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We present Poincare invariant domain wall (\3-brane") solutions to some 5-dimensional

e�ective theories which can arise naturally in string theory. In particular, we �nd theo-

ries where Poincare invariant solutions exist for arbitrary values of the brane tension, for

certain restricted forms of the bulk interactions. We describe examples in string theory

where it would be natural for the quantum corrections to the tension of the brane (arising

from quantum 
uctuations of modes with support on the brane) to maintain the required

form of the action. In such cases, the Poincare invariant solutions persist in the presence

of these quantum corrections to the brane tension, so that no 4d cosmological constant is

generated by these modes.
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1. Introduction

Some time ago, it was suggested that the cosmological constant problem may become

soluble in models where our world is a topological defect in some higher dimensional

spacetime [1]. Recently such models have come under renewed investigation. This has been

motivated both by brane world scenarios (see for instance [2,3,4]) and by the suggestion of

Randall and Sundrum [5] that the four-dimensional graviton might be a bound state of a

5d graviton to a 4d domain wall. At the same time, new ideas relating 4d renormalization

group 
ows to 5d AdS gravity via the AdS/CFT correspondence [6] have inspired related

approaches to explaining the near-vanishing of the 4d cosmological term [7,8]. These

authors suggested (following [1]) that quantum corrections to the 4d cosmological constant

could be cancelled by variations of �elds in a �ve-dimensional bulk gravity solution. The

results of this paper might be regarded as a concrete partial realization of this scenario,

in the context of 5d dilaton gravity and string theory. A di�erent AdS/CFT motivated

approach to this problem appeared in [9].

In the thin wall approximation, we can represent a domain wall in 5d gravity by a

delta function source with some coe�cient f(�) (where � is a bulk scalar �eld, the dilaton),

parametrizing the tension of the wall. Quantum 
uctuations of the �elds with support on

the brane should correct f(�). In this paper, we present a concrete example of a 5d dilaton

gravity theory where one can �nd Poincare invariant domain wall solutions for generic f(�).

The constraint of �nding a �nite 4d Planck scale then restricts the sign of f and the value

of f 0

f
at the wall to lie in a range of order one. Thus �ne-tuning is not required in order

to avoid having the quantum 
uctuations which correct f(�) generate a 4d cosmological

constant. One of the requirements we must impose is that the 5d cosmological constant

� should vanish.1 This would be natural in scenarios where the bulk is supersymmetric

(though the brane need not be), or where quantum corrections to the bulk are small enough

to neglect in a controlled expansion.

For suitable choices of f(�), this example exhibits the precise dilaton couplings which

naturally arise in string theory. There are two interesting and distinct contexts in which

this happens. One is to consider f(�) corresponding to tree-level dilaton coupling (V e�2�

in string frame, for some constant V ). This form of the dilaton coupling is not restricted

to tree-level perturbative string theory { it occurs for example on the worldvolumes of

1 It is possible that an Einstein frame bulk cosmological term which is independent of � will

also allow for similar physics [10].
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NS branes in string theory. There, the dynamics of the worldvolume degrees of freedom

does not depend on the dilaton { the relevant coupling constant is dilaton independent.

Therefore, quantum corrections to the brane tension due to dynamics of worldvolume

�elds would be expected to maintain the \tree-level" form of f(�), while simply shifting

the coe�cient V of the (string frame) e�2�. The other form of f(�) natural in string theory

involves a power series in e�. This type of coupling occurs when quantum corrections are

controlled by the dilaton in string theory.

In either case, as long as we only consider quantum corrections which modify f(�)

but maintain the required form of the bulk 5d gravity action, this means that quantum

corrections to the brane tension do not destabilize 
at space; they do not generate a

four-dimensional cosmological constant. We will argue that some of our examples should

have a microscopic realization in string theory with this feature, at leading order in a

controllable approximation scheme. It is perhaps appropriate to call this \self-tuning" of

the cosmological constant because the 5d gravity theory and its matter �elds respond in

just the right way to shifts in the tension of the brane to maintain 4d Poincare invariance.

Note that here, as in [5], there is a distinction between the brane tension and the 4d

cosmological constant.

There are two aspects of the solutions we �nd which are not under satisfactory control.

