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Interference between CKM-favored b → cud and doubly-CKM-suppressed b → ucd am-

plitudes in final states used for B flavor tagging gives deviations from the standard time

evolution assumed in CP -violation measurements at B factories producing coherent B0B0

pairs. We evaluate these deviations for the standard time-dependent CP -violation measure-

ments, the uncertainties they introduce in the measured quantities, and give suggestions for

minimizing them. The uncertainty in the measured CP asymmetry for CP eigenstates is

≈ 2% or less. The time-dependent analysis of D∗π, proposed for measuring sin(2β + γ),

must incorporate possible tag-side interference, which could produce asymmetries as large

signal asymmetry.

PACS numbers: 13.25.Hw, 12.15.Hh, 11.30.Er

I. INTRODUCTION

Measurements of time-dependent CP asymmetries in B0 decays provide information about the

irreducible phase contained in the Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix [1],

which describes CP violation in the Standard Model. If a specific B decay final state has con-

tributions from more than one amplitude and these amplitudes have different CP -violating weak

phases, interference can produce a non-zero CP asymmetry. An essential ingredient in CP viola-

tion measurements in B0 decays is flavor tagging. In this paper, we point out a subtlety of flavor

tagging that has been overlooked or ignored in most recent CP violation analyses, describe the

impact of this omission, and propose how to address it in some future measurements.

In the current asymmetric B-factories [2], PEP-II and KEKB, B0B0 meson pairs are produced
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in e+e− interactions at the Υ (4S) resonance, where the pair evolves coherently in a P -wave state

until one of the B mesons decays. Typically, one B decay is fully reconstructed and the flavor

(whether it’s a B0 or B0) of this B, at the time of the other B’s decay, is inferred from the decay

products of the other B (the tag B). At the time of the tag B meson decay, the B mesons are

known to be in opposite flavor states. In terms of the time difference between the two B decays,

∆t ≡ trec − ttag, the time-dependent CP asymmetry is defined as

ACP (∆t) ≡ N
(
tag B0,∆t

) −N
(
tag B0,∆t

)
N (tag B0,∆t) +N

(
tag B0,∆t

) , (1)

where N is the number of events at ∆t with a B0 or B0 as the tag B.

Charged leptons and kaons are often used to infer the flavor of the tag B meson. The charge of

a lepton from a semi-leptonic B decay has the same sign as the charge of the b quark that produced

it. For example, a high-momentum e+ (e−) would indicate that the tag B was a B0 (B0) at the

time of its decay. Similarly, a K+(K−) more often than not comes from a B0 (B0). This works

because the most likely b decay is b → c and the most likely c decay is c → s; thus the s quark

usually has the same charge as the b quark. The lepton or kaon charge does not always correctly

indicate the tag-B flavor. Mistags can come from incorrect particle identification or other B decay

chains that produce wrong-sign leptons or kaons. The mistag fraction must be measured in order

to determine the true CP asymmetry from the measured one.

It is usually assumed that the measured CP asymmetry is entirely due to the interfering am-

plitudes contributing to the fully reconstructed B decay mode, and that the individual tagging

states, such as B0 → D+π−, are dominated by a single B decay amplitude. In other words, if

only one B decay amplitude contributes to the tagging final state, it is safe to assume that all

interference effects, such as CP violation, are due to the evolution of the fully reconstructed B.

This assumption, which is valid for lepton tags, ignores the possibility of suppressed contributions

to the tag-side final state with different weak phases, such as happens for non-leptonic decays.

