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1 Motivation 

Feynman rules for covariant perturbation theory have been around for almost 
fifty years, and their adaptation to nonabelian gauge theories has been fully de- 
veloped for almost twenty-five years. Surely by now every significant standard 
model scattering process ought to have been calculated to the experimentally- 
required accuracy. In fact, this is far from the case, especially for &CD, which 
is the focus of this school and of these lectures. Many QCD cross-sections have 
been calculated only to leading order (LO) in the strong coupling constant CY,, 
corresponding to the square of the tree-level amplitude. Such calculations have 
very large uncertainties - often a factor of two - which can only be reduced 
to reasonable levels, say 10% or so, by including higher-order corrections in 

QS. 
Currently, no quantities have been computed beyond next-to-next-to-lead- 

ing-order (NNLO) in CY$, and the only quantities known at NNLO are totally 
inclusive quantities such as the total cross-section for e+e- annihilation into 
hadrons, and various sum rules in deep inelastic scattering. Many more pro- 
cesses have been calculated at next-to-leading-order (NLO), but at present 
results are still limited to where the basic process has four external legs, such 
as a virtual photon or 2 decaying to three jets, or production of a pair of jets 
(or a weak boson plus a jet) in hadronic collisions via qq + gg (qq + Wg), 

etc. 

This is not to say that processes with more external legs are not interest- 
ing; they are of much interest, both for testing QCD in different settings and 
as backgrounds to new physics processes. For example, (Y, could be measured 
at the largest possible momentum transfers using the ratio of three-jet events 
to two-jet events at hadron colliders, if only the three-jet process were known 
at NLO. As another example, QCD is a major background to top quark pro- 
duction in p@ collisions. If both t’s decay hadronically (t + Wb + q$‘b), the 
background is from six jet production. Despite the fact that the QCD process 
starts off at a:, it completely swamps the top signal. If one of the two top 
quarks decays leptonically (t -t Wb + &lb), then QCD production of a W 
plus three or four jets forms the primary background. This background pre- 
vented discovery of the top quark at the Tevatron in this channel, until the 
advent of b tagging.l Although the NLO corrections to three-jet production 
are within sight, we are still far from being able to compute the top quark 
backrounds at NLO accuracy; on the other hand, it’s good to have long range 
goals. 

These lectures are about amplitudes rather than cross-sections. The goal 
of the lectures is to introduce you to efficient techniques for computing tree 
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and one-loop amplitudes in &CD, which serve as the input to LO and NLO 
cross-section calculations. (The same techniques can be applied to many non- 
QCD multi-leg processes as well.) Zoltan Kunszt will then describe in detail 
how to combine amplitudes into cross-sections” 

Efficient techniques for computing tree amplitudes have been available for 
3 several years, and an excellent review exists. One-loop calculations are con- 

siderably more involved - they form an “analytical bottleneck” to obtaining 
new NLO results - and benefit from additional techniques. In principle it 
is straightforward to compute both tree and loop amplitudes by drawing all 
Feynman diagrams and evaluating them, using standard reduction techniques 
for the loop integrals that are encountered. In practice this method becomes 
extremely inefficient and cumbersome as the number of external legs grows, 
because there are: 

1. too many diagrams - many diagrams are related by gauge invariance. 

2. too many terms in each diagram - nonabelian gauge boson self- 
interactions are complicated. 

3. too many kinematic variables - allowing the construction of arbitrarily 
complicated expressions. 

Consequently, intermediate expressions tend to be vastly more complicated 
than the final results, when the latter are represented in an appropriate way. 

In these lectures we will stress the advantages of (1) using color and he- 
licity information to decompose amplitudes into smaller (and simpler) gauge- 
invariant pieces, and (2) exploiting the analytic properties of these pieces, 
namely their cuts and poles. In this way one can tame the size of intermediate 
expressions as much as possible on the way to the final answer. There are 
many useful technical steps and tricks along the way, but I believe the overall 
organizational philosophy is just as important. A number of the techniques 
can be motivated by how calculations are organized in string theoryPI I will 
not attempt to describe string theory here, but I will mention some places 
where it provides a useful heuristic guide. 

The approach advocated here is quite useful for multi-parton scattering 
amplitudes. For more inclusive processes - for example the e+e- ----f hadrons 
total cross-section - where the number of kinematic variables is smaller, and 
the real and virtual contributions are on a more equal footing, the compu- 
tational issues are completely different, and the philosophy of splitting the 
problem up into many pieces may actually be counterproductive. 
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2 Total quantum-number management (TQM) 

The organizational framework mentioned above uses all the quantum-numbers 
of the external states (colors and helicity) to decompose amplitudes into sim- 
pler pieces; thus we might dub it “Total Quantum-number Management”. 
TQM suggests that we: 

l Keep track of all possible information about external particles - namely, 
helicity and color information. 

l Keep track of quantum phases by computing the transition amplitude rather 
than the cross-section. 

l Use the helicity/color information to decompose the amplitude into simpler, 
gauge-invariant pieces, called sub-amplitudes or partial amplitudes. 

l In many cases we may also introduce still simpler auxiliary objects, called 
primitive amplitudes, out of which the partial amplitudes are built. 

l Exploit the “effective” supersymmetry of QCD tree amplitudes, and use 
supersymmetry at loop-level to help manage the spins of particles propagating 
around the loop. 
l Square amplitudes to get probabilities, and sum over helicities and colors to 
obtain unpolarized cross-sections, only at the very end of the calculation. 

Carrying out the last step explicitly would generate a large analytic expression; 
however, at this stage one would typically make the transition to numerical 
evaluation, in order to combine the virtual and real corrections. The use of 
T&M is hardly new, particularly in tree-level applications3 - but it becomes 
especially useful at loop level. 

2.1 Color management 

First we describe the color decomposition of amplitudes,s77 and review some 
diagrammatic techniques’ for efficiently carrying out the necessary group the- 
ory. The gauge group for QCD is SU(3), but there is no harm in generalizing 
it to SU(N,); indeed this makes some of the group theory structure more ap- 
parent. Gluons carry an adjoint color index a = 1,2, . . . , N,” - 1, while quarks 
and antiquarks carry an N, or N, index, i, 3 = 1,. . . , N,. The generators of 
SU(N,) in the fundamental representation are traceless hermitian N, x N, 
matrices, (T”)iJ. We normalize them according to Tr(T”Tb) = hab in order to 
avoid a proliferation of as in partial amplitudes. (Instead the @s appear 
in intermediate steps such as the color-ordered Feynman rules in Fig. 5.) 

The color factor for a generic Feynman diagram in QCD contains a factor 
of (‘i”a)i’ for each gluon-quark-quark vertex, a group theory structure constant 

f 
abc - defined by [T”, T”] = ififabc Te - f or each pure gluon three-vertex, 
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and contracted pairs of structure constants fabefede for each pure gluon four- 
vertex. The gluon and quark propagators contract many of the indices together 
with 6&, Sii factors. We want to first identify all the different types of color 
factors (or “color structures”) that can appear in a given amplitude, and then 
find rules for constructing the kinematic coefficients of each color structure, 
which are called sub-amplitudes or partial amplitudes. 

The general color structure of the amplitudes can be exposed if we first 
eliminate the structure constants fabc in favor of the TO’s, using 

f abc = --!- JZ(T~(T~T'T')-~(T~T~T~)), 

which follows from the definition of the structure constants. At this stage we 
have a large number of traces, many sharing Ta’s with contracted indices, of the 
form Tr(. . .Ta . . .) Tr(. . .T” . . .) . . . Tr(. . .). If external quarks are present, 
then in addition to the traces there will be some strings of Ta’s terminated 
by fundamental indices, of the form (Tat . . . Tam)i:l. To reduce the number of 
traces and strings we “Fierz rearrange” the contracted Ta’s, using 

(T”),? (Q”“);? = &r&F - +&r&r , (2) 
e 

where the sum over a is implicit. 
Equation 2 is just the statement that the SU(N,) generators T’ form the 

complete set of traceless hermitian N, x N, matrices. The -l/NC term imple- 
ments the tracelessness condition. (To see this, contract both sides of Eq. 2 
with &,-:I.) It is often convenient to consider also U(N,) = SU(N,) x U( 1) 
gauge theory. The additional U(1) generator is proportional to the identity 
matrix, 

(TaW))if = & bii ; (3) 

when this is added back the U(N,) g enerators obey Eq. 2 without the -l/NC 
term. The auxiliary U(1) gauge field is often called the photon, because it is 
colorless (it commutes with SU(N,), fau(l)bc = 0, for all b, c) and therefore it 
does not couple directly to gluons; however, quarks carry charge under it. (Its 
coupling strength has to be readjusted from QCD to QED strength for it to 
represent a real photon.) 

The color algebra can easily be carried out diagrammatically.8 Starting 
with any given Feynman diagram, one interprets it as just the color factor for 
the full diagram, and then makes the two substitutions, Eqs. 1 and 2, which 
are represented diagrammatically in Fig. 1. In Fig. 2 we use these steps to 
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Figure 1: Diagrammatic equations for simplifying SU(N,) color algebra. Curly lines (“gluon 
propagators”) represent adjoint indices, oriented solid lines (“quark propagators”) represent 

fundamental indices, and “quark-gluon vertices” represent the generator matrices (YP);‘. 

simplify a sample diagram for five-gluon scattering at tree level. The final line 
is the diagrammatic representation of a single trace, Tr(Ta~T’“~Ta3TQ4Ta5), 
plus all possible permutations. Notice that the -l/NC terms in Eq. 2 do not 
contribute here, because the photon does not couple to gluons. 

It is easy to see that any tree diagram for n-gluon scattering can be re- 
duced to a sum of “single trace” terms. This observation leads to the color 
decomposition of the the n-gluon tree amplitude,6 

,p ({ki, Xi, ai}) = g”-’ c Tr(T”=+) . . .T”+)) A?(#‘), . . . , a(&)). 

aESn/Zn 

(4 
Here g is the gauge coupling (g = CX,), Ici, Xi are the gluon momenta and 
helicities, and A?( 1’1, . . . , nXn) are the partial amplitudes, which contain all 
the kinematic information. S, is the set of all permutations of n objects, while 
2, is the subset of cyclic permutations, which preserves the trace; one sums 
over the set S,/Z, in order to sweep out all distinct cyclic orderings in the 
trace. The real work is still to come, in calculating the independent partial 
amplitudes A?. However, the partial amplitudes are simpler than the full 
amplitude because they are color-ordered: they only receive contributions from 
diagrams with a particular cyclic ordering of the gluons. Because of this, the 
singularities of the partial amplitudes, poles and (in the loop case) cuts, can 
only occur in a limited set of momentum channels, those made out of sums of 
cyclically adjacent momenta. For example, the five-point partial amplitudes 
Atgree(lX1,2X1,3X3,4X4,5X5) can only have poles in ~12, ~23, ~34, ~45, and ~51, 
and not in 513, ~24, ~35, ~41, or ~52, where sij I (/& + kj)‘. 
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+ J$kJ++... 