Firstly, the curvature in the brane solutions of interest has singularities at �nite distance

from the wall; the proper interpretation of these singularities will likely be crucial to

understanding the mechanism of self-tuning from a four-dimensional perspective. We cut

o� the space at these singularities. The wavefunctions for the four-dimensional gravitons

in our solutions vanish there. Secondly, the value of the dilaton � diverges at some of the

singularities; this implies that the theory is becoming strongly coupled there. However,

the curvature and coupling can be kept arbitrarily weak at the core of the wall. Therefore,

some aspects of the solutions are under control and we think the self-tuning mechanism can

be concretely studied. We present some preliminary ideas about the microscopic nature of

the singularities in x3.
A problem common to the system studied here and that of [5] is the possibility of

instabilities, hidden in the thin wall sources, that are missed by the e�ective �eld theory

analysis. Studying thick wall analogues of our solutions would probably shed light on this

issue. We do not resolve this question here. But taking advantage of the stringy dilaton

couplings possible in our set of self-tuned models, we present a plausibility argument for

the existence of stringy realizations, a subject whose details we leave for future work [10].
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Another issue involves solutions where the wall is not Poincare invariant. This could

mean it is curved (for example, de Sitter or Anti de Sitter). However it could also mean

that there is a nontrivial dilaton pro�le along the wall (one example being the linear

dilaton solution in string theory, which arises when the tree-level cosmological constant is

nonvanishing). This latter possibility is a priori as likely as others, given the presence of

the massless dilaton in our solutions.

Our purpose in this paper is to argue that starting with a Poincare invariant wall, one

can �nd systems where quantum corrections leave a Poincare invariant wall as a solution.

However one could also imagine starting with non Poincare invariant wall solutions of the

same 5d equations (and preliminary analysis suggests that such solutions do exist in the

generic case, with �nite 4d Planck scale). We are in the process of systematically analyzing

the �ne tuning of initial conditions that considering a classically Poincare invariant wall

might entail [10].

The paper is organized as follows. In x2, we write down the 5d gravity + dilaton

theories that we will be investigating. We solve the equations of motion to �nd Poincare

invariant domain walls, both in the cases where the 5d Lagrangian has couplings which

provide the self-tuning discussed above, and in more general cases. In x3, we describe

several possible embeddings of our results into a more microscopic string theory context.

We close with a discussion of promising directions for future thought in x4.
There have been many interesting recent papers which study domain walls in 5d

dilaton gravity theories. We particularly found [11] and [12] useful, and further references

may be found there.

This research was inspired by very interesting discussions with O. Aharony and T.

Banks. While our work on Poincare invariant domain walls and self-tuning was in progress,

we learned that very similar work was in progress by Arkani-Hamed, Dimopoulos, Kaloper

and Sundrum [13]. In particular, before we had obtained the solutions in x2.3 and x2.4,
R. Sundrum told us that they were �nding singular solutions to the equations and were

hoping the singularities would \explain" a breakdown of 4d e�ective �eld theory on the

domain wall.

2. Poincare-invariant 4d Domain Wall Solutions

2.1. Basic Setup and Summary of Results

Let us consider the action
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S =

Z
d5x
p
�G
�
R� 4

3
(r�)2 � �ea�

�

+

Z
d4x
p
�g(�f(�))

(2:1)

describing a scalar �eld � and gravity living in �ve dimensions coupled to a thin four-

dimensional domain wall. Let us set the position of the domain wall at x5 = 0. Here we

follow the notation of [5] so that the metric g�� along the four-dimensional slice at x5 = 0

is given in terms of the �ve-dimensional metric GMN by

g�� = �M� �N� GMN (x5 = 0)

�; � = 1; : : : ; 4

M;N = 1; : : : ; 5

(2:2)

For concreteness, in much of our discussion we will make the choice

f(�) = V eb� (2:3)

However, most of our considerations will not depend on this detailed choice of f(�) (for

reasons that will become clear). With this choice, (2.1) describes a family of theories

parameterized by V , �, a, and b. If a = 2b = 4=3, the action (2.1) agrees with tree-level

string theory where � is identi�ed with the dilaton. (That is, the 5d cosmological constant

term and the 4d domain wall tension term both scale like e�2� in string frame.) In x3
we will discuss a very natural context in which this type of action arises in string theory,

either with the speci�c form (2.3) or with more general f(�).

In the rest of this section we will derive the �eld equations arising from this action and

construct some interesting solutions of these equations. In particular, we will be interested

in whether there are Poincare-invariant solutions for the metric of the four-dimensional slice

at x5 = 0 for generic values of these parameters (or more generally, for what subspaces of

this parameter space there are Poincare-invariant solutions in four dimensions). We will

also require that the geometry is such that the four-dimensional Planck scale is �nite. Our

main results can be summarized in three di�erent cases as follows:

(I) For � = 0, b 6= �4

3
but otherwise arbitrary, and arbitrary magnitude of V we �nd a

Poincare-invariant domain wall solution of the equations of motion. For b = 2=3, which

is the value corresponding to a brane tension of order e�2� in string frame, the sign of V
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must be positive in order to correspond to a solution with a �nite four-dimensional Planck

scale, but it is otherwise unconstrained. This suggests that for �xed scalar �eld coupling

to the domain wall, quantum corrections to its tension V do not spoil Poincare invariance

of the slice. In x3 we will review examples in string theory of situations where worldvolume

degrees of freedom contribute quantum corrections to the e�2� term in a brane's tension.

