states. Power counting rules [2] are used to classify 
these interactions according to their estimated magnitude in a typical quarkonium 

-state as measured in terms of u. Equipped with these rules, the interaction terms 
- w.hich contribute to quarkonia physics up to some given order in u may then be 

enumerated. The couplings associated with these interactions are determined by 
_ requiring agreement between the physical results of NRQCD and those of full QCD 

through the specified order in the quark velocity. When formulated on a lattice, 
NRQCD becomes a particularly powerful tool for studying heavy quark systems. 

In lattice simulations, Euclidean space correlation functions are computed. These 
may be obtained from the Minkowski theory by Wick rotating the contour integral 
of the Lagrangian over time from the real axis to the imaginary axis in a clockwise 
manner. Also, the path integration over the scalar potential must be similarly Wick 
rotated at each point in space-time. Then by defining x4 = ix’, x4 = -ixo, A4 = iAo, 

..- and. $4 = -iAo, one can again work with real quantities. The spatial components 
of iirbl fouivectors remain unchanged. The path integral weight exp(iS) becomes 
exp(-SE), where SE is called the Euclidean action. Wick rotation transforms the 
Minkowski metric tensor gfiLV = diag(1, -1, -1, -1) into the negative of the identity 
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matrix, so that in Euclidean space, raising or lowering any index introduces a sign 
change. 

In lattice NRQCD, the quark fields are defined on the sites of a four-dimensional 
hypercubic lattice with spacing a, while the gauge-field degrees of freedom reside on 
the links between the sites. With each link originating at a site x and terminating 
at a site x + ~6, is associated a Iink variable UP(x), which is a lattice version of the 
parallel transport matrix between sites and is an element of the Lie group associated 
with the gauge invariance of the theory. A lattice gluon field A,(x) = & AL(x)Tb 
may be defined in terms of the link variables using 

. . 

up(x) = exp [iagA,(x + icfi)] , 
where g is the coupling constant of the theory and (tP), = 6;. This definition is 
convenient since it is simple and satisfies U?(x) = U-,(x +a;,). The SU(3) generators 
Tb are Hermitian, traceless, and satisfy Tr(T”Tb) = iPb and [T”, Tb] = ifabcTc, where 
fabc are the real, fully antisymmetric structure constants. Of course, the field APL(x) 
is,not identical to the gluon field of the continuum theory. Let G,(x) represent the 
gluon field defined in the continuum theory. Under a local gauge transformation 
S(Z),%~‘,(X) + S(x)G,(x)St(x) - (i/g)S(x)tl,St(x). The field A,(x) does not 
transform in this way; rather, it transforms in a very complicated manner in order 
that .the link variable transforms under a local gauge transformation according to 
Up(x) + s(x)u,(x)s+(x + a&). 

In Minkowski space, the chromoelectric and chromomagnetic fields are usually 
defined in terms of the field strength tensor in the following manner: EtM,(x) = 

FkO(x) = FOk(X), and B”(x) = -&lmF’m(x), where ~123 = 1. In Euclidean space, 
the magnetic field is unchanged. The electric field in Euclidean space is here defined 

-by Ek(x) = Fk4(x) = -&(x), so that Et,, = - iE”. The Hermitian and traceless 
field strength’tensor is best represented [4] by 1 c overleaf operators defined at the sites 
of the lattice: 

(3) 

f-&(x) = 1 c U&)Up(x + u&Y)U-,(x + a& + uqu-,(x + c&p), 4 {(%~)~,, (4) 

with {(e, p)}PV = {(p, v), (v, -,v), (-p, -v), (-V, cl)} for p # V. This representation , _ 
is -~$osen.+rce it transforms as the (1,O) $ (0,l) six-dimensional reducible represen- 
tation of the hypercubic group, similar to the continuum case. 

‘Covariant derivatives are replaced by forward, backward, or symmetric differences 
on the lattice: 



a5Al+)(y;x)= Up(y)a(4)(x,y + a&) - I'"', 

~~Al-)(y;x)=i(~)(x,y) - U;(X)~(~)(S,~ - a;,), 
A(*) = ;(A(+) + At-)), 

where &“)(x, y) d enotes a four-dimensional Kronecker S-function. For example, 

c a5Ajlc)(y; x)+(x) = ud~)ti(~+@J-+(~). 

(5) 
(6) 
(7) 

(8) 
z 

&s-o, the Laplacian becomes 

At2) = 5 @Ai-) = -& A~-)&+) 
(9) 

k=l k=l 

The finite lattice spacing introduces systematic errors into NRQCD which can 
be reduced by the addition of new interactions to the action. At tree level, this is 
most easily accomplished by improving the components comprising the lattice action 
so that they more accurately reproduce the effects of their continuum counterparts. 
An improved difference operator which reproduces the behavior of the continuum 
co&ant derivative through order u4 is given by 

_. - A(*) = @ u2 (+I (*t) ( 1 
k -~a, Ak A,. (10) 

. _ 

An improved lattice Laplacian is 

A(2) = A(2) _ g 5 (~r1~i-J)~. 
k=l 

Lastly, an improved cloverleaf field strength tensor may be defined by 

+ UL(x - uQFfiv(x - u~&J,(x - a&) - (p f-) v)] . (12) 
The portion of the lattice NRQCD action containing the heavy quark-gluon in- 

teractions may be written [2] 

sla”) = u3 c ?)+(x)+(x) 
I 

-u35b+(x+ui4) l- 
3: 

( 90-7) U,t[s, (1-q) (I-~)~~(s).(ll) 

.- This action includes all spin-independent corrections which are suppressed by v2 rel- 
cm.- -.L 

atlye to the leading terms and all spin-dependent interactions suppressed by factors 
up to v4. The heavy quark field $J( ) x is a Pauli spinor corresponding to the two upper 
cotiponents of the original Dirac field. (A n analogous action may be written for the 
heavy antiquark field i(x).) Th e improved kinetic energy is given by 
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. - 

&a a (A(2))2 &=---- 
2M 4n 4M2 ’ 

where n is a positive integer. This operator is cleverly constructed to produce a leading 
error from the lattice approximation of the temporal derivative which can be removed 
by a redefinition of the quark fields. In this way, the heavy quark propagation remains 
governed by a Schrodinger equation across a single time slice without affecting energy 
levels, on-shell scattering amplitudes and other physical quantities. The parameter n 
was introduced in Ref. [l] t o remove instabilities in the evolution of the quark Green’s 
fvp@ion which occur when the temporal spacing is not small enough to accurately 
treat the high-moment a modes. 

