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Abstract

We derive simpli�ed formulae that relate the `out-of-plane' beam-beam de
ec-

tions of colliding e+ and e� beams, to the o�-diagonal entry of the ��matrix

expressing the convoluted beam sizes. These formulae can be used to �t mea-

sured de
ection curves and extract information about the relative tilt angle of

two colliding bunches in the transverse plane.
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1 Introduction

Measurement of the beam-beam de
ections at the interaction point (IP) of e+e� colliders

has long been recognized as a useful tool for beam diagnostics [1, 2, 3]. Usually the de
ection

is measured `in-plane', i.e. in the same plane (horizontal or vertical) as the one in which the

two colliding bunches move when one beam is scanned across the other. These measurements

are useful to determine the transverse convoluted beam sizes. In contrast, information about

the relative rotation of the two bunches in the transverse plane is contained in the `out-of-

plane' de
ections. In this paper, we report practical �tting formulae that can be used to

extract such information. They are derived from the Bassetti-Erskine equations (Sec. II) in

the limit of small tilt angles, in the presence of small bunch centroid o�sets, and for 
at

beams. The formalism of in-plane de
ections is recalled in Sec. III, and that of out-of-plane

de
ections presented in Sec. IV. As an illustration, in Sec. V we apply these formulas to the

analysis of beam-beam de
ection measurements carried out in PEP-II at SLAC.

2 The Bassetti-Erskine Formula

Consider 2 two-dimensional gaussian beams (Beam 1 and Beam 2) containing respectively

N1 and N2 particles. Each beam is described by the following sigma matrix (i=1,2):

�i =

"
�2xi cos

2 �i + �2yi sin
2 �i (�2xi � �2yi) cos�i sin�i

(�2xi � �2yi) cos�i sin�i �2yi cos
2 �i + �2xi sin

2 �i

#
;

where �1 and �2 are the tilt angles, �xi and �yi the rms widths of the two beams.

As the two beams collide, one is interested in the de
ection angles of the two beam

centroids. The expression for the de
ection angles is reported in [4] as a generalization of

the Bassetti-Erskine formula [5] (the original Bassetti-Erskine formula in [5] applies to the

de
ection of a single particle against a colliding upright gaussian beam). In particular, the

de
ections �x and �y experienced by Beam 2 are given by

�y + i�x = N1KF0(x; y;�); (1)

where K = �2re=
 (with re being the classical radius of the beam particle and 
 the

relativistic factor), and F0(x; y;�) is a complex function that can be expressed in terms of

the so-called error function of complex argument w(z) = exp(�z2)erfc(�iz):

F0(x; y;�) =

p
�q

2(�11 � �22 + 2i�12)

(
w(�1)�w(�2) exp

�
�1
2

�
��1
11
x2 + 2��1

12
xy + ��1

22
y2
��)

;

with

�1 =
x+ iyq

2(�11 � �22 + 2i�12)
;

and
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�2 =
(�22 � i�12)x + i(�11 + i�12)yq

�11�22 � �2
12

q
2(�11 � �22 + 2i�12)

:

In the expressions above � is the convolution matrix given by the sum of the sigma matrices

of the two beams � = �1 + �2, while (x; y) are the components of the vector giving the

position of the centroid of Beam 2 relative to that of Beam 1.

3 In-Plane De
ections

When doing a beam-beam scan along x (ideally with no vertical o�set, i.e. y = 0) the in-

plane de
ection angle is by de�nition �x. Similarly, when scanning along y (ideally with no

horizontal o�set, i.e. x = 0) the in-plane de
ection angle is by de�nition �y. If the transverse

distributions of the two beams are exactly upright (vanishing tilt angles) and the beam

centroids have no undesired o�sets, one can rewrite the Bassetti-Erskine formula in a more

compact form. Speci�cally, after introducing the scaled quantities x = x=
q
2(�11 � �22) and

y = y=
q
2(�11 � �22) for the horizontal in-plane de
ections one has (�11 6= �22) [2]:

�x = N1K

p
�q

2(�11 � �22)
e�x2

"
er�(x)� er�

 
x�22p
�11�22

!#
; (2)

where er�(t) is related to the imaginary part of the error function er�(t) = erf(it)=i =

(2=
p
�)
R t
0
d� exp � 2. In turn, the vertical in-plane de
ection angle reads

�y = �N1K

p
�q

2(�11 � �22)
ey

2

"
erf(y)� erf

 
y�11p
�11�22

!#
: (3)

In the two equations above the diagonal elements of the convoluted �-matrix are simply

given by �11 = �2x1 + �2x2 and �22 = �2y1 + �2y2.

The formulae above have been used in several e+e� colliders [1, 2, 3, 6, 7] to extract

beam-size information from beam-beam de
ections. In-plane de
ections, however, are not

very sensitive to, and therefore not particularly suitable for detecting the presence of, small

tilt angles in the transverse beam distributions, i.e. the presence of a non-vanishing �12 [8].