Our result implies that these quantum corrections do not need to be �ne-tuned to zero to

obtain a 
at four-dimensional spacetime.

For a generic choice of f(�) in (2.1) (including the type of power series expansion in

e� that would arise in perturbative string theory), the same basic results hold true: We

are able to �nd Poincare invariant solutions without �ne-tuning f . Insisting on a �nite 4d

Planck scale gives a furthur constraint on f 0=f at the wall, forcing it to lie in a range of

order one.

Given a solution with one value of V and � = 0, a self-tuning mechanism is in fact

clear from the Lagrangian (for b 6= 0). In (2.1) we see that if � = 0 (or a = 0), the only

non-derivative coupling of the dilaton is to the brane tension term, where it appears in the

combination (�V )eb�. Clearly given a solution for one value of V , there will be a solution

for any value of V obtained by absorbing shifts in V with shifts in �. With more general

f(�), similar remarks hold: the dilaton zero mode appears only in f , and one can absorb

shifts in V by shifting �.

However, in the special case b = 0 (where f(�) is just a constant), we will also �nd


at solutions for generic V . This implies that the freedom to vary the dilaton zero mode

is not the only mechanism that ensures the existence of a 
at solution for arbitrary V .

(II) For � = 0, b = �4=3, we �nd a di�erent Poincare-invariant solution (obtained by

matching together two 5d bulk solutions in a di�erent combination than that used in

obtaining the solutions described in the preceding paragraph (I)). A solution is present

for any value of V . This suggests that for �xed scalar �eld coupling to the domain wall,

quantum corrections to its tension V do not spoil Poincare-invariance of the slice. Again

the sign of V must be positive in order to have a �nite four-dimensional Planck scale.

(III) We do not �nd a solution (nor do we show that none exists) for general �, V , a,

and b (in concordance with the counting of parameters in [11]). However, for each � and

V there is a choice of a and b for which we do �nd a Poincare invariant solution using a

simple ansatz.
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For a = 0, and general b, �, and V we are currently investigating the existence of

self-tuning solutions. Their existence would be in accord with the fact that in this case,

as in the cases with � = 0, the dilaton zero mode only appears in the tension of the wall.

This means again that shifts in V can be absorbed by shifting �, so if one �nds a Poincare

invariant solution for any V , one does not need to �ne-tune V to solve the equations.

2.2. Equations of Motion

The equations of motion arising for the theory (2.1), with our simple choice for f(�)

given in (2.3), are as follows. Varying with respect to the dilaton gives:

p
�G
�
8

3
r2�� a�ea�

�
� bV �(x5)e

b�
p
�g = 0 (2:4)

The Einstein equations for this theory are:

p
�G
�
RMN �

1

2
GMNR

�

�
4

3

p
�G
�
rM�rN��

1

2
GMN (r�)2

�

+
1

2

�
�ea�

p
�GGMN +

p
�gV g����M��N�(x5)

�
= 0

(2:5)

We are interested in whether there are solutions with Poincare-invariant four-

dimensional physics. Therefore we look for solutions of (2.4) and (2.5) where the metric

takes the form

ds2 = e2A(x5)(�dx2
1
+ dx2

2
+ dx2

3
+ dx2

4
) + dx2

5
(2:6)

With this ansatz for the metric, the equations become

8

3
�00 +

32

3
A0�0 � a�ea� � bV �(x5)e

b� = 0 (2:7)

6(A0)2 �
2

3
(�0)2 +

1

2
�ea� = 0 (2:8)

3A00 +
4

3
(�0)2 +

1

2
eb�V �(x5) = 0 (2:9)

where 0 denotes di�erentiation with respect to x5. The �rst one (2.7) is the dilaton equation

of motion, the second (2.8) is the 55 component of Einstein's equations, and the last (2.9)

comes from a linear combination (the di�erence) of the �� component of Einstein's equation

and the 55 component.

We will mostly consider the simple ansatz

A0 = ��0: (2:10)

However for the case a = 0, � 6= 0 we will integrate the equations directly.
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2.3. � = 0 Case

Let us �rst consider the system with � = 0. We will �rst study the bulk equations of

motion (i.e. the equations of motion away from x5 = 0) where the �-function terms in (2.7)

and (2.9) do not come in. Note that because the delta function terms do not enter, the

bulk equations are independent of our choice of f(�) in (2.1). We will then consider the

conditions required to match two bulk solutions on either side of the domain wall of tension

V eb� at x5 = 0. We will �nd two qualitatively di�erent ways to do this, corresponding to

results (I) and (II) quoted above. We will also �nd that for fairly generic f(�), the same

conclusions hold.