The quark-gluon interactions are as follows: 

where 

_. - (A(*) . E - E . A(*‘), (17) . _ 

K = -&{Af2),, .B}, 

Vc,=-&{A(2) ,a.(A(*)xE-ExA(*))}, (21) 

1/r=-&.E x E, (22) 

and where the coefficients cj are functions of aM and the running coupling (Y, in 
general. At tree level, their values are all unity. Note that the three-vector A(*) 
refers to the spatial components of the covariant four-vector AL*), while E and B 
refer to the components Ek and Bk, respectively. 

The four-fermion contact interactions involving a quark and an antiquark X(Z) 
are given by: 

a=1 
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Analogous contact terms between pairs of quarks and pairs of antiquarks also occur 
but only affect baryons. 

The standard Euclidean gluon action is given by 

lj;: = a4 C&(x), (24 
I 

where 

. 

is the usual single-plaquette lattice gauge field Lagrangian density. An improved 
gluonic action may be written 

where Lgx2) is comprised of 2 x 2 plaquette operators and is given by: _ _-. _ _ ̂__. Lgx2)(x) = & c w2 - f-$?(x) - $?(x)], P#U 

(26) 

(27) 
- 

with- - 

f$!(z) = 1 c 
4 {(~lLw,, 

u,(x)U,(x+ai,)Up(x+2u~~)u~(x+2u~~+u~p) 

xu-,(x+2a~,+24U-,( + x ai,+2ui$)U-p(x+24U4x+u&3), (28) 

wd {(d)Illl.v = UP, 4, (Y 4, (--cl, -4 C-F 1-4) for P # u. Presently, light 
_ quarks are neglected. 

The lattice NRQCD action is formulated in terms of the link variables Ufi(x) in 
order to preserve local gauge invariance, and as the lattice spacing a becomes small, 

- it must tend to the action of the continuum theory. This can be shown at tree level 
in perturbation theory using the following relationship between the link variables and 
the gluon field G,(x) of the continuum theory: 

U,(x) = exp [iug~,(x+%d,)] - 1 + iugG,(x), (29) 

where the lattice gluon field A,(x) = GP(x) + O(u2). Beyond tree level, however, one 
. -- observes that large renormalizations are necessary to match the small a limit of the 

lat& action to the continuum form. These large renormalizations stem mainly from 
the higher-order powers of ugA, which occur in the expansion of Up. Such terms 
generate ultraviolet divergences proportional to powers of u-l and so are suppressed 
only by powers of g2 and not a. 
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A simple gauge-invariant procedure for improving the lattice NRQCD action by 
reducing the magnitudes of the renormalizations needed to reproduce the continuum 
theory has been suggested: replace all link variables U,, that appear in the lattice 
action by Up/uo, where us is a parameter representing the mean value of the link [2]. 
A gauge-invariant definition of this mean-field parameter may be written in terms of 
the mean plaquette: 

us = (~TrU,,rW)1~4. 

The parameter us may be calculated using perturbation theory or may be measured in 
a simulation in order to include nonperturbative effects. The mean-field corrections 
introduced by this procedure are sometimes not small; for example, the cloverleaf 
magnetic and electric fields may be nearly doubled. Omission of such factors can 

.result in significant underestimates of quantities, such as spin splittings, which depend 
on E and B. 

In lattice NRQCD simulations, a value for the lattice spacing a must be chosen 
subject to a few constraints. First, the cutoff A N T/U must be larger than the highest 
physically-relevant mass scale; thus, A >> Mv is required. For bottomonium, vi - 0.1 
and -fMb-N ‘5 GeV so that a << 2.0 GeV-l; for charmonium, w,2 - 0.3 and M, - 1.7 GeV 
yielding a < 3.4 GeV-l. It is also desirable to choose A large enough so that O(g2(A)) 
corrections to the coupling coefficients cj and dj are small. However, NRQCD is a 
nonrenormalizable effective field theory and its coupling coefficients generally contain 
powers of A/M, causing problems if A is made too large. Furthermore, an overly 
large cutoff defeats the very purpose of NRQCD, which is to remove the scale M 
from the dynamics. Hence, it is important that A does not get much larger than M. 
Note that the requirement UL >> r, where L is the extent of the lattice in number of 
sites and r is the root-mean-square radius of the system under study, can be easily 

.satisfied in present-day simulations since r$ N 2.4 - 5.0 GeV-’ for the 1c, family and 
?r - 1.0 - 3.6 GeV-’ for bottomonium. 

Once a suitable value for a is chosen, the bare quark mass M and the bare lattice 
coupling g must be fixed by reference to experiment. One very useful quantity for 
this purpose is the spin-averaged s-p splitting in quarkonium; due to an interplay 
between the Coulombic and linear forces, this splitting is essentially independent of 
uM. The masses of the lowest-lying 1c, and T mesons are also appropriate references. 
Of course, g and M run with a in such a way that low-energy physical predictions 
do not depend on the cutoff up to some order in 2, and a. In practice, it is much 
more convenient to first choose an appropriate value for g, and then fix a and M by 
comparison to experiment. 



III. THE FEYNMAN RULES 

In a lattice gauge theory, the space of gauge transformations is finite so that 
gauge-fixing is not necessary. However, weak-coupling perturbation theory can only 
be applied if one fixes the gauge and extends the integration range of Ab,( x) using the 
familiar Faddeev-Popov technique [5]. H ence, a gauge-fixing term S~F must be added 
to the NRQCD action. The Faddeev-Popov ghost action can then be determined from 
SGF [6]. 

To facilitate the perturbative evaluation of scattering amplitudes, the gauge- 
inyariant path integral measure must be expressed in terms of the lattice gluon field 

371:- -. 

where 

S,, = -$Trln 
2( 1 - cos ugd,(x + i&J) 

XCL (e&(x + ;4J>” 1 (32) 
_ ^__ 

and de; = ifbcdA$. To order g2, 
- 

- _ 
S 

u2g2 
Ins M- 
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1 . (33) 
The Feynman rules are determined by expanding the total action in terms of the 

coupling g and Fourier transforming into momentum space. The coupling coefficients 
are written cj = 1 + g’cy) + O(g”). R ewriting the heavy quark-gluon action as 

_ then 

@) = J (27r)4(2794 
2!%% ?j+(k')qk'; /q&q, 

where the Fourier transforms are defined on an infinite lattice by: 

t+!(x) = ik I, ,I*,a &e-ikwk), 

(35) 

(36) 
..- -y -.i _ G( k’; k) = a8 C eik”YmikexG( y ; 2). (37) w. - . =Y 

The perturbative expansion of G(lc’; Ic) in terms of the gluon fields takes the general 
form: 
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) Abl (!db’ ((12)d2’(k’ k; ql, VI bl- q2 u2 b2) + . . . , (38) VI w G ’ , , , , 

where 

d(k’, k; ql, . . . 7 4 = [g g$] P446(4) (k’ - k + g CA) (39) 

and A,(q) is the Fourier transform of AC,(z) defined by 

A,(x) = / &eiqYi,(q). (40) - 

Thus, the Feynman rules follow easily from the (dimensionless) $’ functions. 