= v f permutations 

Flgure 2: A sample diagram for tree-level five-gluon scattering, reduced to a single trace. 

Similarly, tree amplitudes #qgg . . .g with two external quarks can be re- 

duced to single strings of T” matrices, 

tree _ A, - gn-’ c (T- . . .Ta+))i~ A?($,, 2;z,43x”),. . . , a(nxn)), 

OESlt-2 

(5) 
where numbers without subscripts refer to gluons. 
Exercise: Write down the color decomposition for the tree amplitude tjq&Qg. 

Color decompositions at loop level are equally straightforward. In Fig. 3 
we simplify a sample diagram for four-gluon scattering at one loop. Again the 
-l/NC terms in Eq. 2 are not present, but now both single and double trace 
structures are generated, leading to the one-loop color decomposition,r 

dl-loop ({ki, Xi, oi}) n 

=9 
n c NC Tr(T”-(1) . . .T-)) A,&(lx’), . . .,c+‘)) 

OES,jZ, 

ln/21+1 

+ c c Tr(Ta-@) . ..Ta+l)) ~(T”+, . ..T%(n)) 
c=2 UES,/S,,, 

x A,&@‘), . . . , a(nx-)) 1 , (6) 

where A,;, are the partial amplitudes, 2, and S,;, are the subsets of S, that 
leave the corresponding single and double trace structures invariant, and [zj 
is the greatest integer less than or equal to 2. 
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= p&==J(+j$ + . . . 

= NC cl t t perm’s 

Figure 3: A diagram for one-loop four-gluon scattering, reduced to single and double traces. 

The A,;1 are the more basic objects in Eq. 6, and are called primitive 

amplitudes, because: 
a. Like the tree partial amplitudes A? in Eq. 4, they are color-ordered. 

b. It turns out that the remaining A,;,,1 can be generated7vg as sums of 
permutations of the A,;l. (For amplitudes with external quarks as well as 
gluons, the primitive amplitudes are not a subset of the partial amplitudes; 
new color-ordered objects have to be defined.l’) 

One might worry that the color and helicity decompositions will lead to a 
huge proliferation in the number of primitive/partial amplitudes that have to 
be computed. Actually it is not too bad, thanks to symmetries such as parity - 
which allows one to simultaneously reverse all helicities in an amplitude - and 
charge conjugation - which allows one to exchange a quark and anti-quark, 
or equivalently flip the helicity on a quark line. For example, using parity 
and cyclic (25) symmetry, the five-gluon amplitude has only four independent 
tree-level partial amplitudes: 

Ay(l+,2+,3+,4+,5+), Ap(l-,2+,3+,4+,5+) 

Ay(l-,2-,3+,4+,5+), At;ee(l-,2+,3-,4+,5+): (7) 

In fact, we’ll see that the first two tree partial amplitudes vanish, and there is 
a group theory relation between the last two, so there is only one independent 
nonvanishing object to calculate. At one-loop there are four independent ob- 
jects - Eq. 7 with A? replaced by As;1 - but only the last two contribute 
to the NLO cross-section, due to the tree-level vanishings. 

The group theory relation just mentioned derives from the fact that the 
tree color decomposition, Eq. 4, is equally valid for gauge group U(N,) as 
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SU(N,), but any amplitude containing the extra U(1) photon must vanish. 
Hence if we substitute the U(1) generator - the identity matrix - into the 
right-hand-side of Eq. 4, and collect the terms with the same remaining color 
structure, that linear combination of partial amplitudes must vanish. We get 

0 = Ap(l,2,3 ,..., n)+Ap(2,1,3 ,..., n)+Ap(2,3,1,..., n) 

+ . . . + Ap(2,3, . , 1, n), (8) 

often called a “photon decoupling equatiorP7 or “dual Ward identity”3 (because 
Eq. 8 can be derived from string theory, a.k.a. dual theory). In the five-point 
case, we can use Eq. 8 to get 

At,ree(l-,2+,3-,4+,5+) = -At,‘“e(l-,3-,2+,4+,5+) 

-Ap(l-,3-,4+,2+,5+) 

-Ap(l-,3-,4+,5+,2+). (9) 

The partial amplitude where the two negative helicities are not adjacent has 
been expressed in terms of the partial amplitude where they are adjacent, as 
desired. 

Since color is confined and unobservable, the &CD-improved parton model 
cross-sections of interest to us are averaged over initial colors and summed 
over final colors. These color sums can be performed very easily using the 
diagrammatic techniques. For example, Fig. 4 illustrates the evaluation of 
the color sums needed for the tree-level four-gluon cross-section. In this case 
we can use the much simpler U(N,) co or 1 algebra, omitting the -l/NC term 
in Eq. 2, because the U(1) contribution vanishes. (This shortcut is not valid 
for general loop amplitudes, or if external quarks are present.) Using also the 
reflection identity discussed below, Eq. 45, the total color sum becomes 

c [dy* dp] = 2g A, 4 tree*(1,2,3,4) x [A~(l,2,3,4)(iV;+iV:) 

+(Ap(Z, 1,3,4) + Ap(2,3,1,4))(N,2 + N,2) 1 
+ 2 more permutations 

= g4N,2(N,2 - 1) c IAy(cr(l),~(2),a(3),4)1~ , (10) 
UE.93 

where we have used the decoupling identity, Eq. 8, in the last step. 
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Figure 4: Diagrammatic evaluation of color sums for the tree-level four-gluon cross-section. 

Because we have stripped all the color factors out of the partial amplitudes, 
the color-ordered Feynman rules for constructing these objects are purely kine- 
matic (no Ta’s or f a’c’s are left). The rules are given in Fig. 5, for quantization 
in Lorentz-Feynman gauge. (Later we will discuss alternate gauges.) To com- 
pute a tree partial amplitude, or a color-ordered loop partial amplitude such 

as &;I, 

1. Draw all color-ordered graphs, i.e. all planar graphs where the cyclic or- 
dering of the external legs matches the ordering of the TaS matrices in the 
corresponding color structure, 

2. Evaluate each graph using the color-ordered vertices of Fig. 5. 

Starting with the standard Feynman rules in terms of fabc, etc., you can check 
that this prescription works because: 

1) of all possible graphs, only the color-ordered graphs can contribute to the 
desired color structure, and 

2) the color-ordered vertices are obtained by inserting Eq. 1 into the standard 
Feynman rules and extracting a single ordering of the Ta’s; hence they keep 
only the portion of a color-ordered graph which does contribute to the correct 
color structure. 

Many partial amplitudes are not color-ordered - for example the ‘A,;, for 
c > 1 in Eq. 6 - and so the above rules do not apply. However, as mentioned 
above one can usually express such quantities as sums over permutations of 
color-ordered “primitive amplitudes” - for example the A,;1 - to which the 
rules do apply. 
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Figure 5: Color-ordered Feynman rules, in Lorentz-Feynman gauge, omitting ghosts. 
Straight lines represent fermions, wavy lines gluons. All momenta are taken outgoing. 

2.2 Helicity Nitty Gritty 

The spinor helicity formalism for massless vector bosons”~12~13 is largely re- 
sponsible for the existence of extremely compact representations of tree and 
loop partial amplitudes in &CD. It introduces a new set of kinematic objects, 
spinor products, which neatly capture the collinear behavior of these ampli- 
tudes. A (small) price to pay is that automated simplification of large expres- 
sions containing these objects is not always straightforward, because they obey 
nonlinear identities. In this section we will review the spinor helicity formalism 
and some of the key identities. 

We begin with massless fermions. Positive and negative energy solutions 
of the massless Dirac equation are identical up to normalization conventions. 
One way to see this is to note that the positive and negative energy pro- 
jection operators, A+(k) - u(k) @I u(k) and h-(/c) - w(k) @ v(k), are both 

proportional to y in the massless limit. Thus the solutions of definite helicity, 

w(k) = %(l f Y5)4k) and +(lc) = i(l f 75)21(k), can be chosen to be equal 
to each other. (For negative energy solutions, the helicity is the negative of 
the chirality or Yseigenvalue.) A similar relation holds between the conjugate - - 
spinors u*(k) = u(k)i(l T 75) and w,(k) = v(lc)$(l T 75). Since we will be 
interested in amplitudes with a large number of momenta, we label them by 

11 



kj, i = 1,2 ,.‘., n, and use the shorthand notation 

Ii*) E Ik’) = U*(ki) = Wr(ki), 
- - 

(if1 s (kifl = u*(h) = Wr(ki). 
(11) 

We define the basic spinor products by 

(ij) z (i-lj+) = u-(ki)U+(kj), [ij] S (i+lj-) = U+(ki)U-(kj). 

The helicity projection implies that products like (it lj+) vanish. 
(12) 

For numerical evaluation of the spinor products, it is useful to have explicit 
formulae for them, for some representation of the Dirac y matrices. In the Dirac 
representation, 

y" = 
10 

( > 
0 -1 ' Yi = (-“,i <) j 75 = (y i) > (l3) 

the massless spinors can be chosen as follows, 

ut (k> = v- (k> = I 7 u-(k) = w+(k) = 

(14) 
where 

,+k - 
k1 f ik2 k1 f ik2 

J(kl)” + (k2)2 = t/Z ’ 
k* = k” f k3 . (15) 

Exercise: Show that these solutions satisfy the massless Dirac equation with 
the proper chirality. 