In fact, by expanding the Bassetti- Erskine formula for the in-plane de
ections as Taylor

series in �12 around �12 = 0, one �nds that the �rst-order terms vanish. Of course Eqs. (2)

and (3) are the zero-order terms of such expansions. Incidentally, it should also be mentioned

that there are no �rst-order contributions from beam o�sets either.

In the limit �11 � �22 (
at beams) the two expressions (2) and (3) become:

�x ' N1K

p
�p

2�11

exp

 
� x2

2�11

!
er�

 
xp
2�11

!
; (4)

and

�y ' �N1K

p
�p

2�11

exp

 
y2

2�11

!"
erf

 
yp
2�11

!
� erf

 
yp
2�22

!#
: (5)
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4 Out-of-Plane De
ections

Out-of-plane de
ections are those that occur in the plane orthogonal to that in which the two

beam centroids lie during a beam-beam scan. In this Section we report the expressions for

the �rst-order dependence of the out-of-plane de
ection angles, on the o�-diagonal �-matrix

element �12, and on the beam centroid o�sets. It turns out that the zero-order term in the

Taylor series of the two de
ection angles vanishes; in other words, there are no out-of-plane

de
ections if the bunches are not tilted and if there is no relative transverse beam o�set in

the plane orthogonal to that in which the beam scan is carried out.

First, let us consider the out-of-plane de
ection angle �x when doing a y-scan. Through

�rst order in the horizontal o�set �x and in �12 we have:

�x(y) =
@�x

@�x
�x +

@�x

@�12

�12: (6)

The general expression for the �rst-order corrections for arbitrary �11 and �22 is quite

lengthy. However, if one assumes that �11 � �22, (
at beams), after introducing the

notation

g(y) = erf

 
yp
2�11

!
� erf

 
yp
2�22

!
; (7)

one �nds the following more manageable expressions:

@�x

@�x
=

N1K

�11

("
1�

s
�22

�11

exp

 
� y2

2�22

!#
+

r
�

2

yp
�11

exp

 
y2

2�11

!
g(y)

)
; (8)

@�x

@�12

=
N1Kq
�3
11

"
yp
�11

+

r
�

2

 
1 +

y2

�11

!
g(y)

#
: (9)

We can introduce further simpli�cations by restricting ourselves to small deviations in y,

i.e. y �p
�11. In this case we have

�x(y) ' N1K

�11

("
1�

r
�

2

yp
�11

erf

 
yp
2�22

!#
�x

�
r
�

2

�12p
�11

erf

 
yp
2�22

!)
: (10)

An equation similar to (10) can also be found in [9]. In the same way, we can derive the

out-of-plane de
ection formula in the vertical plane, and obtain the following result, which

is also valid through �rst order in the vertical beam o�set �y and in �12:

�y(x) ' N1Kp
�11�22

�
�y � x

�12

�11

�
exp

 
� x2

2�11

!
: (11)
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Expressions (10) and (11) are fairly accurate for arbitrary x (provided that the 
at-beam

approximation holds).

Although both out-of-plane de
ections (10) and (11) are dependent on �12, one can

easily see that the dependence is weaker in �x than in �y. In particular, we have �x '
�12=

q
�3
11 and �y ' x�12=(

q
�3
11

p
�22). The peak value for �y is for x ' p�11; therefore

�x=�y '
q
�22=�11 � 1 for 
at beams. As a consequence, for diagnostic purposes it may be

preferable to measure the out-of-plane de
ection angle �y associated with horizontal scans

when �11 � �22.

5 Application to PEP-II

Next we apply the formulae reported in the previous Sections to the analysis of the beam-

beam de
ection measurements carried out in PEP-II [10], where the on-line data analysis

has so far been limited to in-plane de
ections.

The purpose here is to illustrate the application of the formulae we have derived, rather

than to extract accurate estimates of the bunch parameters. In particular, we simpli�ed the

error analysis. We assume that there is no error in the setting of the distance between the

bunch centroids. Also, we evaluate the statistical error on the �tted beam parameters, by

using the standard deviation of the measured points from the �tting curve as an estimate of

the measurement errors.

We consider four sets of data: in-plane and out-of-plane de
ections, for both horizontal

and vertical beam-beam scans. In all cases the de
ection measured is that of the elec-

tron beam, and is therefore proportional to N+, the number of particles contained in the

opposing positron bunch. The �tting has been performed using the statistics package of

Mathematica [11].

5.1 In-plane horizontal de
ections

The �rst dataset contains the measurement of the in-plane de
ections during a horizontal

scan. The normalized de
ection angle �x measured for several values of the relative distance

of the two beam centroids along x, is shown as dots in Fig. 1. The �tting model is based on

the simpli�ed formula (4):

�x = a1 exp

 
�(x� x0)

2

b21

!
er�

�
x� x0

b1

�
+ c1 (12)

As only relative changes in position and angle matter, this expression allows for arbitrary

o�sets in the origin of the horizontal position (x0) and angle (c1); a1 and b1 are related to the

IP beam parameters by b1 =
p
2�11 and a1 = N+K

p
�=
p
2�11. The �t yields the following

results:

a1 = 14:1� 0:1;

b1 = 365:9� 4:3;
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Figure 1: Normalized in-plane de
ection angle �x of the electron beam, vs. the relative

horizontal separation between the two beams. The vertical scale is in units of �rad per 1010

e+/bunch; the horizontal scale is in �m.

c1 = 0:29� 0:06;

x0 = 40:5� 2:6;

from which one extracts �x �
p
�11 = 259�3 �m andN+K = a1b1=

p
� = 2900 �m��rad/1010e+.