One of the simplest ways to compute the functions @ is to first calculate the 

Four%r%&sforms of the basic operators which comprise &(I?; Ic) and then combine 
these Fourier transforms appropriately. The perturbative expansion of the transform 
of each such operator will take the same general form as that for e( Ic’; Ic) given above. 
Of course, this general form also applies to transform products. Let 

Cj,p>( k’; k) = 
J 

d4p - A{&‘; P> &3>(Pi VT 
P44 

(41) 

then the product rule for the t functions may be expressed as follows: 

&jag1 (k’;k h w, K,) 

Using this rule and the additivity of the t functions, one can quickly build up the (2’ 
functions. The Fourier transforms of all the necessary basic operators are presented 
in Appendix A. 

The lowest-order heavy quark propagator, shown in Fig. l(a), is given by: 

f&(k) = &&,Q(k), 

wke i; j. are color indices and (Y, /3 are spin indices, and . 

(43) 

.’ Q(k) = [I - eikTa (l+$)l (l-~-~+2~~~~~2)2n]v1 (44) 
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with Kn(k) = ‘& sinn (kju/2). 
In the Feynman gauge, the lowest-order gluon propagator, shown in Fig. l(b), is 

given by: 

D&( k; A) = u26bCS,JIY( k; A), (45) 

where 

D,(k;X) = [y(&sin2(y)) - ~cos2(~)(~sin2(k,u)) +u’~‘]-~. 
c-x=1 a=1 

; Cd 
(46) 

. . A small gluon mass X has been introduced to provide an infrared cutoff. If the simple 
gluon action in Eq. (24) is used, the lowest-order gluon propagator is then 

f$,(k; A) = u2c5bcc5,&k; A), (47) 

where 

i)(k; A) = [4($sin2(v)) + a2~2]-~. (48) 

The- lowest-order vertex factors corresponding to interactions involving a heavy 
quark line and one to three gluons, shown in Fig. l(c), may be written: 

R(k’, a, i; k, P, j; ql, vl, bl) = -g (2r)46(4)(k’- k+ql) 
4 

c 0’ T;“3! C&)&k’, k; wl), QP 
/L=l 

h(k’,a,i; hP,j;ql, ~1, h; 42, ~2, b2) = -ug2 (2r)4S(4)(k’-k+q1+q2) 

(4% 

v@‘, @; W,.i; qvdl; qw&; qw3,b3) = -u2g3 (2r)46(4)(k’- k+ql+q2+q3) 

bG3c[( 
p=l TEP, 

Tbr1Tb?Tbr3)jj~~~(k’, k; qq,url; qT2,uT2; qT3,tiT3) 

+~jjTr(Tbr1Tbr2Tbr3)~~~(k’, k; qrl,uT1; qT2,uT2; qT3,uT3) 1 , (51) 
..- 

wh&eP;is the group of permutations of r elements, crk are the standard Pauli spin 
matrices for k = 1,2,3 and o4 is a 2 x 2 identity matrix in spin space. The & 
functions are obtained from the [a functions by neglecting the O(g2) corrections to 
the cj coupling coefficients. These corrections show up in higher-order counterterms. 
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Link variable renormalization in perturbation theory leads to the addition of the 
following order g2 counterterm, shown in Fig. l(d): 

- 

V,,(k’, a, i; k, p, j) = -of) ~(2*)4s(4)(k’-k)6,86Ue’k4a 

h(k) h(k) h(k) 2n2(k)2 
-+ (‘+g) (&-x-,-m+ nM2u4}7 (52) 

. . 
writing us = 1 + uf)g2 + O(g”). _~ 

The goal here is to determine the numerical values of the coupling coefficients cj 
and dj and various renormalization factors for given values of the input parameters 
needed in lattice simulations, namely, the bare lattice coupling g and the bare heavy 
quark mass uM. Since. these couplings and renormalization factors essentially absorb 
the.Wrelativistic effects arising from highly-ultraviolet processes, one expects that they 
may be calculated to a good approximation using weak-coupling perturbation theory. 
Using-the above Feynman rules, the development of perturbative expansions for these 
quantities in terms of g is straightforward. However, there is no compelling reason 
to use the bare lattice coupling for the expansion parameter. In fact, recent work [8] 
suggests that g is a very poor choice of expansion parameter and that much better 
perturbation series result if one re-expresses the series in terms of a renormalized 
coupling g, defined in terms of some physical quantity and which runs with the 
relevant length scale. This is standard practice in continuum perturbation theory. Of 

-course, if calculations could be carried out to all orders, then the choice of expansion 
- parameter would be immaterial. 

To define a renormalized expansion parameter, a definition of the running coupling 
g,.(p) and a procedure for determining the relevant mass scale p must be given. A 
renormalization scheme [8] which defines the coupling such that the heavy quark 
potential has no gl or higher order corrections is particularly attractive. This scheme 

_ is physically motivated and produces O(gp2) perturbative results in good agreement 
with simulation results for several different quantities. By absorbing the higher-order 
contributions to the heavy ‘quark potential into 99, it is hoped that higher-order 
contributions in other quantities will be small. The renormalized coupling gr(p) 
is then given by the usual two-loop formula with A = 46.08Alat. The scale p is 

.- determined by averaging lnq2 over the one-loop process of interest, where q is the 
lo&&nomentum. Since the heavy quark parameters calculated here are ultraviolet 
divergent quantities, one expects p x r/u. Here, & shall be used to denote the value 
ST(l) of the renormalized coupling at the appropriate scale. For example, at p = 5.7, 

9w-4 = 1.9 and at’P = 6.0, gl(r/u) x 1.7. Alternatively, & could simply be 
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added to the list of parameters which must be fixed in any simulation by reference to 
experiment. 