These suppressed contributions may be important for kaon tags. For example, the D+π− final

state with D+ → K−π+π+ , which is usually associated with a B0 decay, can also be reached from

a B0 through a b → ucd decay. Its amplitude is suppressed relative to the dominant B0 decay

amplitude (b → cud) by a factor of roughly |(V ∗
ubVcd)/(VcbV

∗
ud)| ≈ 0.02, and has a relative weak

phase difference of γ. Both Feynman diagrams are shown in Fig. 1. The tag-side b → cud and



3

b → ucd amplitudes interfere, and, through the coherent evolution of the B0B0 pair, alter the time

evolution of ACP (∆t). The subject of this paper is to investigate the consequences of this small

tag-side interference in some of the standard time-dependent CP -asymmetry measurements at B

factories that use coherent B decays.

b c

W
-

d

u

d d

CKM-favored amplitude

B0 D+

π-

Vcb

Vud
*

b u

W
+

c

d

d d

doubly-CKM suppressed amplitude

B0 π-

D+

Vub
*

Vcd

FIG. 1: The CKM-favored amplitude (left) and doubly-CKM-suppressed amplitude (right) for the final

state D+π−. With respect to the dominant contribution, the latter is suppressed by the approximate ratio

|(V ∗
ubVcd)/(VcbV

∗
ud)| ≈ 0.02 and has a relative weak phase difference of γ.

In Sections II – VI, we review the general formalism for describing the coherent evolution of the

B0B0 system, define our notation for describing the tag-side amplitude, and state the assumptions

we employ in our analysis. In Section VIIA, we evaluate how tag-side interference affects the

mistag fraction measured from the amplitude of the time-dependent mixing (not CP ) asymmetry.

We find that the tag-side interference effects are not simply absorbed into the mistag fractions and

that, to first order, the mistag fractions are unchanged by tag-side interference. In Section VIIB,

we evaluate the uncertainty, due to tag-side interference, in the standard mixing-induced CP

asymmetry measurements – sin 2β from J/ψKs and the CP asymmetry in π+π−. We find that

the uncertainties are at most 5%, in the most conservative estimation, and can be limited to < 2%

in most cases with reasonable assumptions. Finally, in Section VIII, we evaluate how tag-side

interference affects some of the time-dependent techniques that have been proposed for measuring

γ (e.g. the time-dependent analysis of D∗+π−). Here, we find that tag-side interference effects

can be as large as the signal asymmetry. We propose a technique for performing the analysis in a

general way, which does not require assumptions about the size of tag-side interference effects and

maximizes the statistical sensitivity to (2β + γ). We summarize our conclusions in Section IX.
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II. GENERAL COHERENT FORMALISM

In this section, we define our formalism for describing the time evolution of a pair of neutral B

mesons that are coherently produced in an Υ (4S) decay and then subsequently decay to arbitrary

final states ft and fr at times tt and tr, respectively, measured in the parent B meson’s rest frame.

The “t” (“r”) subscript refers to the tag (reconstructed) B meson or its final state. The amplitude

for this process is proportional to

A = 〈ft|B0
phys(tt)〉〈fr|B0

phys(tr)〉 − 〈ft|B0
phys(tt)〉〈fr|B0

phys(tr)〉 , (2)

where B0
phys(t) (B

0
phys(t)) denotes an initially-pure B0 (B0) state after a time t. The relative minus

sign between the terms reflects the antisymmetry of the P -wave B0B0 state. Integrating over all

directions for either B and the experimentally-unobservable average decay time (tt + tr)/2, we

obtain a corresponding decay rate proportional to (∆t ≡ tr − tt)

F (∆t) = e−Γ|∆t| |a+g+(∆t) + a−g−(∆t)|2 , (3)

where Γ is the average neutral B eigenstate decay rate and we define

g±(∆t) ≡ 1
2

(
e−i∆m∆t/2e−∆Γ∆t/4 ± e+i∆m∆t/2e+∆Γ∆t/4

)
(4)

in terms of the differences between the eigenstate masses (∆m) and decay rates (∆Γ).