Plugging Eqs. 14 into the definitions of the spinor products, Eq. 12, we 
get explicit formulae for the case when both energies are positive, 

(ij) = dsiipkt - dseipkj = mei4aj, 

[ij] = -d%eeiv*t + ~~e-d~kj = &e-i(4%?+‘), 

k; > 0, kj’ > 0, (16) 

where sij = (ki + kj)’ = 2ki . kj, and 

COS 4ij = sinf$ij = 
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The spinor products are, up to a phase, square roots of Lorentz products. 
We’ll see that the collinear limits of massless gauge amplitudes have this kind 
of square-root singularity, which explains why spinor products lead to very 
compact analytic representations of gauge amplitudes, as well as improved 
numerical stability. 

We would like the spinor products to have simple properties under crossing 
symmetry, i.e. as energies become negative. l3 We define the spinor product (i j) 
by analytic continuation from the positive energy case, using the same formula, 
Eq. 16, but with l< replaced by -ki if A$’ < 0, and similarly for kj; and with 
an extra multiplicative factor of i for each negative energy particle. We define 
[i j] through the identity 

(ij) [ji] = (i-]j+)(j+]i-) = tr($(l -75) &i gj) = 2ki. kj = sij. (18) 

We also have the useful identities: 
Gordon identity and projection operator: 

(i*l+“li*) = 2k;, Iif)(ifl = i(l f7rj) yi (19) 

antisymmetry: 

(ji) = - (ij) , bi]=-[ij], (ii) = [ii] = 0 (20) 

Fierz rearrangement: 

(~+lY’lIj+)(k+l~,I~+) = 2 [ikl (Id 
charge conjugation of current: 

(it ]7”]j+) = (j- ]7fi]i-) 

Schouten identity: 

(21) 

(22) 

(ij) (k1) = (ik) (jI) + (il) (kj). (23) 

In an n-point amplitude, momentum conservation, Cy=“=, kf = 0, provides one 
more identity, 

n 
c [ji](ik) = 0. (24) 

The next step is to introduce a spinor representation for the polarization 
vector for a massless gauge boson of definite helicity fl, 

(25) 



where k is the vector boson momentum and q is an auxiliary massless vector, 
called the reference momentum, reflecting the freedom of on-shell gauge tran- 
formations. We will not motivate Eq. 25, but just show that it has the desired 
properties. Since $jk*) = 0, c*(k, q) is transverse to k, for any q, 

E*(k,q) .k = 0. (26) 

Complex conjugation reverses the helicity, 

(&;)* = EL . (27) 

The denominator gives cP the standard normalization (using Eq. 21), 

E+ . (E->* = E+ . E+ = ; (q- I”‘“-$ 17plk-) = o. (28) 

States with helicity fl are produced by cf. The easiest way to see this is 
to consider a rotation around the k axis, and notice that the Ik+) in the 
denominator of Eq. 25 picks up the opposite phase from the state Ik-) in 
the numerator; i.e. it doubles the phase from that appropriate for a spinor 
(helicity + f ) to that appropriate for a vector (helicity +I). Finally, changing 
the reference momentum q does amount to an on-shell gauge transformation, 
since Ed shifts by an amount proportional to k,: 

qx+-;G) = - W&Y~~~)) _ h-l7&) = J@-17, YIq+) + (i-l f7&+) 
x&k) 4 (@k) (q k) 

= -(<k)(qk) ’ Icp (29) 

Exercise: Show that the completeness relation for these polarization vectors 
is that of an light-like axial gauge, 

c c;(k, q) ($(k,q))* = -vpu + kpq”k+qkvqp . 
A=& 

(30) 

A separate reference momentum qi can be chosen for each gluon momen- 
tum ki in an amplitude. Because it is a gauge choice, one should be careful not 
to change the qi within the calculation of a gauge-invariant quantity (such as 
a partial amplitude). On the other hand, different choices can be made when 
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calculating different gauge-invariant quantities. A judicious choice of the qi 
can simplify a calculation substantially, by making many terms and diagrams 
vanish, due primarily to the following identities, where $(q) E &*(ki, qi = q): 

&+I = 0, (31) 

$(!I) . $%> = E;(q) . q(Q) = 0, (32) 

Et(kj) .&j(q) = Et(q) .Ey(ki) = 0, (33) 

&(kj)lP) = ~(kj)l.i-) = 0, (34) 

(.i+l c(kj) = (j-1 @Ckj) = 0. (35) 
In particular, it is useful to choose the reference momenta of like-helicity gluons 
to be identical, and to equal the external momentum of one of the opposite- 
helicity set of gluons. 

We can now express any amplitude with massless external fermions and 
vector bosons in terms of spinor products. Since these products are defined for 
both positive- and negative-energy four-momenta, we can use crossing sym- 
metry to extract a number of scattering amplitudes from the same expression, 
by exchanging which momenta are outgoing and which incoming. However, 
because the helicity of a positive-energy (negative-energy) massless spinor has 
the same (opposite) sign as its chirality, the helicities assigned to the parti- 
cles - bosons as well as fermions - depend on whether they are incoming or 
outgoing. Our convention is to label particles with their helicity when they 
are considered outgoing (positive-energy); if they are incoming the helicity is 
reversed. 

The spinor-product representation of an amplitude can be related to a 
more conventional one in terms of Lorentz-invariant objects, the momentum 
invariants kd . kj and contractions of the Levi-Civita tensor cpvap with exter- 
nal momenta. The spinor products carry around a number of phases. Some 
of the phases are unphysical because they are associated with external-state 
conventions, such as the definitions of the spinors I;*). Physical quantities 
such as cross-sections (or amplitudes from which an overall phase has been 
removed), when constructed out of the spinor products, will be independent 
of such choices. Thus for each external momentum label i, if the product (ij) 
appears then its phase should be compensated by some [i k] (or equivalently 
l/ (i k) = - [i k] /sik). If a s p inor string appears in a physical quantity, then it 
must terminate, i.e. it has the form 

(il q [h i31 (i3 4 . . . [i2m ill , (36) 

for some m. Multiplying Eq. 36 by 1 = [id ii] (ii id) /silir, etc., we can break 
up any spinor string into strings of length two and four; the former are just 
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sij’s (Eq. IS), while the latter can then be evaluated by performing the Dirac 
trace: 

(i.lJ bl] (lm) [mi] = tr($(l - 75) gi gj yr &a) 

1 
= - 

2 [ 
SijS[* - SilSjm + SimSjl - 4ie(i,j, 1, m) , (37) 1 

where ~(4 j, 1, m) = +op t 3 I kvk”kPk%. Thus the Levi-Civitacontractions are al- 
ways accompanied by an i and account for the physical phases. In practice, the 
spinor products offer the most compact representation of helicity amplitudes, 
but it is useful to know the connection to a more conventional representation. 

Exercise: Verify the Schouten identity, Eq. 23, by multiplying both sides by 
[j k] [Ii] and using Eq. 37 to simplify. 

3 Tree-level techniques 

Now we are ready to attack some tree amplitudes, beginning with direct calcu- 
lation of some simple examples, followed by a discussion of recursive techniques 
for generating more complicated amplitudes, and of the role of supersymmetry 
and factorization properties in tree-level &CD. 

3.1 Simple examples 

Let’s first compute the four-gluon tree helicity amplitude Ap(l+, 2+, 3+, 4+)P 
Since all the gluons have the same helicity, if we choose all the reference mo- 
menta to be the same null-vector q we can make all the E+ . ET terms vanish 
according to Eq. 32. We can’t choose q to equal one of the external momenta, 
because that polarization vector would have a singular denominator. But we 
could choose for example the null-vector qp = -2s23kf + (~12 - s23)(2kg + ki). 

Actually we won’t need the explicit expression for q here, because when we 
start to evaluate the various diagrams, we find that they always contain at 
least one Ei . Ej, and therefore every diagram in this helicity amplitude van- 
ishes identically! 

This result generalizes easily to more external gluons. Each nonabelian 
vertex can contribute at most one momentum vector k; to the numerator al- 
gebra of the graph, and there are at most n - 2 vertices. Thus there are at 

aAlthough we will refer to the gluons as all having the same positive h&city, remember 
that the helicity of the two incoming gluons (whichever two they may be) is actually negative. 
Hence this scattering process changes the helicity of the gluons by the maximum possible, 
-2 4 4-2. 
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most n - 2 momentum vectors available to contract with the n polarization 
vectors Ei (the amplitude is linear in each pi). This means there must be at 
least one Ei . &j contraction, and so the tree amplitude must vanish whenever 
we can arrange that all the Ei . &j vanish. Obviously this can be arranged for 
the n-gluon amplitudes with all helicities the same, Ap(l+, 2+, 3+, . . . , n+), 
by again taking all the reference momenta to be identical. And it can be ar- 
ranged for Ap(l-, 2+, 3+, . . . , n+) by the reference momentum choice q2 = 
q3 = , , . = qn = ICI, q1 = k,. Thus we have already computed a large number 
of (zero) amplitudes, 

Ay(l*,2+,3+ ,..., n+) = 0. (38) 

Exercise: Use an analogous argument to show that the following qqgg . . . g 

helicity amplitudes also vanish: 

Ay(l;,2:,3+,4+ ,“‘, n+> = 0. (39) 

We’ll see later that an “effective” supersymmetry14 of tree-level QCD is re- 
sponsible for all these vanishings. 

Next we turn to the (nonzero) helicity amplitude Ay(l-,2-,3+,4+), 
choosing the reference momenta q1 = q2 = k4, q3 = q4 = kl, so that only the 
contraction ET . E$ is nonzero. It is easy to see from the color-ordered rules in 
Fig. 5 that only one of the three potential graphs contributes, the one with a 
gluon exchange in the siz channel. We get 

Ap(l-,2-,3+,4+) 

= (j5)2(2> 

x [E; . E;(kl - k2)“ + (E;)~E; . (2k2 + k1) + (E;)~E; . (-2k1 - kz)] 

x [E; . E4+(k3 - k4)p + (&q+)&f . (2k4 + h) + (c&&q+ . (-2h - h)] 

2i _ 
= -- 

s12 
C&2 .6) (~1 . k2) (6 . h) 

2i = _- -- 
s12 ( ; g::;) (-[$?:1') (+!g\ky) 

(40) 

We can pretty up the answer a bit, using antisymmetry (Eq. 20), momentum 
conservation (Eq. 24), and 534 = ~12, 

A~(1-,2-,3+,4+) = -i (12)((23)[341)([341(34)) 
P2lP 3) (34) (14) P41 
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or 

= i (12) (- (2 1) P41W 21(12)) 
El 2lP 3) (3 4 (4 1) P 41 

(1 2j3 
= i (23)(34)(41) ’ 

(41) 

Ap(l-,2-,3+,4+) = i w4 

(12) (2 3) (3 4) (4 1) . 
(42) 

The remaining four-gluon helicity amplitude can be obtained from the 
decoupling identity, Eq. 8: 

Ay(l-,2+,3-,4+) = -Ap(l-,3-,2+,4+)-Ap(l-,3-,4+,2+) 

= -8 

.[ 

(1 3j3 (1 3j3 

(3 2) (2 4) (4 1) + (3 4) (4 2) (2 1) 1 
= i (13)3((12)(34) + (14)(23)) 

(12) (2 3) (3 4) (4 1) (24 ’ 

or using the Schouten identity, Eq. 23, 

Ay(l-,2+,3-,4+) = i (1 3j4 

(12) (2 3) (3 4) (4 1) . 