- 

IV. THE HEAVY QUARK SELF-ENERGY 

The heavy quark self-energy C(p) may be defined by writing the inverse quark 
propagator &T-‘(p) in the form 

uG-‘(p)$ = Q-1(p)6’j6,P - uC$(p), (53) 

v&&e i, j are-color indices and CY, /3 are spin indices. At order g2 and o4 and neglecting 
link variable renormalization for the moment, this self-energy is given by: 

. . X$(p) = 
_~ 

where 

cLP)(p; A) = $2 f: 
” p,u=’ 

& g2Sij&p( dA) (p; A) + 9) (p; A)), (54) 

. ^. -. 
corresponding to the diagram in Fig. 2(a), and 

_- 
- _ 

~C?P; A> = -$u4v$ / $$,$,(k; X)C$)4(p,p; k, u; -k, u), 

corresponding to the tadpole diagram in Fig. 2(b). Note that E, = (-l,-l,-1,l). 
The following properties of the [ functions are used to obtain the above results: 

&$;,Jk’, k; k - k’, u) = ccc $JP(k, k’; k’ - k, u), (57) 
~~~j(P, P; Ic, ‘; -Ic, ‘> = O, (j = 1,2,3). (58) 

The self-energy is invariant under spatial reflections pj + -pi, for j = 1,2,3, and 
transforms into its complex conjugate under p4 -+ -pz. 

In order to investigate C(A)(p; X) and C(B)(p; X) in the neighborhood of p = 0, 
the integrals in Eqs. (55) and (56) must first be evaluated. The usual initial step in 
the determination of such integrals is to use the change of variables z = exp(fik4u) 
to transform the integral over k4 into a contour integral along the IzI = 1 unit cir- 
cle. Unfortunately, the complicated pole structure of the vertex factors near z = 0 
makes difficult the evaluation of this contour integral by the residue theory. Due to 
this fact, the simplest procedure, approximating the four-dimensional integral by an 
ape&priate summation as described below, is preferred. 

Because the integrand in Eq. (56) is a periodic analytic function of the real vari- 
ables k, with period 27r when X > 0, CfB)(p; A) is numerically well approximated by 
the discrete sum 
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uC(yp; A) x -f$ 
4 

7 gl Q@; X)4t;4(~, P; k, u; -k, 4. (59) 

In this sum, uk, = 2mz,/N where the n,, take all integer values satisfying -N/2 < 
n,, 2 y/2 for integral N. The error resulting from this approximation diminishes 
exponentially fast as N + 00. However, the rate of decay of this error is directly 
proportional to the mass gap uX, creating difficulties when uX is small. Fortunately, 
the decay rate of this error can be dramatically increased by making the following 
change of variables [9]: k, + k, - o sin(k,) with 0 2 CY < 1. This transformation 
mtintains periodicity and effectively increases the mass gap so that the approximation 

. . dm(p; A) M -$$ c f: e(k>~&@>; N$j4(p,p; s(k), u; -s(k), u), (60) 
k v=l 

.~ 
where sP( k) = k, - CY sin(k,) and e(k) = l-l”,=, [l - CY cos( k,)], converges much more 
quickly as N is increased. The parameter CY should be chosen so as to maximize the 
effective mass gap: CY = sech(u), where u satisfies uX M u - tanh(u). 

The above procedure is sufficient for evaluating C(B)(p; X) as long as the gluon 
mass UA is not set too small. However, the pole in the quark propagator is prob- 
lematical when evaluating C(A)(p; A) near p = 0. To circumvent this, the contour for 
the hi& integral, which runs along the real axis from -r to 7r except near the pole, 
can be continuously deformed into a contour consisting of three line segments passing 
through the points -7r + -7r - iaX/2 -+ 7r - iaX/2 + 7r. This contour is chosen for 
the following two reasons: for p - 0, the distance of closest approach to any pole is a 
maximum; and the contributions from the segments of the contour running parallel 
to the imaginary axis cancel due to the periodicity of the integrand. C(A)(p - 0; A) 
can then be accurately obtained using the following approximation: 

W&(P - G)) 

(61) 
where r,(k) = k, - osin(k,) - i&&,/2 and uk, = 2nn,/N with the np taking 
all integer values satisfying -N/2 < nfi < N/2. Also, (Y = se&(y) and uX/2 x 
y - tanh(y). I n p ractice, the approximations in Eqs. (60) and (61) are applied using 
increasing values of N until sufficient convergence is observed; typically, N = 20 is 
adequate. Note that for values of p satisfying p, = p, = p,, the number of terms 
which must be independently evaluated in these sums may be dramatically reduced 
by+&ploiting the invariance of the summands under interchange of any two spatial 
components of k. 

.‘The evaluation of .EfA)(p N 0; X) and C(B)(p N 0; X) using Eqs. (61) and (60) is 
feasible only if the gluon mass X is not set too small. However, the limits of these 
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functions as X + 0 are actually required, necessitating the use of an extrapolation 
procedure. The expected behavior of these quantities as X tends to zero may be 
expressed as an asymptotic expansion of the form 

C(PA N 2 (bg) + bz) In u2X2) (uA)~, 
x40+ m=-J 

where the coefficient br) is known from the continuum theory since the infrared di- 
vergence is insensitive to the ultraviolet regulator. If one neglects the bi) terms 
fyz m > 0, then polynomial extrapolation using Neville’s algorithm may be applied 
to yo(p* A) = C(p* A) - br) In u2X2. The extrapolation can be improved by apply- 
ing Neiille’s algor’ithm to the function fl(p; A) = fo(p; X) - uXd(,x)C(p; A) + 2br’ 
which has no uXlnu2X2 term. Polynomial extrapolation of f2(p; A) = fl(p; A) + 