The time-independent complex parameters a± in Equation (3) can be written generally as

a+ = At Ar −At Ar , a− = −
√

1− z2
(
q

p
At Ar − p

q
At Ar

)
+ z

(At Ar +At Ar

)
, (5)

where Ak (Ak) is the B0 (B0) decay amplitude to fk. The complex ratio q/p parameterizes

possible CP and T violation (|q/p| 
= 1) in the time evolution of a neutral B state, while z, which

is also complex, parametrizes possible CPT and CP violation (z 
= 0) in the time evolution. Note

that exchanging the r and t subscripts changes the overall sign of a+, g−, and ∆t, leaving Eq.(3)

unchanged, which is required since the distinction between the B that is reconstructed and the B

that is used for flavor tagging is arbitrary at this point. Explicitly, we are using the conventions

q

p
= −

√
M∗

12 − iΓ∗
12/2

M12 − iΓ12/2
, (6)
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where M and Γ are the hermitian matrices of the effective Hamiltonian. The eigenstates of the

effective Hamiltonian are defined as

|BL〉 = p |B0〉+ q |B0〉 (7)

|BH〉 = p |B0〉 − q |B0〉 , (8)

and ∆m = mH −mL, which is positive by definition. If z = 0, as expected in the Standard Model,

the two terms a±g±(∆t) in Eq.(3) describe the cases where the surviving meson undergoes a net

oscillation (−) B0 ↔ B0 or not (+) between tt and tr. Combining Equations (3–5) we obtain

F (∆t) = e−Γ|∆t| [
R cosh(∆Γ∆t/2) + C cos(∆m∆t) + S′ sinh(∆Γ∆t/2) + S sin(∆m∆t)

]
(9)

with coefficients which satisfy the constraint C2 + S2 = R2 − S′2 , and are given by

R ≡ 1
2

(|a+|2 + |a−|2
)
, S′≡ −Re(a∗+a−) ,

C ≡ 1
2

(|a+|2 − |a−|2
)
, S ≡ +Im(a∗+a−) . (10)

In the following, we assume CPT invariance so that z = 0, and moreover we take ∆Γ/Γ � 1.

Thus the term S′ no longer enters and cosh(∆Γ∆t/2) is replaced by unity. Additionally, this gives

|q/p| = 1. The resulting time dependence, when the tagged meson is a B0, is

F (∆t) = e−Γ|∆t| [R+ C cos(∆m∆t) + S sin(∆m∆t)] , (11)

and correspondingly when the tagged meson is a B0

F (∆t) = e−Γ|∆t| [
R+ C cos(∆m∆t) + S sin(∆m∆t)

]
. (12)

III. CHARACTERIZATION OF THE TAGGING AMPLITUDE

The strength of the doubly-CKM-suppressed (DCS) decays can be expressed in terms of the

traditional parameter [3]

λf =
q

p

Af

Af
. (13)

This combination is independent of the choice of phases for the B0 and B0 states. Suppose |f〉 is
a final state that is ostensibly the result of a B0 decay. For example, if |f〉 represents the tag B,
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a K+ would indicate that the tag B decayed as a B0, assuming the dominant b → cud transition

occurred. Then

λf = rfe
−2iβ−iγeiδf , (14)

where r is a real number of order 0.02 and δf is the strong phase difference of the B0 decay relative

to that of the B0 decay, assuming b → cud and b → ucd transitions for the B0 and B0 decays

respectively. If, for this final state, there is only one mechanism contributing to the B0 decay and

to the B0 decay, then for the CP conjugate state |f〉 we have

λf =
1
rf

e−2iβ−iγe−iδf . (15)

We shall make the assumption of a single contributing amplitude except as noted below.

Because the DCS amplitudes are only about 2% of the allowed amplitudes, in what follows we

shall drop all terms that are quadratic or higher in this suppression. In practice we combine many

final states f in a single tagging category, f ∈ T . For the tagging category we then have effective

values of r′ and δ′ defined by

r′eiδ
′
=

∑
f∈T εf |Af |2 rfeiδf∑

f∈T εf |Af |2 , (16)

where εf is the relative tagging efficiency for the state f . Notice that

|r′| ≤
∑

f∈T εf |Af |2|rf |∑
f∈T εf |Af |2 , (17)

so there is a tendency for contributions from different tagging states to cancel, unless all contri-

butions have nearly the same strong phase. Equation 16 holds only if terms of order r2f can be

ignored, as we are assuming.