(43) 

(44) 

There are no other four-gluon amplitudes to compute, because parity allows 
one to reverse all helicities simultaneously, by exchanging () H [] and multi- 
plying by -1 if there are an odd number of gluons. 

Note also that the antisymmetry of the color-ordered rules implies that 
the partial amplitudes (even with external quarks) obey a reflection identity, 

Ap(l,2,. . . ,n) = (-1)” A?@, . . .,2,1). (45) 

To obtain the unpolarized, color-summed cross-section for four-gluon scat- 
tering, we insert the nonvanishing helicity amplitudes, Eqs. 42 and 44, into 
Eq. 10, and sum over the negative helicity gluons i,j: 

c [dp* @I 
colora 

= g4 %%N,2 - 1) 2 c s (1) os~~~~~~:s,(3)4s4~~~~. 
i>j=loESj o u 

0 

helicities 

(46) 

Of course polarized cross-sections can be constructed just as easily from the 
helicity amplitudes. 
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(1) (2) 

Figure 6: The two nonvanishing graphs in the qqggg helicity amplitude calculation. 

Next we calculate a sample five-parton tree amplitude, for two quarks and 
three gluons, Ap(l;, 2:, 3-, 4+, 5+), where the momenta withoutasubscripts 

label the gluons. We choose the gluon reference momenta as q3 = k2, q4 = 

q5 = kl, so we can use the vanishing relations, Eqs. 34 and 35, 

(2+I & = Gil’) = &jl+) = 0. (47) 

This kills the graphs where gluons 3 and 5 attach directly to the fermion line, 
and the graph with a four-gluon vertex, leaving only the two graphs shown in 
Fig. 6. 

Graph 1 evaluates to 

i -- 
Jz 

(2+1(K- k- Y5)11+) (q . +q+ . k5 _ q . +; . k4) 
sl2s45 

. [231(31) = -8 J5103) (15)[541 + [241(13) (14)[451 
s12s45 [ P 31(15) (14 P3lP4) (15) 1 
P3lU 3j2 [451 

= +i~l@4&3](ld)(15) 
[- (15) [521- (14) WI] 

= -2 [2 3lP 3j3 P 51 
’ s12345 (14) (15) ’ 

Graph 2 requires a few more uses of the spinor product identities (exercise): 



-(2+1(&- ?4’4)11+& . E&+ . (h + k4)] 

12 51 (1 3j3 13 41 = . ..= 
+i s12ss4 (1 4) (1 5) ’ 

The sum is 

(49) 

or 

At,ree(l;,2$,3- ,4+,5+) = -i (13j3(- P31(34) - P51(54)) 

s12(14)(15)(34)(45) ’ 
(50) 

Ap(l,, 2;, 3- (1 3j3 (2 3) 
“+‘5+) = i(12)(23)(34)(45)(51) ’ (51) 

Once again the expression collapses to a single term! Spurious singulari- 
ties associated with the reference momentum choice - such as l/ (14) in the 
above example - are present in individual graphs but cancel out in the gauge- 
invariant sum. 

3.2 Recursive Techniques 

By now you can see that color-ordering, plus the spinor helicity formalism, can 
vastly reduce the number of diagrams, and terms per diagram, that have to be 
evaluated. However, with more external legs the results still get more complex 
and difficult to carry out by hand. Fortunately, a technique is available for 
generating tree amplitudes recursively in the number of legsi Even if one 
cannot simplify analytically the expressions obtained in this way, the recursive 
approach lends itself to efficient numerical evaluation. 

In order to get a tree-level recursion relation, we need to construct an 
auxiliary quantity with one leg off-shell. For the construction of pure-glue 
amplitudes, we define the ofl-shell current Jp(l, 2,. . . , n) to be the sum of 
color-ordered (n + 1)-point Feynman graphs, where legs 1,2, . . . , n are on-shell 
gluons, and leg “p” is off-shell, as shown in Fig. 7. The uncontracted vector 
index on the off-shell leg is also denoted by ~1; the off-shell propagator is defined 
to be included in Jp. Since Jp is an off-shell quantity, it is gauge-dependent. 
For example, Jp depends on the reference momenta for the on-shell gluons, 
which must therefore be kept fixed until after one has extracted an on-shell 
result. One can also construct amplitudes with external quarks recursively, by 
introducing an off-shell quark current15 as well as the gluon current Jfl, but 
we will not do so here. 

bWe have multiplied both graphs here by (-1); this external state convention makes 
the qqggg partial amplitudes equal to the gltino partial amplitudes GGggg, so that the 
supersymmetry Ward identities below can be applied without extra minus signs. 
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Figure 7: The off-shell gluon current Jp( 1,2,. . . , n). Leg “p” is the only off-shell leg. 

It is easy to write down a recursion relation for Jp, by following the off- 
shell line back into the diagram. One first encounters either a three-gluon 
vertex or a four-gluon vertex. Each of the off-shell lines branching out from 
this vertex attaches to a smaller number of on-shell gluons, thus we have the 
recursion relationi depicted in Fig. 8, 

J”(l,...,n) = V,“““(Pl,i, PitI,,) Jv(1,. . . , i) Jp(i + 1,. . ., n) 

n-l n-2 

+ c c V[“” J,(l,. . .,i) J,(i+ 1,. . .,j) J,(j + 1, . . 
j=i+l i=l 

where the Vi are just the color-ordered gluon self-interactions, 

and 

Vi”p(P, Q) = 5 (fp(P - Q)p + 27jpp&” - 27jpvPp), 

vP”PO = 
4 

; (2$wf~ _ 77”v77Po _ 77’1~fP) ) 

Pi,j E ki + ki+l + ...+ kj. 

The Jp satisfy the photon decoupling relation, 

Jp(1,2,3,. . ., n) + J“(2,1,3,. . ., n) + Jp(2, 3,. . . , n, 1) = 0, 

the reflection identity 

Jp(1,2,3 ,..., n)= (-l)“+’ Jp(n ,..., 3,2,1), 
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Figure 8: The recursion relation for the off-shell gluon current Jp( 1,2, . . . , n). 

and current conservation, 

Pen J,(1,2 ,..., n) = 0. (57) 

In some cases, the recursion relations can be solved in closed form!5l16 The 
simplest case is (as expected) when all on-shell gluons have the same helicity, 
for which we choose the common reference momentum q, and then 

Jp(1+,2+,...,n+) = (q- IYP Pl,n I(?+) 
fi (q 1) (12). . . (n - 1, 4 (n q) ’ (58) 

Let’s verify that this expression solves Eq. 52. Note first that the V4 term does 
not contribute at all, nor the first term in L’s, because after Fierzing we get a 
factor of (q q) = 0. Thus the right-hand side of Eq. 52 becomes (using (q q) = 0 

to commute and rearrange terms) 

J2P~,~(q1)(12~~..(n-l,n)(nq) i=l (iQ)(Q,i+l) ne (i7i+1) 
X (Q-17’ Pi+l,nlQ+)(Q-I Pi+l,n PI,ilq+) ( 

-(Q-17’ Pl,ilP+)(Q-I Pl,i Pi+l,nlCI+)) 

(q- IYP Pl,?alq+) 

= .\/Zp&(q1)(12)-+- 1, n)(nq) 
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x nc 

[ 

(i,i+l) 
i=l (iq) (q, i+ 1) (q-1 Pi+l,n 1 Pl,nlq+) . 

Using the identity 

ni (i, i+l) 

i=l (iq) (q, i + 1) (‘-I IDitlln = 
(1-I Pl,n 

(1 q) ’ 

we get the desired result, Eq. 58. 
Exercise: Prove the identity, Eq. 60, by first proving the identity 

‘2 (i, i + 1) (j k) 

i=j (id(qj i+ 1) = (jq) (qk) ’ 

(59) 

(60) 

(61) 

The “eikonal” identity, Eq. 61, also plays a role in understanding the structure 
of the soft singularities of QED amplitudes, when these are obtained from QCD 
partial amplitudes by the replacement Ta --f 1 (see Sections 3.4 and 3.5). 

The current where the first on-shell gluon has negative helicity can be 
obtained similarly, 

Jp(l-,2+,...,n+) = 

where the reference momentum choice is q1 = k2, q2 = . . . = q,, = kl . 

Exercise: Show this. 