Note that in the 
at-beam limit invoked here, the convoluted horizontal beam size �x can

be extracted using only the shape of the de
ection curve (b1 parameter), while the absolute

scale of de
ection angles is left 
oating: �tting a1 provides only a consistency check. If the

horizontal to vertical aspect ratio of the beams is not su�ciently large (as was for instance

the case at SLC), then the horizontal de
ection depends on both �11 and �22. In this case,

the absolute scale of the normalized de
ection angles (and hence that of the beam currents)

must be known, and the �tted parameters are instead expressed in terms of �11 and �22

(plus the arbitary position and angle o�sets) [2].

5.2 Out-of-plane vertical de
ections

The second dataset is presented in Fig. 2, and is relative to the out-of-plane de
ection angle

�y measured during the same horizontal scan as in dataset # 1. The formula describing the

data is Eq. (11), leading to the �tting model

�y =

�
a2 � x

c2

�11

�
exp

 
� x2

2�11

!
+ b2; (13)

with a2 = N+K�y=
p
�11�22 and c2 = N+K�12=

p
�11�22. Because an accurate estimate

of �11 is already available from the analysis of dataset # 1, its value in (13) is a constant

rather than a �tted variable. The �t yields:

a2 = 4:9� 0:6;

b2 = �2:22� 0:35;

c2 = �1761� 137:
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Figure 2: Normalized out-of-plane de
ection angle �y of the electron beam, vs. the relative

horizontal separation between the two beams. The vertical scale is in units of �rad per 1010

e+/bunch; the horizontal scale is in �m.

Note that datasets # 1 and 2 are insu�cient to determine �12 and �22 separately; only

their ratio is measurable at this stage. To obtain an estimate of �22 one has to perform a

beam-beam scan in the vertical direction. This is done with the third dataset.

5.3 In-plane vertical de
ections

Dataset # 3 is displayed in Fig. 3. The �tting model in this case is [see Eq. (5)]

�y = a3 exp

 
(y � y0)

2

2�11

!"
erf

 
y � y0p
2�11

!
� erf

�
y � y0

c3

�#
+ b3: (14)

The value of �11 is again �xed to the value extracted from dataset # 1; a3 = �N+K
p
�=
p
2�11,

and c3 =
p
2�22. The �t yields:

a3 = �15:45� 0:12;

b3 = �0:22� 0:09;

c3 = 10:71� 0:23;

y0 = �0:62� 0:12:

The comments made in Sec. 5.1 appply here as well: the 
at-beam approximation allows to


oat the scale normalization a3, and to extract �22 from the shape of the de
ection curve

alone. In this limit, �y �
p
�22 = 7:6� 1:6 �m [12]. Combining this value with the results

of the analysis of datasets # 1 and # 2, one can �nally determine the o�-diagonal entry

�12 = �1188� 190 �m2.

5.4 Out-of-plane horizontal de
ections

The fourth and �nal dataset (Fig. 4) contains the out-of-plane de
ection measured during a

vertical scan. The �tting model is in this case based on Eq. (10) (neglecting the y-dependence
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Figure 3: Normalized in-plane de
ection angle �y of the electron beam (in �rad per

1010e+/bunch), vs. the relative vertical separation of the two beams (in �m).
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Figure 4: Normalized out-of-plane de
ection angle �x of the electron beam (in �rad per

1010e+/bunch), vs. the relative vertical separation of the two beams (in �m).

of the term proportional to the �x o�set):

�x = b4 � a4erf

 
yp
2�22

!
: (15)

Here we used for �22 the result from the analysis of dataset # 3, and a4 = N+K
p
��12=

q
2�3

11.

One �nds:

a4 = �0:127� 0:016;

b4 = 0� 0:01:

One can use this result (together with the value of �11 from dataset # 1) to obtain an

independent estimate of the o�-diagonal term �12 = �1380� 207 �m2, consistent with the

previous result within the estimated error.
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6 Conclusions

Simpli�ed versions of the Bassetti-Erskine equation can be used as �tting formulae to de-

termine the full convoluted ��matrix from measured beam-beam de
ections. In particular

we have shown that out-of-plane de
ection data can be used to determine the o�-diagonal

entries �12 = �21 of the � matrix. If the horizontal/vertical aspect ratios of each of the

two beams are known (from separate assumptions or measurements), �12 can be used to

estimate the relative tilt angle between the two colliding bunches. Detecting and correcting

such a tilt angle would help improve the luminosity.
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