Bulk Equations: � = 0

Plugging the ansatz (2.10) into (2.8) (with � = 0) we �nd that

6�2(�0)2 =
2

3
(�0)2 (2:11)

which is solved if we take

� = �
1

3
(2:12)

Plugging this ansatz into (2.7) we obtain

8

3
(�00 + 4(�

1

3
)(�0)2) = 0 (2:13)

Plugging it into (2.9) we obtain

3(�
1

3
)�00 +

4

3
(�0)2 = 0 (2:14)

With either choice of sign for �, these two equations become identical in bulk. For � = �1

3
,

we must solve

�00 �
4

3
(�0)2 = 0 (2:15)

in bulk. This is solved by

� = �
3

4
log j

4

3
x5 + cj+ d (2:16)

where c and d are arbitrary integration constants.

Note that there is a singularity in this solution at

x5 = �
3

4
c (2:17)
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Our solutions will involve regions of spacetime to one side of this singularity; we will

assume that it can be taken to e�ectively cut o� the space. At present we do not have

much quantitative to say about the physical implications of this singularity. The results

we derive here (summarized above) strongly motivate further exploring the e�ects of these

singularities on the four-dimensional physics of our domain wall solutions.

At x5 = 0 there is localized energy density leading to the �-function terms in (2.7) and

(2.9). We can solve these equations by introducing appropriate discontinuities in �0 at the

wall (while insisting that � itself is continuous). We will now do this for two illustrative

cases (the �rst being the most physically interesting).

Solution (I):

Let us take the bulk solution with � = + 1

3
for x5 < 0, and the one with � = �1

3
for

x5 > 0. So we have

�(x5) = �1(x5) =
3

4
log j

4

3
x5 + c1j+ d1; x5 < 0 (2:18)

�(x5) = �2(x5) = �
3

4
log j4

3
x5 + c2j+ d2; x5 > 0 (2:19)

where we have allowed for the possibility that the (so far) arbitrary integration constants

can be di�erent on the two sides of the domain wall.

Imposing continuity of � at x5 = 0 leads to the condition

3

4
log jc1j+ d1 = �

3

4
log jc2j+ d2 (2:20)

This equation determines the integration constant d2 in terms of the others.

To solve (2.7) we then require

8

3
(�0

2
(0) � �0

1
(0)) = bV eb�(0) (2:21)

while to solve (2.9) we need

3

�
�2�

0
2
(0) � �1�

0
1
(0)

�
= �

1

2
V eb�(0) (2:22)

(where �1 = +1

3
and �2 = �1

3
). These two matching conditions become

�8

3
(
1

c1
+

1

c2
) = bV ebd1 jc1j

3

4
b (2:23)
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and
1

c2
�

1

c1
= �

1

2
V ebd1 jc1j

3

4
b (2:24)

Solving for the integration constants c1 and c2 we �nd

2

c2
=

�
�3b

8
� 1

2

�
V ebd1jc1j

3

4
b (2:25)

2

c1
=

�
�
3b

8
+

1

2

�
V ebd1jc1j

3

4
b (2:26)

Note that as long as b 6= �4

3
, we here �nd a solution for the integration constants

c1 and c2 in terms of the parameters b and V which appear in the Lagrangian and the

integration constant d1. (As discussed above, the integration constant d2 is then also

determined).2 In particular, for scalar coupling given by b, there is a Poincare-invariant

four-dimensional domain wall for any value of the brane tension V ; V does not need to

be �ne-tuned to �nd a solution. As is clear from the form of the 4d interaction in (2.1),

one way to understand this is that the scalar �eld � can absorb a shift in V since the only

place that the � zero mode appears in the Lagrangian is multiplying V . However since we

can use these equations to solve for c1;2 without �xing d1, a more general story is at work;

in particular, even for b = 0 we �nd solutions for arbitrary V .

A constraint on the sign of V arises, as we will now discuss, from the requirement that

there be singularities (2.17) in the bulk solutions, e�ectively cutting o� the x5 direction at

�nite volume.

More General f(�)

If instead of (2.3) we include a more general choice of f in the action (2.1), the

considerations above go through unaltered. The choice of f only enters in the matching

conditions (2.21) and (2.22) at the domain wall. The modi�ed equations become

8

3
(�0

2
(0)� �0

1
(0)) =

@f

@�
(�(0)) (2:27)

3

�
�2�

0
2
(0) � �1�

0
1
(0)

�
= �

1

2
f(�(0)) (2:28)

In terms of the integration constants, these become:

2 We will momentarily �nd a disjoint set of � = 0 domain wall solutions for which b will be

forced to be �4=3, so altogether there are solutions for any b.
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�
8

3
(
1

c1
+

1

c2
) =

@f

@�
(
3

4
log jc1j+ d1) (2:29)

1

c2
�

1

c1
= �

1

2
f(
3

4
log jc1j+ d1) (2:30)

Clearly for generic f(�), one can solve these equations.