Amplitudes with (n+ 1) legs are obtained from the currents Jp(1,2, . . , n) 
by amputating the off-shell propagator (multiplying by i P,“,,,), contracting the 
p index with the appropriate on-shell polarization vector ~i+i, and taking 
P&, = k;+, - 0. In the case of Jp(l+, 2+, . . . , n+), there is no P& pole 
in the current, so the amplitude must vanish for both helicities of gluon (n + 

l), in accord with Eq. 38. In the case of Jp(l-, 2+, . . ., n+), the pole term 
requirement picks out the term m = n in Eq. 62. Using reference momentum 

qn+l = k, for Gtl, we obtain (replacing pi,ra ---$ - &+I, etc.), 

AFri(l-, 2+, . . . , n+, (7r + l)-) 

. (n+ly,I(n+ I)+) (l-lYp P~,nll+) (1-I h Pl,nll+) = -z 
JZ[n, n+l] JZ(12)...(nl) P&-l 

= --2 (l,n+l) (n+l, l)(ln)[n,n+l](n+l, 1) 
. (12). . . (n 1) , 

sn,?a+1 
(63) 
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or 

Ay(l-,2-,3+,4+ (1 2j4 
7”‘) n+) = 2 (12) . . . (n 1) . (64) 

Applying the decoupling identity, Eq. 8, and the spinor identity, Eq. 61, it 
is easy to obtain the remaining maximally helicity violating (MHV) or Parke- 
Taylor l7 helicity amplitudes, 

At,ree MHV = Atree 1+ 
( 

‘- k-,..., 
(j k)” 

lk - n ,...,3 ,..., n+) = i (12)...(nl) . (65) 

These remarkably simple amplitudes were first conjectured by Parke and 
Taylor17 on the basis of their collinear limits (see below) and photon decoupling 
relations, and were rigorously proven correct by Berends and Giele15 using 
the above recursive approach. The other nonvanishing helicity configurations 
(beginning at n = 6) are typically more complicated. The MHV amplitudes 
can be used as the basis of approximation schemes, however.is 

3.3 Supersymmetry 

What does supersymmetry have to do with a non-supersymmetric theory such 
as &CD? The answer is that tree-level QCD is “effectively” supersymmetric,14 
and the “non-supersymmetry” only leaks in at the loop level. To see the 
supersymmetry of an n-gluon tree amplitude is simple: It has no loops in it, 
so it has no fermion loops in it. Therefore the fermions in the theory might as 
well be gluinos, i.e. at tree-level the theory might as well be super Yang-Mills 
theory. Tree amplitudes with quarks are also supersymmetric, but at the level 
of partial amplitudes: after the color information has been stripped off, there 
is nothing to distinguish a quark from a gluino. Supersymmetry leads to extra 
relations between amplitudes, supersymmetric Ward identities (SWI),1’ which 
can be quite useful in saving computational laborJ4 

To derive supersymmetric Ward identitiesigp3 we use the fact that the 
supercharge Q annihilates the vacuum (we are considering exactly supersym- 
metric theories, not spontaneously or softly broken ones!), 

n 

0 = (Ol[Q,~1~2~~~~~]lO) = C (01~1...[Q,~i].~~~~lO) (66) 
i=l 

When the fields @i create helicity eigenstates, many of the [Q, @i] terms can 
be arranged to vanish. To proceed, we need the precise commutation relations 
of the supercharge with the fields g*(k), hf (k), which create gluon and gluino 
states of momentum k (k2 = 0) and helicity f. We multiply Q by a Grassmann 
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spinor parameter ?j, defining Q(q) G qOQa, so that Q(n) commutes with the 
Fermi fields as well as the Bose fields. The commutators have the form 

[Q(v), g*(k)] = Ffr*(k, vP*(k), 

[Q(rl), A*@)] = FWk> 17) s*(k), (67) 

where r(k, q) 1 is inear in 7, and has its form constrained by the Jacobi identity 

for the supersymmetry algebra, 

0 = [[Q(v), Q(C)], @(k)l + [[Q(C), @(k>l, Q(v)1 + [[@P(k), Q(rl)l > Q(C)1 > (68) 

where @(k) is either g*(k) or A*(k). Since [Q(v),&(<)] = -2iij PC, we need 

I’+(k, r])I’-(k, <) + I?-(k, v)I’+(k, <) = -2ifj f<. (69) 

A solution to Eq. 69, which also has the correct behavior under rotations 

around the k axis, is (ct Eq. 19) 

r+(h) = w-(k), r-(k,rj) = @i+(k) = us(k)q. P-0) 

Finally, we choose 77 to be a Grassmann parameter 8, multiplied by the spinor 
for an arbitrary massless vector q, and choose q so as to simplify the identities 

(much like the choice of reference momentumin &z(q)). Then I’*(k, 77) become 

r+(b) = 0 (q+lk-) = 0 [qkl, I’-(k, q) = c9 (q-lk+) = 0 (q k) . (71) 

The simplest case is the like-helicity one. We start with 

0 = (NQ(~(d)&hd- . . dllo) 
= --Ww+n(gh2+,.. .,gn+)+r+(kz,q)A,(A~,A~,g,+,...,g,+) 

+... +r+(k,,q)A,(A~,g2+,...,g,+_l,A,+). (72) 

Since massless gluinos, like quarks, have only helicity-conserving interactions 

in (super) &CD, all of the amplitudes but the first in Eq. 72 must vanish. 
Therefore so must the like-helicity amplitude A,(gr , gz, . . . , g$). Similarly, 
with one negative helicity we get 

0 = (Ol[QMd>, &hd- . . dll0) 
= -r-(kl,q)A,(g~,gz,g3+, . . .,g;s+)-r-(k2,q)A,(A~,A,,g3+,...,g~)r 

(73) 

where we have omitted the vanishing fermion-helicity-violating amplitudes. 
Now we use the freedom to choose q, setting q = kl to show the second 
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amplitude vanishes and setting q = k2 to show the first vanishes. Thus we 
have recovered Eqs. 38 and 39. 

With two negative helicities, we begin to relate nonzero amplitudes: 

0 = (ONQMd), slsz&h,+ . . dllo) 
= r-(kl,q)A,(A,,gz,A3+,.. .,g,+)+I’-(k:!,q)An(g;,A;,A$ ,..., g,+) 

-r-(k3,q)A,(gl,gz,g3+,...,gn+). (74 

Choosing q = ICI, we get 

(12) 
An(sl,s2,s3+,s4+,...,gn+) = - 

(13) 
xA,(g;,A,,A,+,gt,...,g,+). (75) 

No perturbative approximations were made in deriving any of the above 
SWI; thus they hold order-by-order in the loop expansion. They apply directly 
to QCD tree amplitudes, because of their “effective” supersymmetry. But 
they can also be used to save some work at the loop level (see below). Since 
supersymmetry commutes with color, the SW1 apply to each color-ordered 
partial amplitude separately. Summarizing the above “MHV” results (and 
similar ones including a pair of external scalar fields), we have 

ASUSY 
n (1*,2+,3+ ,..., n+) = 0, (76) 

,2,&4+ ,“‘, 
2lhpl 

A;USY(1-,2&3&4+, . . . ,n+). Afusy(l- 

(77) 

Here no subscript refers to a gluon, while 4 refers to a scalar particle (for 
which the “helicity” f means particle vs. antiparticle), and P refers to a 
scalar, fermion or gluon, with respective helicity hp = 0, i, 1. 

We can use Eq. 77 at the four-point level to obtain the tjqgg amplitudes 
from the four-gluon ones, Eqs. 42 and 44: 

Ap(l,-,2;,3-,4+) = i (1 3j3 (2 3) 

(12) (2 3) (3 4) (4 1) ’ 

Ap(1;,2;,3+ 
‘4-) 

w3 (24 
= i (12)(23)(34)(41) ’ (78) 

Exercise: Check the SW1 at the five-point level, comparing the qqggg ampli- 
tude, Eq. 51, and the ggggg amplitude from Eq. 65. 
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3.4 Factorization Properties 

Analytic properties of amplitudes are very useful as consistency checks of the 
correctness of a calculation, but they can also sometimes be used to help con- 
struct amplitudes. At tree-level, the principal analytic property is the pole 

behavior as kinematic invariants vanish, due to an almost on-shell interme- 
diate particle. As mentioned above, color-ordered amplitudes can only have 
poles in channels corresponding to the sum of a sum of cyclically adjacent mo- 
menta, i.e. as P:j -+ 0, where Piyj z (Ici + Ici+i + . . . + kj)p. This is because 
singularities arise from propagators going on-shell, and propagators for color- 
ordered graphs always carry momenta of the form Pjyj. We refer to channels 
formed by three or more adjacent momenta as multi-particle channels, and the 
two-particle channels as collinear channels. 

In a multi-particle channel, a true pole can develop as Pf,m + 0, 

~ye’(i,. . .,g - CA;;,(i,. . ., m, ~~)&4;y~+,(773 + I,. . .,12, P-^), 

x 1 1,m 

(79) 

where PI,, is the intermediate momentum and X denotes the helicity of the 
intermediate state P. Our outgoing-particle helicity convention means that 
the intermediate helicity is reversed in going from one product amplitude to 
the other. 

Most multi-parton amplitudes have multi-particle poles, but the MHV 
tree amplitudes do not, due to the vanishing of Ap(l*,2+, . . ., n+). When 
we attempt to factorize an MHV amplitude on a multi-particle pole, as in 
Fig. 9(a), we have only three negative helicities (one from the intermediate 
gluon) to distribute among the two product amplitudes. Therefore one of the 
two must vanish, so the pole cannot be present. Thus the vanishing SW1 also 
guarantees the simple structure of the nonvanishing MHV tree amplitudes: 
only collinear (two-particle) singularities of adjacent particles are permitted. 

An angular momentum obstruction suppresses collinear singularities in 
QCD amplitudes. For example, a helicity +l gluon cannot split into two pre- 
cisely collinear helicity fl gluons and still conserve angular momentum along 
the direction of motion. Nor can it split into a +$ fermion and -$ antifermion. 
The l/si,;+i from the propagator is cancelled by numerator factors, down to 
the square-root of a pole, -& 7 & N h. Thus the spinor products, 

square roots of Lorentz invariants, are ideal for capturing the collinear behav- 
ior in &CD. The general form of the collinear singularities for tree amplitudes 
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a 

b- 

a 

b 

Figure 9: (a) Factorization of an MHV tree amplitude on a multi-particle pole - one of the 
two product amplitudes always vanishes. (b) G eneral behavior of a tree-level amplitude in 
the collinear limit where k, is parallel to kb; S stands for the splitting amplitude Splittree. 

is shown in Fig. 9(b), 

A?(. . . , &, bXb, . . .) 3 c SplitTy(z, aXa, bxb) AFrl(. . . , P’, . . .) , (80) 

X=f 

where Splittree denotes a splitting amplitude, the intermediate state P has 
momentum kp = k, + kb and helicity A, and z describes the longitudinal mo- 
mentum sharing, k, M zkp, ka M (1 - z)kp. U niversality of the multi-particle 
and collinear factorization limits can be derived in field theory;’ or perhaps 
more elegantly in string theoryB which lumps all the field theory diagrams on 
each side of the pole into one string diagram. 

An easy way to extract the splitting amplitudes Splittree in Eq. 80 is 
from the collinear limits of five-point amplitudes. For example, the limit of 
Ap(l-,2-,3+,4+,5+) as k4 and k5 become parallel determines the gluon 
splitting amplitude SplitEfee(a+, b+): 

Ap(l-,2-,3+,4+,5+) = i (1 Y4 

(12) (2 3) (34 (4 5) (5 1) 

4115 (1 2j4 
- &i&)(45)’ i(12)(23)(3P)(P1) 

= Splity(4+, 5+) x Ap(l-, 2-, 3+, Pf). 