.(u2X2/2)8faAjC(p; A) + br), which does not suffer from u2X2 In u2X2 and uX In u2X2 ef- 
fects, is another method. Since the gluon mass appears only in the gluon propagator, 
the derivatives of C(p; A) with respect to uX can be exactly and efficiently taken. 
In practice, polynomial extrapolation of all three functions fo(p; A), fl(p; A), and 
fz(p.; X) is done using between six and twelve values of the gluon mass lying in the 
range&l5 5 uX 5 0.8, and agreement among the results is verified. In calculat- 
ing W) (p; X --+ 0), one finds that only even powers of uX occur in its asymptotic 
expansion. In this case, the accuracy of the extrapolation can be increased by explic- 
itly excluding the odd powers in the extrapolating polynomial. Neville’s algorithm is 
then applied to the functions fo(p; A), fl(p; A) = fo(p; A) -u2X2a(,a~~)C(p; A) + bc’ and 

f&p; A) = &(p; A) + (~~X~/2)d;~z~z,C(p; A) + @/2. U ncertainties in the extrapolated 
values are estimated by examining the spread of values in the Neville table and by 
comparing the results obtained using different sets of gluon mass values and using 
the different functions described above. 

The smal1.w expansion of the zeroth-order heavy quark inverse propagator, keeping 
only those terms which are suppressed by no more than v2 relative to the leading 
terms, is given by: 

Q-‘(P) 
pw + paa + ip4p2u3 _ (p2)2a4 M -ip4u+ - - 
2Mu 2 2Mu 

(P2)2a4 + 
8M3u3 - 8M2u2 ‘*- 7 (63) 

- recalling that p4 is of order v 2. The on-mass-shell quark then satisfies the following 
dispersion relation: 

we(p) M i $ - 
( 

gg+...), (64) 
.- where @O(P) d enotes the value of the fourth component of the contravariant quark 

fo&Gromentum pp at the pole of the zeroth-order propagator. This dispersion rela- 
tion agrees exactly with the continuum form from full QCD to this order in V. 

‘In the MS renormalization scheme, the inverse propagator to order g2 for full 
QCD in continuum Minkowski space has the form 
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where 

(1 - ccontg2) ($ - M(l + Lntg2)) (65) 

C -!- (-4+ln(M2/p2)+21n(M2/X2)), cod = 12r2 (66) 

6 L (4 + 31n(p2/M2)) . cant = 12r2 (67) 

. . 

Note that ~1 is the mass scale introduced by dimensional regularization and X is the 
gluon mass regulating the infrared divergence. Thus, the sole effect of the order g2 
corrections is to renormalize the quark field and mass. If lattice NRQCD is to repro- 
duce the low-energy physical predictions of full &CD, then the order g2 corrections to 
the heavy quark propagator in lattice NRQCD must also do no more than renormalize 
.the heavy quark field and mass to the appropriate order in V. 

Explicit calculation shows that the heavy quark self-energy in lattice NRQCD has 
a small v representation of the following form: 

. _ -. 
UC(P) M g2{R0 -ip4a% + g-gn2 + . . .}, (68) 

retaining only radiative corrections to the lowest-order terms in v as specified by the 
pow& counting rules of Ref. [2]. Th e on-mass-shell quark now satisfies a dispersion 
relation given by 

We(P) X i(-g2S20/u + & (1+g%r-gZR2) -g+...,. (69) 

Defining M,. = 2, M, where 2, = 1 -g2Rr +g2R2 is the mass renormalization factor, 
and P4 = p4 - ig2Ro/u, the inverse propagator for small v may be written: 

(P2j2U4 _ (P2J2U4 + 
8M,3u3 8jj,f2u2 

T 

where 2, = 1 - g2(&, + 01) is the wavefunction renormalization parameter. Thus, 
the addition of a counterterm which shifts the energy by an overall amount $&/a 
is needed in order to match the low-energy physical predictions of lattice NRQCD 
with those of &CD. Alternatively, one could simply shift the energies obtained in 
simulations using the action in Eq. 13 by an amount $fls/u for each heavy quark. 

A more convenient set of renormalization parameters may be obtained by defining 
z&ii 1 _.-gzc, z, = 1 + g2B, and 174 = p4 + ig2A/u. The parameters A, B, and 
C can then be calculated using A = -0 0, B = R2 - 01, and C = Ro + 01, where 
Ro ‘= uE(0)/g2, Rr = iul$,4aC(0)/g2, and Q2 = 2Mu2tQazC(0)/g2. Due to the 
complexity of the NRQCD vertex factors, the derivatives in these expressions must 
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be taken numerically. Four- and five-point formulas are applied in the differentiation; 
only points which satisfy p, = p, = p, are used since the self-energy can be computed 
much more quickly at such points. 

Results for the energy shift parameter A and the mass renormalization parameter 
B are presented in Tables I and II, respectively. Both A and B are gauge invariant 
and infrared finite. The wavefunction renormalization parameter C has an infrared 
divergence of the form -(lnu2X2)/6 1r2 as the gluon mass is taken to zero. This 
divergence is cancelled in physical quantities by an infrared divergence occurring in 
the quark-gluon vertex correction. Values for the infrared-finite portion of C are 
g&n in Table III. In th ese tables, the contributions from the quark-gluon loop and 
tadpole diagrams are given separately. Results using the simple and the improved 
gluonic actions are presented. Values for the stability parameter n are chosen such 

. . that the pole in the quark propagator Q(p) f a 11 s on the same side of the real axis in 
_~ .the complex p4 plane for all allowed values of p and tends to move farther away from 

this real axis as ]p] increases to its allowed maximum. For UM 2 2, n is set to unity; 