Obtaining a Finite 4d Planck Scale

Consider the solution (2.18) on the x5 < 0 side. If c1 < 0, then there is never a

singularity. Let us consider the four-dimensional Planck scale. It is proportional to the

integral [5] Z
dx5 e

2A(x5) (2:31)

In the x5 < 0 region, this goes like

Z
dx5

r
j
4

3
x5 + c1j (2:32)

If c1 < 0, then there is no singularity, and this integral is evaluated from x5 = �1
to x5 = 0. It diverges. If c1 > 0, then there is a singularity at (2.17). Cutting o� the

volume integral (2.32) there gives a �nite result. Note that the ansatz (2.10) leaves an

undetermined integration constant in A, so one can tune the actual value of the 4d Planck

scale by shifting this constant.

In order to have a �nite 4d Planck scale, we therefore impose that c1 > 0. This

requires V (1
2
� 3b

8
) > 0. For the value b = 2=3, natural in string theory (as we will discuss

in x3), this requires V > 0. With this constraint, there is similarly a singularity on the

x5 > 0 side which cuts o� the volume on that side.

These conditions extend easily to conditions on f(�) in the more general case. We

�nd

�
3

8

@f

@�
(�(0)) �

1

2
f(�(0)) < 0

�
3

8

@f

@�
(�(0)) +

1

2
f(�(0)) > 0

(2:33)

This means that f(�) must be positive at the wall (corresponding to a positive tension

brane), and that

�
4

3
<

f 0

f
<

4

3
(2:34)
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So although f does not need to be �ne-tuned to achieve a solution of the sort we require,

it needs to be such that f 0=f is in the range (2.34).

Let us discuss some of the physics at the singularity. Following [5,11], we can compute

the x5-dependence of the four-dimensional graviton wavefunction. Expanding the metric

about our solution (taking g�� = e2A��� + h��), we �nd

h�� /
r
j
4

3
x5 + cj (2:35)

At a singularity, where j4
3
x5 + cj vanishes, this wavefunction also vanishes. Without un-

derstanding the physics of the singularity, we cannot determine yet whether it signi�cantly

a�ects the interactions of the four-dimensional modes.

It is also of interest to consider the behavior of the scalar � at the singularities. In

string theory this determines the string coupling. In our solution (I), we see that

x5 ! �3

4
c1 ) �! �1

x5 ! �3

4
c2 ) �!1

(2:36)

So in string theory, the curvature singularity on the x5 < 0 side is weakly coupled, while

that on the x5 > 0 side is strongly coupled. It may be possible to realize these geometries in

a context where supersymmetry is broken by the brane, so that the bulk is supersymmetric.

In such a case the stability of the high curvature and/or strong-coupling regions may be

easier to ensure. In any case we believe that the results of this section motivate further

analysis of these singular regions, which we leave for future work.

Putting everything together, we have found the solution described in case (I) above.

It should be clear that since f(�) only appears in (2.1) multiplying the delta function

\thin wall" source term, we can always use the choice (2.3) in writing matching conditions

at the wall for concreteness. To understand what would happen with a more general

f , one simply replaces V eb�(0) with f(�(0)) and bV eb�(0) with @f

@�
(�(0)) in the matching

equations. We will not explicitly say this in each case, but it makes the generalization to

arbitrary f immediate.

Solution (II):

A second type of solution with � = 0 is obtained by taking � to have the same sign

on both sides of the domain wall. So we have

�(x5) = �1(x5) = �
3

4
log j

4

3
x5 + c1j+ d1; x5 < 0 (2:37)
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�(x5) = �2(x5) = �
3

4
log j

4

3
x5 + c2j+ d2; x5 > 0 (2:38)

The matching conditions then require b = �4

3
for consistency of (2.7) and (2.9) (in the case

with more generic f(�), this generalizes to the condition @f

@�
(�(0)) = �4

3
f(�(0))). This is

not a value of b that appears from a dilaton coupling in perturbative string theory. It is

still interesting, however, as a gravitational low-energy e�ective �eld theory where V does

not have to be �ne-tuned in order to preserve four-dimensional Poincare invariance. We

�nd a solution to the matching conditions with

c1 = c; x5 > 0

c2 = �c; x5 < 0

d1 = d2 = d

e�
4

3
d =

4

V

c

jcj

(2:39)

for some arbitrary constant c, and any V . This gives the results summarized in case (II)

above. The value b = �4=3, which is required here, was excluded from the solutions (I)

derived in the last section.

As long as we choose c such that there are singularities on both sides of the domain

wall, we again get �nite 4d Planck scale. As we can see from (2.37) and (2.38), having

singularities on either side of the origin requires c to be positive. Then we see from (2.39)

that we can �nd a solution for arbitrary positive brane tension V .