(81) 
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Using also the 2 11 3 and 5 11 1 1 imits, plus parity, we can infer the full set of 
g -+ gg splitting amplitudes’7~21~15~3 

Splitt_“‘(a-,b-) = Cl, 

Splitt_ree(a+, b+) = 
&(ub)’ 

Splity(a+, b-) = 
(1- z)2 

dF(T-iS(ub)’ 

Splity(a+,b-) = - 
&i$[ub]’ 

(82) 

The g + QQ and q + qg splitting amplitudes are also easy to obtain, from the 
limits of Eq. 51, etc. 

Since the collinear limits of QCD amplitudes are responsible for parton 
evolution, it is not surprising that the residue of the collinear pole in the 
square of a splitting amplitude gives the (color-stripped) polarized Altarelli- 
Parisi splitting probability?2 
Exercise: Show that the unpolarized g + gg splitting probability, from sum- 
ming over the terms in Eq. 82, has the familiar form 

%7(4 cx 
1 + 24 + (1 - z)” 

z(l-z) ’ (83) 

neglecting the plus prescription and 5(1 - z) term. 
QCD amplitudes also have universal behavior in the soft limit, where all 

components of a gluon momentum vector k, go to zero. At tree level one finds 

Ap( . . . . a,s,b ,...) ‘2 Softt’““(a,s,b)A;:r( . . . . u,b ,... ). (84 

The soft or “eikonal” factor, 

Softtree(u, s, b) = (a b) 
(4 (4 ’ 

depends on both color-ordered neighbors of the soft gluon s, because the sets 
of graphs where s is radiated from legs a and b are both singular in the soft 
limit. On the other hand, the soft behavior is independent of both the identity 
(gluon vs. quark) and the helicity of partons a and b, reflecting the classical 
origin of soft radiation. (See George Sterman’s lectures in this volume for a 
deeper and more general discussion?3) 
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Exercise: Verify the soft behavior, Eq. 84, for any of the above multiparton 
tree amplitudes. 

As Zoltan Kunszt will explain in more detail; the universal soft and 
collinear behavior of tree amplitudes, and therefore of tree-level cross-sections, 
makes possible general procedures for isolating the infrared divergences in the 
real, bremsstrahlung contribution to an arbitrary NLO cross-section, and can- 
celling these divergences against corresponding ones in one-loop amplitudes. 
But the factorization limits also strongly constrain the form of tree and loop 
amplitudes. It is quite possible that they uniquely determine a rational func- 
tion of the n-point variables for n 2 6, given the lower-point amplitudes, but 
this has not yet been proven. 

Exercise: Show that 

(12) (23) (34) (45) (5 1) 
(86) 

provides a counterexample to the uniqueness assertion at the five-point level, 
because it is nonzero, yet has nonsingular collinear limits in all channels. 

3.5 Beyond &CD (briefly) 

This school is titled “&CD and Beyond”, so let me indicate briefly how the 
techniques discussed here can be applied beyond pure &CD. Consider ampli- 
tudes containing a single external electroweak vector boson, W, Z or y. In 
terms of U(N,) = SU(Ne) x U(1) group theory, the electroweak boson gener- 
ator corresponds to the U(1) g enerator, proportional to the identity matrix. 

Thus the color decomposition is identical to that obtained by ignoring the weak 
boson. For example, the tree amplitudes qqg. . .gy can be written as 

dtreell~ (1,,2,,3,..., n 71 - 1, nY) = fiQqegnm3 c (Tao(a) . . .Ta~(n-l))j~ 

OESn-3 

xAp,ly(14, 2,; a(3), . . ., a(n - 1); ny), (87) 

where Qp is the quark charge. Furthermore, the partial amplitudes A~~‘~ can 
be obtained for free from the partial amplitudes Ap for Qqg . . .g. One simply 
inserts Tan = 1 in the color decomposition for A?, Eq. 5, and matches the 
color structures with Eq. 87. The result is3 

Ap117(lq,29;3 ,..., n-l;n,) = Ay(1,,2,;n,3,4 ,..., n-1)) 

+A? (lB, 2,; 3, n, 4,. . . , n - 1)) 

+...+Ap(lg,29;3,4 ,..., n-1,n)). (88) 
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Compare this “photon coupling equation” with the photon decoupling equa- 
tion for pure gluon amplitudes, Eq. 8. When more quark lines are present, 
one has to pay attention to the -l/NC terms mentioned in Section 2.1, since 
these distinguish SU(N,) from U( 1); h owever, similar formulas can be derived, 

including also multiple photon emission!0~24~25 

The emission of a massive vector particle - a IV, Z or virtual photon - 
would seem to require an extension of the helicity formalism of Section 2.2. 
However, in most cases one is actually interested in processes where the vector 
boson “decays” to a pair of massless fermions. (One or more of these fermions 
may be in the initial state.) Then the formalism for massless fermions and 
vectors can still be applied, albeit with the introduction of one additional (but 
physical) four-vector. Thus electroweak processes such as e+e- annihilation to 
four fermions may be calculated very efficiently using the helicity formalism. 

Massive fermions do require a serious extension of the formalism. It is pos- 
sible to represent a massive spinor in terms of two massless ones26; alternatively 
one can represent massive spinor outer products in terms of “spin vectors” ?7 
In either case the price is at least one additional four-vector, this time an un- 
physical one. Not only is the formalism more cumbersome than for massless 
fermions, but so are the results. Amplitudes with a helicity flip on the quark 
line no longer vanish; nor do those that were protected by a supersymmetry 
Ward identity in the massless case, such as Ay(lq, 2,, 3+, 4+). 

4 Loop-level techniques 

In order to increase the precision of QCD predictions, we need to go to next- 
to-leading-order, and in particular, to have efficient techniques for computing 
the one-loop amplitudes which now enter. Here the algebra gets considerably 
more complicated, even with the use of color-ordering and the helicity for- 
malism, because there are more off-shell lines, and more nonabelian vertices. 
Furthermore, one has to evaluate loop integrals with loop momenta inserted in 
the numerator; reducing these integrals often requires the inversion of matrices 
which can generate a big mess. Although the helicity and color tools are still 
very useful, we will need additional tools for organizing loop amplitudes in 
order to minimize the growth of expressions in intermediate steps. 

4.1 Supersymmetry and background-field gauge 

At loop level, QCD “knows” it is not supersymmetric. However, one can 
still rearrange the sum over internal spins propagating around the loop, in 
order to take advantage of supersymmetry. For example, for an amplitude 
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with all external gluons, and a gluon circulating around the loop, we can 
use supersymmetry to trade the internal gluon loop for a scalar loop. We 
rewrite the internal gluon loop g (and fermion loop f) as a supersymmetric 
contribution plus a complex scalar loop s, 

9 = (g + 4f + 3s) - 4(f + s) + s = AN=4 - 4AN=l + Ascalar, 

f = (f + s) - s = AN=l - Ascalar. 
(89) 

Here ANz4 represents the contribution of the N = 4 super Yang-Mills mul- 
tiplet, which contains a gluon g, four gluinos f, and three complex (six real) 
scalars s; while AN=’ gives the contribution of an N = 1 chiral matter su- 
permultiplet, one fermion plus one complex scalar. The advantages of this 
decomposition are twofold: 
(1) The supersymmetric terms are much simpler than the nonsupersymmetric 
ones; not only do they obey SWIs, but we will see that they have diagram-by- 
diagram cancellations built into them. 
(2) The scalar loop, while more complicated than the supersymmetric com- 
ponents, is algebraically simpler than the gluon loop, because a scalar cannot 
propagate spin information around the loop. 
In the context of T&M, this use of supersymmetry could be termed “internal 
spin management”. 

As an example of how this rearrangement looks, consider the five-gluon 
primitive amplitude As;i(l-, 2-, 3+, 4+, 5+), whose components according to 
Eq. 89 are2’ 

,qN=l = CyAtRe [:++($)+1n($J]+2] 

+&(12)2((23)[34](41)+(24)[45](51))1n(%) 

2 (23) (34) (45) (51) s51 - s23 

A scalar _ _ !pN=l + &Atree 

-[341(4 1) (24) [451((23) [341(4 1) + (24) [451(5 1)) 

(34 (45) 

x1n(3z)-t(z-%) 
($51 - s23)3 
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(3 5) 13 513 (12) [3 512 l(12) [341(4 1) (24 1451 
-[12][23](34)(45)[5 l] + [23](34)(45)[5 l] + 5 523 (34)(45)s51 1 (90) 

where Atree = Ap( l-, 2-, 3+, 4+, 5+) is given in Eq. 64, ,V is the renormal- 
ization scale, and 

I(1 + c)r2(1- E) 

cr = (47r)2-cl?(1-2e) . (91) 

These amplitudes contain both infrared and ultraviolet divergences, which have 
been regulated dimensionally with D = 4 - 26, dropping O(c) corrections. We 
see that the three components have quite different analytic structure, indi- 
cating that the rearrangement is a natural one. As promised, the N = 4 
supersymmetric component is the simplest, followed by the N = 1 component. 
The non-supersymmetric scalar component is the most complicated, yet it is 
still simpler than the direct gluon calculation, because it does not mix all three 
components together. 

We can understand why the supersymmetric decomposition works by quan- 
tizing QCD in a special gauge, background-field gauge?’ The color-ordered 
rules in Fig. 5 were obtained using the Lorentz gauge condition PA, = 0, 

where A, = AETa with To in the fundamental representation. After perform- 
ing the Faddeev-Popov trick to integrate over the gauge-fixing condition, one 
obtains the additional term in the Lagrangian 

where we chose the integration weight < = 1 (Lorentz-Feynman gauge) in 
Fig. 5. To quantize in background-field gauge one splits the gauge field into a 
classical background field and a fluctuating quantum field, A, = A.: + A$, 

and imposes the gauge condition DFAf = 0, where Df = 8, - &gAF is 

the background-field covariant derivative, with A: evaluated in the adjoint 
representation. Now the Faddeev-Popov integration (for t = 1) leads to the 
additional term, replacing Eq. 92, 

-~~(D;BA$)~ = -$n(&,A$ - -&g[Af,Af])2. 