for 1 5 UM < 2, n = 2 is used. These values of n ensure the stability of the evolution 
equation for the quark Green’s function. 

Contributions from the quark-gluon loop graph to the energy shift parameter A 
aresr.-nall and decrease in magnitude as UM decreases. At large uM, there is little 
difference between the shifts obtained using the simple and improved gluonic actions. 
The-tadpole contributions are large and contain power-law divergences which grow 
in magnitude as UM is decreased. Since high-momentum modes are more strongly 
damped in the improved gluon propagator, the ultraviolet-divergent tadpole terms are 
appreciably smaller in the case of the improved gluon action. These total downward 
shifts in the energy are nearly the same as those obtained in Ref. [3] which used a 
much simpler heavy quark action. Calculations of A using cj = 0 for j = 3,4,5,6,7 
reveal that contributions to this parameter from the spin-dependent interactions are 
-small. 

- Contributions to the mass renormalization parameter B from the quark-gluon 
loop diagram are very small and do not vary proportionately with uM. For all values 

- of uM, there is little difference between the results obtained using the simple and 
the improved gluon actions. The tadpole contributions are again large, growing in 
magnitude as UM is decreased. The tadpole terms in the case of the improved action 

- are slightly smaller and contributions to this parameter from the spin-dependent 
interactions are small. The, total values for B obtained here are appreciably larger 
than the order g2 corrections to the mass renormalization calculated in Ref. [3] (see 
Ref. [lo]). 

The tadpole diagrams do not contribute to the heavy quark wavefunction renor- 
.- mali:,ation parameter C. The values for the infrared-finite portion of C are very 

sm%l and become increasingly negative as UM is decreased. There is little difference 
between the results obtained using the simple and the improved gluonic actions. The 
magnitudes of the wavefunction renormalization corrections are much smaller than 
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those obtained in Ref. [3] (see Ref. [lo]). 
The contributions to the energy shift and mass renormalization parameters from 

the link variable renormalization counterterm are given by: 

&4=@(1+&), (71) 
;-&+A). (72) 

IYs, change in the wavefunction renormalization occurs. As previously stated, the pur- 
pose of link variable renormalization is to enhance the similarities between lattice and 
continuum gauge-field operators, especially those depending on the cloverleaf electric 
and magnetic fields. Consequently, the counterterms introduced by this renormaliza- 
tion offset the large tadpole contributions which commonly afflict lattice perturbation 
theory, offering a means of improving its convergence. As shown in Table IV, the or- 
der g2 corrections to the heavy quark renormalization parameters are small once the 
mean-field corrections are taken into account. In this table, the value us (2) = -0.083 
obtained by evaluating Eq. 30 in perturbation theory for the simple gluonic action is 
used. .For .&! - 2 and a - lGeV-l, the b quark receives approximately a 1% lowest- . . . -- 
order correction to its mass and the c quark receives about a 7% mass correction. 

_ 
V. CONCLUSION 

Lattice NRQCD is an effective field theory which promises to make possible high- 
precision numerical studies of heavy quark systems. It is essentially a low-energy 
expansion of QCD in terms of the mean velocity of the heavy quarks in a typical 
heavy-quark hadron. To fully define lattice NRQCD, the coupling strengths of its 
interactions must be specified. These are determined by requiring that lattice NRQCD 

-reproduces the low-energy physical results of continuum &CD. Since the role of these 
- couplings is to absorb the relativistic effects arising from highly-ultraviolet QCD 

processes, one expects that they may be computed to a good approximation using 
- perturbation theory, provided the quark mass A4 is large enough. 

The heavy quark self-energy in nonrelativistic lattice QCD was calculated to 
O(cy,) in perturbation theory. An action which includes all spin-independent rela- 

- tivistic corrections to order o2 and all spin-dependent corrections.. to order v4 was 
used. The standard Wilson action and an improved multi-plaquette action were used 
for the gluons. Results for the mass and wavefunction renormalization and an over- 
all energy shift were obtained. Contributions from the quark-gluon loop graph were 
found to be very small; however, the tadpole contributions were large. The values of 

.- the.se-parameters will be needed in future numerical simulations of quarkonium. The 
eff&ive couplings will also be needed; calculation of these quantities is in progress. 

.A tadpole improvement scheme in which all link variables are resealed by a mean- 
field factor us was also.applied in perturbation theory. The main purpose of this link 

18 



variable renormalization was to enhance the similarities between lattice and contin- 
uum gauge-field operators, especially those depending on the cloverleaf electric and 
magnetic fields. An important consequence of this scheme was a significant offsetting 
of the large tadpole contributions to the heavy quark renormalization parameters. Us- 