Let us discuss the physics of the singularities in this case. As in solutions (I), the

graviton wavefunction decays to zero at the singularity like (x � xsing)
1

2 . For b = �4=3,
�!�1 at the singularities on both sides, while for b = 4

3
, �!1 at the singularities on

both sides.

Putting solutions (I) and (II) together, we see that in the � = 0 case one can �nd a

Poincare invariant solution with �nite 4d Planck scale for any positive tension V and any

choice of b in (2.1). As we have seen, this in fact remains true with (2.3) replaced by a

more general dilaton dependent brane tension f(�).

Two-Brane Solutions

One can also obtain solutions describing a pair of domain walls localized in a compact

�fth dimension. In case (I), one can show that such solutions always involve singularities.

In case (II), there are solutions which avoid singularities while maintaining the �niteness
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of the four-dimensional Planck scale. They however involve extra moduli (the size of the

compacti�ed �fth dimension) which may be stabilized by for example the mechanism of

[14]. The singularity is avoided in these cases by placing a second domain wall between

x5 = 0 and the would-be singularity at 4

3
x5 + c = 0. This allows us in particular to �nd

solutions for which � is bounded everywhere, so that the coupling does not get too strong.

This is a straightforward generalization of what we have already done and we will not

elaborate on it here.

2.4. � 6= 0 (Solution III)

More generally we can consider the entire Lagrangian (2.1) with parameters �; V; a; b.

In this case, plugging in the ansatz (2.10) to equations (2.7){(2.9), we �nd a bulk solution

� = �2

a
log(

a(�
p
B)

2
x5 + d)

B =
�

4

3
� 12�2

� = �
8

9a

(2:40)

We �nd a domain wall solution by taking one sign in the argument of the logarithm in

(2.40) for x5 < 0 and the opposite sign in the argument of the logarithm for x5 > 0. Say

for instance that a > 0. Then we could take the � sign for x > 0 and the + sign for x < 0,

and �nd a solution which terminates at singularities on both sides if we choose d > 0.

The matching conditions then require

V = �12�
p
B (2:41)

and

b = �
4

9�
(2:42)

So we see that here V must be �ne-tuned to the �-dependent value given in (2.41).

This is similar to the situation in [5], where one �ne-tune is required to set the four-

dimensional cosmological constant to zero. Like in our solutions in x2.1, there is one

undetermined parameter in the Lagrangian. But here it is a complicated combination of

� and V (namely, Vp
�
), and we do not have an immediate interpretation of variations of

this parameter as arising from nontrivial quantum corrections from a sector of the theory.
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The fact, apparent from equations (2.40) and (2.42), that b = a=2 in this solution

makes its embedding in string theory natural, as we will explain in the next section.

� 6= 0, a = 0

In this case, the bulk equations of motion become (in terms of h � �0 and g � A0)

h0 + 4hg = 0

6g2 � 2

3
h2 +

1

2
� = 0

3g0 +
4

3
h2 = 0

(2:43)

We can solve the second equation for g in terms of h, and then integrate the �rst equation

to obtain h(x5). For g 6= 0 the third equation is then automatically satis�ed. We will not

need detailed properties of the solution, so we will not include it here. The solutions are

more complicated than those of x2.3. We are currently exploring under what conditions

one can solve the matching equations to obtain a wall with singularities cutting o� the

x5 direction on both sides [10]. If such walls exist, they will also exhibit the self-tuning

phenomenon of x2.3, since the dilaton zero mode can absorb shifts in V and doesn't appear

elsewhere in the action.

3. Toward a String Theory Realization

3.1. � = 0 Cases

Taking � = 0 is natural in string theory, since the tree-level vacuum energy in generic

critical closed string compacti�cations (supersymmetric or not) vanishes. One would ex-

pect bulk quantum corrections to correct � in a power series in gs = e�. However, the

analysis of x2.3 may still be of interest if the bulk corrections to � are small enough. This

can happen for instance if the supersymmetry breaking is localized in a small neighbor-

hood of the wall and the x5 interval is much larger, or more generally if the supersymmetry

breaking scale in bulk is small enough.

General f(�)

The examples we have found in x2 which \self-tune" the 4d cosmological constant to

zero have � = 0 with a broad range of choices for f(�). We interpret this as meaning

that quantum corrections to the brane tension, which would change the form of f , do not

destabilize the 
at brane solution. The generality of the dilaton coupling f(�) suggests
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that our results should apply to a wide variety of string theory backgrounds involving

domain walls. We now turn to a discussion of some of the features of particular cases.