For one-loop calculations we require only the terms in the Lagrangian that 
are quadratic in the quantum field A,, 9. A$ describes the gluon propagating 

around the loop, while A$ corresponds to the external gluons. Expanding out 

the classical Lagrangian -i Tr( F&) plus Eq. 93, one finds that the three-gluon 
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(Q&B) and f our- d uon (QQBB) color-ordered vertices are modified from those 
shown in Fig. 5 to 

vQQB PP = 5 [q&k - PI,, - ‘Jrlpvqp + 2wb] 

- %m] ; (94) 

the remaining rules remain the same. In background-field gauge the interac- 
tions of a scalar and of a ghost with the background field are identical, and 
are given by 

YpdsB = +(k - P>P 

of course a ghost loop has an additional overall minus sign. 
Now let’s use Eqs. 94 and 95 to compare the gluon and scalar contribu- 

tions to an n-gluon one-loop amplitude, focusing on the terms with the most 
factors of the loop momentum in the numerator of the Feynman diagrams, 
because these give rise to the greatest algebraic complications in explicit com- 
putations (see the next subsection). The loop momentum only appears in the 
tri-linear vertices, and only in the first term in Vp,yB, because q is an external 

momentum. This term matches VisB up to the v,,~ factor. Thus the lead- 
ing loop-momentum terms for a gluon loop (including the ghost contribution) 
are identical to those for a complex scalar loop: r$ - 2 = 2 in D = 4. In 
dimensional regularization this result is still true if one uses a scheme such as 
dimensional reduction3’ or four-dimensional helicity,5 which leaves the number 
of physical gluon helicities fixed at two. In fact, as we’ll see shortly, the differ- 
ence between a gluon loop and a complex scalar loop has two fewer powers of 
the loop momentum in the numerator - at most m - 2 powers in a diagram 
with m propagators in the loop, versus m for the gluon or scalar loop alone. 
In summary, a gluon loop is a scalar loop “plus a little bit more”. 

To treat fermion loops in the same way, it is convenient to use a “second- 
order formalism” where the propagator looks more like that of a boson?1132 It 
is not necessary to generate the full Feynman rules; it suffices to inspect the 
effective action l?(A), which generates the one-particle irreducible (1PI) graphs. 
Scattering amplitudes are obtained by attaching tree diagrams to the external 
legs of 1PI graphs, but this process does not involve the loop momentum and is 
identical for all internal particle contributions. The scalar, fermion and gluon 
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contributions to the effective action (the latter in background-field gauge and 
including the ghost loop) are 

r sca1ar(A) = In det[o; (D2) , 

rfermion(A) = ilndet;l/2,] (D” - -$J)O~~F~~) , 

@“On(A) = lndet[,;12 (D” - ~P’Fpv) + lndetlOl (D2), (96) 

where D is the covariant derivative, F is the external field strength, iulrV (C,,) 
is the spin-3 (spin-l) Lorentz generator, and detlJ1 is the one-loop determinant 
for a particle of spin J in the loop. The fermionic contribution has been 
rewritten in second-order form using 

In det;!/2,] (p) = k In det ;!/22] (a”> (97) 

and 

p2 = ;{a, B} + ;[P, Q] = D2 - ~+apYFpv. (98) 

We want to compare the leading behavior of each contribution in Eq. 96 
for large loop momentum !. The leading behavior possible for an m-point 1PI 
graph is em, as we saw above in the gluon and scalar cases. The leading term al- 
ways comes from the D2 term in Eq. 96, because F,, contains only the external 
momenta, not the loop momentum. Using Trlcl(1) = 1, Trli,zl(l) = Trlil = 4, 
we see that the D2 term cancels between the scalar and fermion loop, and 
between the fermion and gluon loop; hence it cancels in any supersymmetric 
linear combination. Subleading terms in supersymmetric combinations come 
from using one or more factors of F in generating a graph; each F costs one 
power of &. Terms with a lone F cancel, thanks to Trap, = Tr C,, = 0, so the 
cancellation for an m-point 1PI graph is from em down to t--2. In a gauge 
other than background-field gauge, the cancellations involving the gluon loop 
would no longer happen diagram by diagram. 
Exercise: By comparing the traces of products of two and three cpV’s (CpV’s), 
show that for ANz4 the cancellation is all the way down to emm4. 

The loop-momentum cancellations are responsible for the much simpler 
structure of the supersymmetric contributions to As;1 (l- ,2-, 3+, 4+, 5+) in 
Eq. 90, and similarly for generic n-gluon loop amplitudes. As we sketch in the 
next subsection, loop integrals with fewer powers of the loop momentum in the 
numerator can be reduced more simply to “scalar” integrals - integrals with 
no loop momenta in the numerator. In the (supersymmetric) case where the 
m-point 1PI graphs have at most em-2 behavior, the set of integrals obtained 
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is so restricted that such an amplitude can be reconstructed directly from its 
absorptive parts33 (see Section 4.3). 

Similar rearrangements can be carried out for one-loop amplitudes with 
external fermionss311’ For example, the amplitude with two external quarks 
and the rest gluons has many diagrams where a fermion goes part of the way 
around the loop, and a gluon the rest of the way around. It is easy to see 
that these graphs have an !“‘-l behavior. If one now subtracts from each 
graph the same graph where a scalar replaces the gluon in the loop, then 
the background-field gauge rules, Eqs. 94 and 95, show that the difference 
obeys the “supersymmetric” em-’ criterion (even though in this case it is not 
supersymmetric). Subtracting and adding back this scalar contribution is a 
rearrangement analogous to the n-gluon supersymmetric rearrangement, and 
does aid practical calculationsrO 

Finally, these rearrangements can be motivated by the Neveu-Schwarz- 
Ramond representation of superstring theory. 4~5~31~g This representation is not 
manifestly space-time supersymmetric, but at one loop it corresponds to field 
theory in background-field gauge (for 1PI graphs) and to a second-order formal- 
ism for fermions? At tree-level - and at loop-level for the trees that have to 
be sewn onto 1PI graphs to construct amplitudes - string theory corresponds 
to the nonlinear Gervais-Neveu gaugeB413i apA, - &gA,A, = 0. This gauge 

choice also simplifies the respective calculations, though we omit the details 
here. String theory may have more to teach us about special gauges at the 
multi-loop level. 

4.2 Loop Integral Reduction 

Even if one takes advantage of the various techniques already outlined, loop cal- 
culations with many external legs can still be very complex. Most of the com- 
plication arises at the stage of doing the loop integrals. The general one-loop 
m-point integral in 4 - 2~ dimensions (for vanishing internal particle masses) 
is 

JYep 1 
I, lPWl = J ($42~ f2(f - Q2(l- t1 - k2)2 . . . ([ - )Q - k2 - . . . - &&)2 

. 
where Ici, i = l,..., m, are the momenta flowing out of the loop at leg i, 
and P(.f?) is a polynomial in the loop momentum. As we’ll outline, Eq. 99 
can be reduced recursively to a linear combination of scalar integrals 1, [l], 
where m = 2,3,4. The problem is that for large m the reduction coefficients 
can depend on many kinematic variables, and are often unwieldy and contain 
spurious singularities. 
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Here we illustrate one reduction procedure that works well for large m? If 
m 2 5, then for generic kinematics we have at least four independent momenta, 

say PI = h,p2 = h+ k2,p3 = ICI +k2 +k3,p4 = h +k2 +k3+k4. We can 
define a set of dual momenta vr, 

V: = ~(&3,4), ~2” = 4,~,3,4), ~3” = ~(1,2,~,4), ~4” = ~(1,2,3,~)~ 

vi.pj =~(1,2,3,4)6+ (100) 

and expand the loop momentum in terms of them, 

1 
4 

p = 
c 417 2,374) izl 

v; e .pi 

l -&q? - (e - Pi)2 +pi"] . 

= 2~(1,2,3,4) i=l * 
(101) 

The first step can be verified by contracting both sides with $. In the second 
step we rewrite P in terms of the propagator denominators m Eq. 99, plus a 
term independent of the loop momentum. If we insert Eq. 101 into the degree p 

polynomial P(tp) in Eq. 99, the former terms cancel propagator denominators, 
turning an m-point loop integral into (m - 1)-point integrals with polynomials 
of degree p - 1, while the latter term remains an m-point integral, also of 
degree p - 1. Iterating this procedure, m-point integrals can be reduced to 
box integrals (m = 4) plus scalar m-point integrals. Equation 101 is only valid 
for the four-dimensional components of the loop momentum, so one has to be 
careful when applying it to dimensionally-regulated amplitudes. In practice, 
when using the helicity formalism the loop momenta usually end up contracted 
with four-dimensional external momenta and polarization vectors, in which 
case P is already projected into four-dimensions. 

The strategy of rewriting the loop momentum polynomial P(l?‘) (which 
may be contracted with external momenta) in terms of the propagator denom- 
inators fJ2, (! - k~)~, etc. is a very general one. In special cases - such as the 
N = 4 supersymmetric example in Section 4.4 - the form of the contracted 
P(F‘) often allows a rapid reduction without having to invoke the general for- 
malism, and without undue algebra. However, in other cases one may not be 
so fortunate. 

The scalar integrals for m 2 6 can be reduced to lower-point scalar inte- 
grals by a similar technique. 36z35 For m > 6 we have a fifth independent vector, - 
p5 = 11 + Lz + k3 + k4 + kg. Contracting Eq. 101 with p5, we get 

1 
4 

e.p, = 
c 41,2,3,4) i=l 

vi *p5 [.Pi, (102) 
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which can be rewritten as an equality relating a sum of six propagator denom- 
inators to a term independent of the loop momentum. Inserting this equality 
into the scalar integral Im[l], we get an expression for I,,, [l] as a linear combi- 

nation of six “daughter” integrals I,$.‘_, [l], where the index (i) indicates which 
of the m propagators has been cancelled. A similar formula reduces the scalar 
pentagon to a sum of five boxes. 36135t37p38 To reduce box integrals with loop mo- 
menta in the numerator, one may employ either a standard Passarino-Veltman 
reduction,sg or one using dual vectors like that discussed above?0>25 These ap- 
proaches share the property of Eq. 101, that in each step the degree of the 
loop-momentum polynomial drops by one. Thus supersymmetric cancellations 
of m-point 1PI graphs down to em-2 are maintained under integral reduction. 