ing a perturbative approximation to the mean plaquette for us, the tadpole-improved 
heavy quark renormalization parameters were shown to be small. This scheme offers 
a means of improving the convergence properties of lattice perturbation theory. 

- 
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APPENDIX A 

The momentum-space representations of various components of the lattice 
_ _.. _ NRQCD action are presented in this Appendix. Below, c functions are introduced 

and. are-defined by 

Also note that spV is an “anti-Kronecker delta function” and is trivial when ~1 = Y 
and unity otherwise. 

In momentum space, the link variable becomes 

U,(k’; k) = a4 C ei(lc’-lc).ze-i’pa exp 
[ 
iagA,(x + ;;,)I 

= (2r)46(4)(k’ : k)e-‘“@~+k~)/2 + iag 1 d(kl, k; q)e-‘“(k;+kd/2~,(q) 

a2g2 -- 
2 I d(k’, k; a, q2)e -;a(k:+k,)12A,(q1)A,(Q2) 

ia3g3 
-- 

6 I 4K k; a, q2,43)e -i,(k:+k,)12A,(q1)A,(42)~~(q3) + * * * . 

The momentum-space representation of A?) may be written: 

[$*,(k , k) = -isin[Q(k’ + k) ] 
2 cc, 

_: .-- 
xi. 

_ _ 

W) 

W) 
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.- 

The improved symmetric derivative has the following momentum-space representa- 
tion: 

- 

<zC*)(k’, k) = i (-f sin[i(E’ + k),] + i sin[a(k’ + k)p]) , (A4 .- P 

<$$i)(k’,k;ql,l/l) = i% 
3 PPI M (4cos[i(k’+ k),l-cos[a(k’+k),]cos(~qlp)) , 

Cric*)(k’ k* ql,vl; q2.m) = ia2Sp 7 9 6 Pl PP2 P ( 
i sin[t(k’ + k),] 

; Cd 
-isin[a(k’+ k),] cos(%ql,)cos(~q2p)-~cos[a(k’ + k),] sin[t(ql - q2)J) , 1 

C;Lc*) (k’ k- q , , 1,h; q2,v2; q3,v3) = ia3~,,,,~,,,~,,, P ( 
-;cos[;(k’ + k)J 

+~cos[a(k’+k),]cos[~(k’-k),]+~cos[a(k’+k+~ql-~q3)11]cos(~q2ir)) . : 

The Fourier transform of the lattice Laplacian may be written: 

- 
. “___. [$kC2)(k’, k) = -4 2 sin2[:(k’ + k)j], 

j=l 
*- 

_ C$kc2)(k’, k; ql,vl) = 2a si$(k’ + k),,] &,,, , 

C$)a(2)(k’, k;ql,vl; qw2) = -a2cos[$k’ + k),,] Svl,v2S4,v1, (A5) 

C$kc2)(k’, k; ql,vl; qw2; qw3) = -c sin[;(k’ + k)yI] SV1,v2SV2,V3&rV1. 

Similarly for the improved Laplacian: 

<$!hc2)(k’, k) = -4 5 (sin2[:(b’ + k)j] + 5 sin4[:(k’ + k)j]) , W) 
j=l 

~~:~;l)(k’,k;qw) = 34,v, (8si$(k’ + k)v,]-sin[a(k’+k),,] cos(~qlv,)) , 

Cf;( ,(“’ 2 2 k*q , 7 wl; qw2) = a2&l,v2&,Y1 (-$ cos[$k' + k)yI] 

+i cos[a(k’+k),,] co~(~ql,,) cos(%q2vl) - $ sin[a(k’+ k)vl] sin.ii(ql -q2)ul]) , 

@j(2)@', k-q , u-3; q272; q3,v3) = a3&1,y&2,v3~4,y1 
( 

-f sin[t(k’ + k),,] 

%y- +$sin[a(k’+k+i ql-~q3)“11cos(~q2~)+~sin[a(k’+k),,lcos[~(k’-Ic),]). 

‘Another important operator is the cloverleaf field strength tensor. Its Fourier 
transform is given by 
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F,,(k’; k) = a4 c e’(k’-k)y&) 
3: 

i 
=- cJ ( a b 

d k’, k d [f,A,kd @k) - f$(q) A;(q)] Tb 
+is C /w, k; ql,qz) Tb’Tb2 .f;(ql, 42) A>(q&i~(q2) 

‘*- +iag2 c J d(k’, k; ql, q2, q3) (TblTb2TbJ - tTrTblTb2Tb3) 
bl bz b3 

. . 

{ 
-.f341~(12743) ~~(ql)~;(q2)x/Yq3) + f/ff/(q1,qz,q3) A;(ql)A;(q2)Afy(q3) 

_~ 

-Gxq1,q2743) zxql)~~(q2)zYq3) - f~(Ql,Q,,Q,) Afj(q&$yq2)/3>(q3) 

-.mQ3A2d 4w~>(92)A>(q3) + .fE(q1,q,,q3) a~(q,)Af/yq,)n;(q,, 
_ _.. _ 

-+.$Az39 42,qd qi%ll)AF(92)~:(q3) + .fQqw?,, 43) A;(q1)Af/yq2)A;(q3) . -. 
I 

-@(g3) W) 
. 

where 

f,A,(q) = sinh,) cos( $), 
f,Bv(ql, 42) =cos[q(qI + Q2)p] sin[i(q, + q2)“] sin[%(q, - q2)p], 

: f,“,(ql7 42) = ~bs(&Jco~(aq~v + iqzv) + COS( iqzv) cos(aq2, + iqlp) 

+ COSbh + &J cos(aqh + $2J - c0s( &J c0s( iq2”)], 

.f$(Q1,427 43) =cos[t(% + 42 + q3)J 
i 

$ sin[a(ql + q2 + q3)v] 

- 
cos[i(Ql + 42 + Q3)vl COS[%(@ - q3)v] sin( iq2v) 

I.. 
, 

+ f CO++2 + $l3M si$(q~ + q2)J, GQ) 
.- 

-<$L (QG qz,q3) = cos[k$P1 + 42 + 43)A sin[a($ + 42 + iq3)J c0s[+ - q3)p]. 

Using A;(q)* = AL(-q), one can easily check that Fil, (k’; k)* = F,b,( - k’; -k). Fur- 
thermore, FpI/(k’; k) = -F,,(k’; k), as required. Note the absence of a TrTbl Tb2 term 
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in the order g coefficient. 
The Fourier transform of the improved cloverleaf field strength tensor has the 

same form as that for F,,, but the functions fiy,. . . must be replaced by the following 
functions: 

.$(4) = 35 - cos(aq,) - c4aqJ)f,A,(q), 

-C(q1)q2) = i{C5 - cos[4!?* + q2>p] - cos[a(ql+ q2)u])f,B,(q1,q2) 
; r, 

? sin[a(ql + ~qz)Y]f~v(ql) + sin[a($ql + q2)Y]f,A,(q2)}, 

. . 

_~ 

_ _.. _ 

i 

L L 

.f#%hQz) = ;{( 5 - co+(ql + 42)J - cos[a(ql + q2)u])f,C,(q1,q2) 

+sinta(q* + t@Mf~~~ud + sin[a(iql + q2)Jf,A,(q2)}, 

-E(q*~@,QJ = ~{(5-ros[a(q~+q2+43),l-cos[a(ql+q2+q3),,q3) 

rt sin[a(q* + Q2 + &)rl.f~(P~, a2) - sin[a(& + q2 + q3)Jf,B,(q2, q3) . ". -. 

- - ~-~cos[a(q* + $I2 + ~43)plf~p(~~)- icos[a(kql + kq2 + q3)Jf,A,(q3) 
_ 

+ c44& + 42 + ;q3),lf,A,(q2)}, 

E(ql,q2,q3) = 5{(5-cos[a(q~+q2+q3)iil-cos[a(ql+q2+q3)"~)f,E,(41.q2,q3) 

- sin[a(q* + Q2 + &)Jfft(P1,42) - sin[a($ + q2 + q3),]f,c,(q2, q3) 

-&44;~1 + f!12 + q3)u]f,A,(q3)}, 

f;(Qlrq2,Q3) = i{(5 -c44%+Q2+43)& cos[a(ql+qz+Q3)vl)~~(41, q2, q3) 

-sin[a(q* + Q2 + $&lf~p(q~,q2) - sin[a(iq, + q2 + q3),]f,c,(q2,q3) 

- 44;q1+ 42 + ;q3)ulf~@(q2)}. W) 

_. -- . _ x. 
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TABLES 

TABLE I. The energy shift parameter A for various values of the product of the bare 
heavy quark mass M and the lattice spacing a. The contribution to A from the quark-gluon 
loop diagram of Fig. 2(a) is denoted by A;(A) for the improved gluon action of Eq. (26) 