D-branes

In string theory, one would naively expect codimension one D-branes (perhaps wrap-

ping a piece of some compact manifold) to have f(�) given by a power series of the form

f(�) = e
5

3
�

1X
n=0

cne
n� (3:1)

The c0 term represents the tree-level D-brane tension (which goes like 1

gs
in string frame).

The higher order terms in (3.1) represent quantum corrections from the Yang-Mills theory

on the brane, which has coupling g2YM = e�.

If one looks for solutions of the equations which arise with the choice (2.3) for f(�)

with positive V and b = 5=3 (the tree level D-brane theory), then there are no solutions

with �nite 4d Planck scale. The constraints of x2.3 cannot be solved to give a single

wall with singularities on both sides cutting o� the length in the x5 direction. However,

including quantum corrections to the D-brane theory to get a more generic f as in (3.1),

there is a constraint on the magnitude of @f
@�
(�(0)) divided by f(�(0)) which can be obeyed.

Therefore, one concludes that for our mechanism to be at work with D-brane domain walls,

the dilaton � must be stabilized away from weak coupling { the loop corrections to (3.1)

must be important.

The Case f(�) = V e
2

3
� and NS Branes

Another simple way to get models which could come out of string theory is to set

b = 2=3 in (2.3), so

f(�) = V e
2

3
� (3:2)

Then (2.1) becomes precisely the Einstein frame action that one would get from a \3-

brane" in string theory with a string frame source term proportional to e�2�. In this case,

� can also naturally be identi�ed with the string theory dilaton. This choice of b is possible

in solutions of the sort summarized in result (I) in x2.1.
However, after identifying � with the string theory dilaton, if we really want to make

this speci�c choice for f(�) we would also like to �nd branes where it is natural to expect

that quantum corrections to the brane tension (e.g. from gauge and matter �elds living

on the brane) would shift V , but not change the overall � dependence of the source term.
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This can only happen if the string coupling gs = e� is not the �eld-theoretic coupling

parameter for the dynamical degrees of freedom on the brane.

Many examples where this happens are known in string theory. For example, the NS

�vebranes of type IIB and heterotic string theory have gauge �elds on their worldvolume

whose Yang-Mills coupling does not depend on gs [15,16,17]. This can roughly be under-

stood from the fact that the dilaton grows to in�nity down the throat of the solution, and

its value in the asymptotic 
at region away from this throat is irrelevant to the coupling of

the modes on the brane. Upon compacti�cation, this leads to gauge couplings depending

on sizes of cycles in the compacti�cation manifold (in units of �0) [16,18]. For instance, in

[18] gauge groups which arise \non-perturbatively" in singular heterotic compacti�cations

(at less supersymmetric generalizations of the small instanton singularity [15]) are dis-

cussed. There, the 4d gauge couplings on a heterotic NS �vebrane wrapped on a two-cycle

go like

g2YM �
�0

R2
(3:3)

Here R is the scale of this 2-cycle in the compacti�cation manifold. In [18], this was

used to interpret string sigma model worldsheet instanton e�ects, which go like e�
R2

�0 ,

in terms of nonperturbative e�ects in the brane gauge group, which go like e
� 8�2

g2
YM . So

this is a concrete example in which nontrivial dilaton-independent quantum corrections

to the e�ective action on the brane arise. One can imagine analogous examples involving

supersymmetry breaking. In such cases, perturbative shifts in the brane tension due to

brane worldvolume gauge dynamics would be a series in �0

R2 and not gs = e�.

In particular, one can generalize such examples to cases where the branes are domain

walls in 5d spacetime (instead of space-�lling in 4d spacetime as in the examples just

discussed), but where again the brane gauge coupling is not the string coupling. Quantum

corrections to the brane tension in the brane gauge theory then naturally contribute shifts

e
2

3
�V ! e

2

3
�(V + �V ) (3:4)

to the (Einstein frame) b = 2=3 source term in (2.1), without changing its dilaton depen-

dence.

Most of our discussion here has focused on the case where � is identi�ed with the

string theory dilaton. However, in general it is possible that some other string theory

modulus could play the role of � in our solutions, perhaps for more general values of b.
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Resemblance to Orientifolds

In our analysis of the equations, we �nd solutions describing a 4d gravity theory with

zero cosmological constant if we consider singular solutions and cut o� the �fth dimension

at these singularities. The simplest versions of compacti�cations involving branes in string

theory also include defects in the compacti�cation which absorb the charge of the branes

and cancel their contribution to the cosmological constant in four dimensions, at least at

tree level. Examples of these defects include orientifolds (in the context of D-brane worlds),

S-duals of orientifolds (in the context of NS brane worlds), and Horava-Witten \ends of

the world" (in the context of the strongly coupled heterotic string).

Our most interesting solutions involve two di�erent behaviors on the two sides of the

domain wall. On one side the dilaton goes to strong coupling while on the other side it

goes to weak coupling at the singularity. This e�ect has also been seen in brane-orientifold

systems [19].