The final results for an amplitude may therefore be described as a linear 
combination of various bubble, triangle and box scalar integrals. The biggest 
problem is that the reduction coefficients from the above procedures contain 
spurious kinematic singularities, which should cancel at the end of the day, but 
which can lead to very large intermediate expressions if one is not careful. For 
example, although the Levi-Civita contraction ~(1,2,3,4) appears in the de- 
nominator of Eq. 101, it has an unphysical singularity when the four momenta 
ki become co-planar, so it should not appear in the final result. Despite this 
fact, the above approach actually does a good job of keeping the number of 
terms small, and the requisite cancellations of E( 1,2,3,4) denominator factors 
are not so hard to obtain. 

4.3 Unitarity constraints 

In Section 3.4 we discussed the analytic behavior of tree amplitudes, namely 
their pole structure. At the loop level, amplitudes have cuts as well as poles. 
I won’t elaborate on the factorization (pole) structure of one-loop amplitudes, 
but they do exhibit the same kind of universality as tree amplitudes, which 
leads to strong constraints and consistency checks on calculations?1tg242 

Unitarity of the S-matrix, St,!? = 1, implies that the scattering T matrix, 
defined by S = 1+ iT, obeys (T - Tt)/i = TtT. One can expand this equation 
perturbatively in g, and recognize the matrix sum on the right-hand side as 
including an integration over momenta of intermediate states. Thus the imag- 
inary or absorptive parts of loop amplitudes - which contain the branch-cut 
information - can be determined from phase-space integrals of products of 

43 lower-order amplitudes. For one-loop multi-parton amplitudes, there are sev- 

eral reasons why this calculation of the cuts is much easier than a direct loop 
calculation: 

l One can simplify the tree amplitudes before feeding them into the cut calcu- 
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Figure 10: The possible intermediate helicities for a cut of a MHV amplitude, when both 
negative helicity gluons lie on the same side of the cut. 

lation. 

l The tree amplitudes are usually quite simple, because they possess “effective” 
supersymmetry, even if the full loop amplitudes do not. 

l One can further use on-shell conditions for the intermediate legs in evaluating 
the cuts. 

The catch is that it is not always possible to reconstruct the full loop ampli- 
tude from its cuts. In general there can be an additive “polynomial ambiguity” 
- besides the usual logarithms and dilogarithms of loop amplitudes, one may 
add polynomial terms (actually rational functions) in the kinematic variables, 
which cannot be detected by the cuts. This ambiguity turns out to be absent 
in one-loop massless supersymmetric amplitudes, due to the loop-momentum 
cancellations discussed in Section 4.1. g133 For example, in the five-gluon ampli- 
tude, Eq. 90, all the polynomial terms in both ANz4 and AN=’ are intimately 
linked to the logarithms, while in Ascalar they are not linked. 

The polynomial terms in non-supersymmetric one-loop amplitudes cannot 
generally be reconstructed from unitarity cuts evaluated in four-dimensions. It 
is possible to use dimensional analysis to extract the O(E’) polynomial terms 
if one has evaluated the cuts to O(c) in dimensional regularizationp4 but this 
task is significantly harder than evaluation to O(E’). In practice, polynomial 
ambiguities can often be fixed, recursively in the number of external legs, by 
requiring consistent collinear factorization of an amplitude in all channels?1l42 
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4.4 Example 

As an example of how simple one-loop multi-parton cuts can be, we outline here 
the evaluation of the cuts for an infinite sequence of n-gluon amplitudes, the 
MHV amplitudes in N = 4 super-Yang-Mills theory? We consider the single- 
trace, leading-color contribution Anil, and the case where the two negative 
helicity gluons lie on the same side of the cut, as shown in Fig. 10. (The 
case where they lie on the opposite side of the cut can be quickly reduced to 
this case9 using the SWI, Eqs. 76 and 77.) Contributions to this cut from 
intermediate fermions or scalars vanish using the “effective” supersymmetry 
of tree amplitudes, Eq. 76, plus conservation of fermion helicity and scalar 
particle number, on the right-hand side of the cut. The only contribution is 
from intermediate gluons with the helicity assignment shown in Fig. 10. The 
tree amplitudes on either side of the cut are pure-glue MHV tree amplitudes, 
so using Eq. 65 the cut takes the simple form 

J dLIPS(-1i, t,)Ay MHv(-l~, ml,. . . , m2, &) 

xA~‘_~2~~V(-.f?2, m2 + 1,. . . , mz - 1, ei) 

= iA;y MHV(l, 2 , . . .> n> 

X 

J 

(ml - 1, ml) @I e2) (m2, m2 + 1) (e2 !,) 

dL1ps(-e17e2)(ml - 1, (1) (ei ml) ’ (m2!J2) (fJ2, m2 + I) ’ (lo3) 

where the spinor products are labelled by either loop momenta (ei, &) or ex- 
ternal particle labels, and the Lorentz-invariant phase space measure for the 
two-particle intermediate state is denoted by dLIPS(-!?i , !z). 

The integral in Eq. 103 can be viewed as a cut hexagon loop integral. (The 
four- and five-point cases are degenerate, since there are not enough external 
momenta to make a genuine hexagon.) To see this, use the on-shell condition 
!: = lz = 0 to rewrite the four spinor product denominators in Eq. 103 as 
propagators multiplied by some numerator factor, for example 

[ml [I] [ml !I] 
@I :I) = (!I ml) [ml -t!l] = 2-!?i . km1 = 

- [ml !I] 
([I - km,)” ’ 

(104) 

In addition to these four propagators, there are two cut propagators implicit 
in s dLIPS( -ei , &). 

Rather than evaluate the cut hexagon integral directly, we use the Schouten 
identity, Eq. 23, to reduce the number of spinor product factors in the denom- 
inator of each term, which will break up the integral into a sum of cut box 
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integrals. We have 

(ml - 1, ml) (e1t2) = (ml - 1, !,) (ml e2) -- 

(ml - 1, ll) (el ml) (ml - 1, !I) (ml el) ’ 
(105) 

and similarly for the second factor in Eq. 103. Four terms are generated, one 
of which is 

-iA,4’,““MHV(1,2,...,n) J (ml e2) [[2 m21 (m2 !I) [ll ml] 

dLIPS(-el ’ “) (ml tl) [.tl ml] (m2 t2) [fY2 m2] 

= -iAFyMHV(1,2,...,n) J dLIPS(-el’ “) 

+(l+ 75) 81 L f2 VmJ 

(e, _ k,,)2(f2 + km42 ’ 

(106) 
This is the cut box integral Ipl’m’, where the set of momenta flowing out of 
its four vertices is {km,, Pm,+l,mz-l, k,,, P,,+1,,,-1). The other three terms 

similarly give Iyl-llm’, Iyllmatl and I~1-19naat1, all with two loop momenta 
inserted in the numerator. 

The ys-odd part of the trace in Eq. 106 does not contribute, because the 
box does not have enough independent momenta to satisfy the Levi-Civita 
tensor. The y5-even part can be reduced by standard Passarino-Veltman tech- 
niques3’ to scalar box, triangle and bubble integrals. The coefficient of the 
scalar box integral lyl’“a[l] is 

-- 
BP?L?7a2-1p~l+l,ma - J2wap~l+l,ma-1)~ (107) 

After summing over the four box integrals, the triangles and bubbles cancel out. 
(This could have been anticipated from the exercise in Section 4.1, showing that 
ANc4 exhibits loop-momentum cancellations down to ernw4, plus the general 
loop integral reduction procedures discussed in Section 4.2.) Therefore the 
N = 4 MHV amplitude which matches all the cuts is a sum of scalar box 
integrals, with coefficients given by Eq. 107, which evaluates explicitly (through 
S(eO)) to 

A$T4(lt,. . .,j-, . . ., k-, . . . ,n+) = (p2)‘c~Aj~ MHV(1,2,. . .,n) V, , (108) 

where the universal, cyclically symmetric function V, is given by 

m-l n 

blat1 = c c fi,f , 

r=l i=l 

m-2 n 7312 

V2m = c CA,, +~&?a-1 , 
?-cl i=l i=l 
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Figure 11: Currently known one-loop n-gluon amplitudes, decomposed into N = 4 super- 
symmetric, N = 1 chiral, and scalar contributions, as in Eq. 89. The number of external 
gluons with helicity fl in the amplitude is denoted by n*. Parity reflects the figure about 
the vertical axis. Arrows show how amplitudes flow into each other under collinear limits. 

with 
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The dilogarithm is defined by Liz(z) = - st dt ln(1 - t)/t, and by convention 
(-Pfel,i-l)-c = o-’ = 0. 

It is remarkable that a compact expression for an infinite sequence of gauge 
theory loop amplitudes is so easy to obtain. Several other infinite sequences 
of n-gluon one-loop amplitudes have now been computed, using unitarity as 
well as collinear and recursive techniques?~45~g~33 The currently known n-gluon 
amplitudes - or rather their components under the supersymmetric decom- 
position discussed in Section 4.1 - are plotted in Fig. 11 versus the number 
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of helicity fl external states n*. As the figure shows, the supersymmet- 
ric components are better known than the non-supersymmetric scalar terms. 
Polynomial ambiguities in the non-supersymmetric components of one-loop 
QCD amplitudes are the main obstacle to their efficient evaluation. In the 
various collinear limits, helicity amplitudes (including their polynomial terms) 
flow along the arrows in the figure, indicating how the limits may be used to 
help fix the ambiguities. 

5 Conclusions 

In these lectures we described techniques for efficient analytical calculation of 
scattering amplitudes in gauge theories, particularly &CD. Tools such as he- 
licity and color decompositions, special gauges, unitarity, factorization limits 
and supersymmetric rearrangements can lead to many simplifications. Some of 
these ideas can be motivated from string theory, but none requires its detailed 
knowledge. There is no one “magic bullet” but rather a combined arsenal 
of techniques that work well together. At the practical level, some of these 
tools have been instrumental in calculating the one-loop five-parton ampli- 
tudes (ggggg, qqqqg and Qqggg) which form the analytical bottleneck to NLO 
cross-sections for three-jet events at hadron colliders.z8~46~10 They have also 
been used to obtain infinite sequences of special one-loop helicity amplitudes 
in closed form?‘~45~g~33 On the other hand, many processes of experimental 
interest remain uncalculated at NLO and at higher orders, so there is plenty 
of room for improvement in the field! 
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