and by A,(A) for the simple gluon action of Eq. (24). The contribution from the tadpole 
diagram of Fig. 2(b) is denoted by A;( I?) and A,(B) for the improved and simple gluon 
actions, respectively. For aM > 2, the stability parameter n is set to unity; for 1 5 aM < 2, 
n,z- 2 is used. Extrapolation uncertainties are no larger than f0.0001. 

. . 

ah4 A;(A) A;(B) As(A) As(B) 
5.00 0.0417 0.1361 0.0414 0.1688 
4.75 0.0407 0.1387 0.0403 0.1719 
4.50 0.0397 0.1415 0.0391 0.1754 
4.25 0.0385 0.1446 0.0377 0.1793 
4.00 
3.75 
3.59 ___ “__ 
3.25 
3.00- - 
2.75 - 
2.50 
2.25 
2.00 

0.0372 0.1480 0.0363 0.1835 
0.0358 0.1519 0.0347 0.1883 
0.0342 0.1562 0.0329 0.1937 
0.0325 0.1611 0.0309 0.1998 
0.0306 0.1667 0.0288 0.2067 
0.0284 0.1732 0.0263 0.2147 
0.0261 0.1807 0.0237 0.2241 
0.0234 0.1896 0.0208 0.2351 
0.0206 0.2002 0.0176 0.2482 

1.90 0.0199 0.2046 0.0168 0.2536 
I.80 0.0185 0.2101 0.0154 0.2603 
1.70 0.0172 0.2160 0.0139 0.2677 
1.60 0.0158 0.2226 0.0124 0.2759 
1.50 0.0143 0.2300 0.0108 0.2850 
1.40 0.0129 0.2383 0.0092 0.2952 
1.30 0.0114 0.2476 0.0076 0.3068 
1.20 0.0100 0.2584 0.0061 0.3201 
1.10 0.0086 0.2708 0.0047 0.3354 ., 
1.00 0.0075 0.2850 0.0036 0.3530 

.- _: -- _ xi. -- 
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TABLE II. The heavy quark mass renormalization parameter B for various values of the - 
product of the bare heavy quark mass M and the lattice spacing a. The contribution to B 
from the quark-gluon loop diagram of Fig. 2(a) is denoted by B;(A) for the improved gluon 
action of Eq. (26) and by B,(A) for the simple gluon action of Eq. (24). The contribution 
from the tadpole diagram of Fig. 2(b) * is d enoted by B;(B) and B,(B) for the improved and 
simple gluon actions, respectively. For aM 2 2, the stability parameter n is set to unity; 
for 1 5 aA4 < 2, n = 2 is used. Extrapolation uncertainties are no larger than fO.OOO1 for 
the tadpole values and f0.0002 for the contributions from the quark-gluon loop diagram. 

4x. B;(A) B;(B) WA) Bs(B) 
5.00 -0.0024 0.0556 -0.0030 0.0697 
4.75 -0.0016 0.0568 -0.0021 0.0712 

. . 4.50 -0.0008 0.0582 -0.0011 0.0728 
_. 4.~25 0.0000 0.0599 -0.0002 0.0748 

4.00 0.0009 0.0619 0.0008 0.0771 
3.75 0.0018 0.0642 0.0019 0.0798 
3;50 0.0028 0.0670 0.0030 0.0832 

_ _.. : 3.25. 0.0039 0.0704 0.0042 0.0872 
3*06- ~-- 0.0049 0.0747 0.0054 0.0923 
2.75 _. 0.0059 0.0801 0.0065 0.0987 
2.50-. _ 0.0069 0.0871 0.0076 0.1070 
2.25 0.0077 0.0963 0.0085 0.1181 
2.00 0.0080 0.1091 0.0089 0.1334 

1.90 0.0076 0.1175 0.0083 0.1438 
1.80 0.0077 0.1248 0.0084 0.1525 
1.70 0.0077 0.1332 0.0084 0.1626 
3.~ 0.0076 0.1431 0.0083 0.1746 
1.50 0.0073 0.1550 0.0079 0.1889 
1.40 0.0068 0.1692 0.0073 0.2061 
1.30 0.0060 0.1868 0.0064 0.2274 
1.20 0.0048 0.2089 0.0051 0.2541 
1.10 0.0032 0.2373 0.0032 0.2885 
1.00 0.0010 0.2752 0.0007 0.3345 

.- 
_: .-- _ xi. -- 
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TABLE III. The infrared-finite portion of the heavy quark wavefunction renormalization 
parameter C for various values of the product of the bare heavy quark mass M and the 
lattice spacing a. The infrared-finite contribution to C from the quark-gluon loop diagram 
of Fig. 2(a) is denoted by C; for the improved gluon action of Eq. (26) and by C, for the 
simple gluon action of Eq. (24). The tadpole diagram of Fig. 2(b) does not contribute to 
this parameter. For aM 2 2, the stability parameter n is set to unity; for 1 5 aM < 2, 

n = 2 is used. Extrapolation uncertainties are no larger than fO.OOO1. 

aM G cs 

5.00 0.0032 0.0029 

4.75 0.0018 0.0014 
4.50 0.0002 -0.0004 

. . 4.25 -0.0015 -0.0023 
4.00 -0.0033 -0.0044 _. 
3.75 -0.0054 -0.0067 
3.50 -0.0077 -0.0092 

3.25. -0.0102 -0.0120 
_ _. _ 3.oa -0.0131 -0.0152 

2.75~ “-- -0.0163 -0.0187 
2.50 -0.0199 -0.0226 _ 

2.25-. -0.0239 -0.0270 _ 

2.00 -0.0285 -0.0319 

1.90 -0.0300 -0.0335 
1.80 -0.0322 -0.0358 
1.70 -0.0345 -0.0382 
1.60 -0.0369 -0.0408 

+50 -0.0395 -0.0435 
1.40 -0.0422 -0.0464 
1:30 -0.0450 -0.0493 
1.20 -0.0480 -0.0524 

- 1.10 -0.0511 -0.0555 
1.00 -0.0542 -0.0587 

26 



TABLE IV. Tadpole improvement of the energy shift parameter A and mass renormal- 
ization parameter B for various values of the product of the bare mass M and the lattice 
spacing a. Results are given for the simple gluon action only. The renormalization param- 
eters without tadpole improvement are denoted by A, and B,; the improved parameters 
are denoted by As and 8,. The perturbative value tie (2) = -0.083 is used for the mean-field 
parameter. 

- 

ah4 As & Bs 8, 

5.00 0.210 0.069 0.067 0.006 
4.00 0.220 0.064 0.078 0.012 
3.00 0.236 0.056 0.098 0.022 
2.00 0.266 0.038 0.142 0.035 

. . 1.70 0.282 0.028 0.171 0.036 
_~ 1.30 0.314 0.008 0.234 0.039 

1.00 0.357 -0.017 0.335 0.041 

--_ 
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FIGURES 

FIG. 1. Various Feynman diagram elements. A curly line represents a gluon; a double 
solid line indicates a heavy quark. (a) Heavy quark propagator; (b) gluon propagator; (c) 
lowest-order vertices involving a heavy quark line and f gluons; (d) the O(g”) counterterm 
from link variable renormalization. 

FIG. 2. Two Feynman diagrams which contribute to the heavy quark self-energy. A 
curly line denotes a gluon; a double solid line denotes a heavy quark. 
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