It would be very interesting to understand whether the singularities we �nd can be

identi�ed with orientifold-like defects, as these similarities might suggest. Then their

role (if any) in absorbing quantum corrections to the 4d cosmological constant could be

related to the e�ective negative tension of these defects. However, various aspects of our

dilaton gravity solutions are not familiar from brane-orientifold systems. In particular, the

existence of solutions with curved 4d geometry on the same footing as our 
at solutions

does not occur in typical perturbative string compacti�cations. In any case, note that (as

explained in x3.1) our mechanism does not occur in the case of weakly coupled D-branes

and orientifolds.

3.2. � 6= 0 Cases

Some of the � 6= 0 cases discussed in x2.4 could also arise in string theory. As discussed
in [20,21] one can �nd closed string backgrounds with nonzero tree level cosmological

constant � < 0 by considering subcritical strings. In this case, the cosmological term

would have dilaton dependence consistent with a = 4=3 in bulk. Using equations (2.40)

and (2.42), this implies b = 2=3, which is the expected scaling for a tree-level brane tension

in the thin-wall approximation as well.

One would naively expect to obtain vacua with such negative bulk cosmological con-

stants out of tachyon condensation in closed string theory [20,21]. It is then natural to

consider these domain walls (in the a = 4=3; b = 2=3 case) as the thin wall approximation

17



to \fat" domain walls which could be formed by tachyon �eld con�gurations which inter-

polate between di�erent minima of a closed string tachyon potential. In the context of the

Randall-Sundrum scenario, such \fat" walls were studied for example in [11,22,23].

It would be interesting to �nd cases where the � 6= 0, a = 0 solutions arise from a

more microscopic theory. However, it is clear that the dilaton dependence of (2.1) is then

not consistent with interpreting � as the string theory dilaton. Perhaps one could �nd a

situation where � can be identi�ed with some other string theoretic modulus, and � can

be interpreted as the bulk cosmological constant after other moduli are �xed.

4. Discussion

The concrete results of x2 motivate many interesting questions, which we have only

begun to explore. Answering these questions will be important for understanding the

four-dimensional physics of our solutions.

The most serious question has to do with the nature of the singularities. There are

many singularities in string theory which have sensible physical resolutions, either due to

the �nite string tension or due to quantum e�ects. Most that have been studied (like


ops [24] and conifolds [25]) involve systems with some supersymmetry, though some (like

orbifolds [26]) can be understood even without supersymmetry. We do not yet know the

proper interpretation of our singularities, though as discussed in x3 there are intriguing

similarities to orientifold physics in our system. After �nding the solutions, we cut o� the

volume integral determining the four-dimensional Planck scale at the singularities. It is

important to determine whether this is a legitimate operation.

It is desirable (and probably necessary in order to address the question in the preceding

paragraph) to embed our solutions microscopically into M theory. As discussed in x3,
some of our solutions appear very natural from the point of view of string theory, where

the scalar � can be identi�ed with the dilaton. It would be interesting to consider the

analogous couplings of string-theoretic moduli scalars other than the dilaton. Perhaps

there are other geometrical moduli which couple with di�erent values of a and b in (2.3)

than the dilaton does.

It is also important to understand the e�ects of quantum corrections to quantities

other than f(�) in our Lagrangian. In particular, corrections to � and corrections involving

di�erent powers of e� in the bulk (coming from loops of bulk gravity modes) will change

the nature of the equations. It will be interesting to understand the details of curved 4d
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domain wall solutions to the corrected equations [27,11,10]. More speci�cally, it will be of

interest to determine the curvature scale of the 4d slice, in terms of the various choices of

phenomenologically natural values for the Planck scale. Since the observed value of the

cosmological constant is nonzero according to studies of the mass density, cosmic microwave

background spectral distribution, and supernova events [28], such corrected solutions might

be of physical interest.

Perhaps the most intriguing physical question is what happens from the point of view

of four-dimensional e�ective �eld theory (if such a description in fact exists). Understand-

ing the singularity in the 5d background is probably required to answer this question. One

possibility (suggested by the presence of the singularity and by the self-tuning of the 4d

cosmological constant discovered here) is that four-dimensional e�ective �eld theory breaks

down in this background, at least as far as contributions to the 4d cosmological constant

are concerned. In [5] and analogous examples, there is a continuum of bulk modes which

could plausibly lead to a breakdown of 4d e�ective �eld theory in certain computations. In

our theories, cutting o� the 5d theory at the singularities leaves �nite proper distance in

the x5 direction. This makes it unclear how such a continuum could arise (in the absence of

novel physics at the singularities, which could include \throats" of the sort that commonly

arise in brane solutions). So in this system, any breakdown of 4d e�ective �eld theory is

more mysterious.
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