IV. TIME-DEPENDENT ASYMMETRY COEFFICIENTS

In this section, we evaluate the coefficients R(R), C(C), and S(S) of Eqns. 11(12). There are two

specific cases that we will consider – the “mixing” case, where the reconstructed B meson decays

in an apparent flavor eigenstate (e.g. D∗+π−, normally assumed to originate from B0 decay),

and the “CP” case, where the reconstructed B has decayed into a CP eigenstate. Dropping a
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common factor At Ar (p/q), we can write a+ and a− in terms of the λ parameters for the tag and

reconstructed B mesons as

a+ = λt − λr

a− = 1− λt λr . (18)

Quite generally then,

|a+|2 = |λt|2 − 2 Re λt λ∗
r + |λr|2

|a−|2 = 1− 2 Re λt λr + |λt|2 |λr|2

Im a∗+a− = Imλr (1− |λt|2) − Imλt (1− |λr|2) . (19)

Table I gives the coefficients for the mixing case. The only deviation from the familiar case

with no DCS contributions, to first order in r and r′, is the presence of a small S(S) coefficient.

Figure 2 shows an illustration of the time evolution for when the flavor of the two B mesons at

the time of decay was opposite (unmixed) or the same (mixed). The nominal (r = r′ = 0) case is

contrasted with an example of a non-zero DCS contribution in the reconstructed B amplitude and

with an example of non-zero DCS contributions to both the tag and reconstructed B amplitudes.

The amplitude ratios r and r′ have been enlarged by ×5 with respect to the expected value (0.02)

so that the DCS contributions are more clear.

Table II gives the coefficients for the CP case. All three coefficients receive corrections linear in

r′. Figure 3 is an illustration of the the corrections to the time evolution for B0 and B0 tagged CP

events, also with the DCS amplitude ratio r′ enlarged by ×5 to make the differences more visible.

V. COMPLETELY INCLUSIVE TAGGING CATEGORIES

We can relate the effective r′ and δ′ to the 2×2 matrix Γ that generalizes the decay rate for the

B0B0 system. Let Γ be the class of states DX, where X represents non-charmed hadrons. Then∑
F∈T

q

p
A∗
fAf =

∑
F∈T

|Af |2λf =
∑
F∈T

〈B0|H|f〉〈f |H|B0〉r′e−2iβ−iγ+iδ′ = ΓDX r′e−2iβ−iγ+iδ
′
, (20)

where ΓDX is, up to a trivial normalization, the partial width of B0 into the class of states of the

form DX. On the other hand, we can write∑
F∈T

q

p
A∗
fAf =

∑
F∈T

q

p
〈B0|H|f〉〈f |H|B0〉 = q

p
ΓDX 12 , (21)
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[tag=B0(K+), rec=B0 ] [tag=B0(K+), rec=B0 ] [tag=B0(K−), rec=B0 ] [tag=B0(K−), rec=B0 ]

λt r′e−2iβ−iγ+iδ′ r′e−2iβ−iγ+iδ′ 1
r′ e−2iβ−iγ−iδ′ 1

r′ e−2iβ−iγ−iδ′

λr re−2iβ−iγ+iδ 1
r
e−2iβ−iγ−iδ re−2iβ−iγ+iδ 1

r
e−2iβ−iγ−iδ

|a+|2 0 1
r2

1
r′2 0

|a−|2 1 0 0 1
+r2r′2

Im a∗+a− −r sin(2β + γ − δ) − r′
r2 sin(2β + γ − δ′) r

r′2 sin(2β + γ − δ) − 1
r2r′ sin(2β + γ + δ′)

+r′ sin(2β + γ − δ′) − 1
r
sin(2β + γ + δ) + 1

r′ sin(2β + γ + δ′) + 1
rr′2 sin(2β + γ + δ)

R 1 1 1 1

C −1 1 1 −1

S −2r sin(2β + γ − δ) −2r′ sin(2β + γ − δ′) 2r sin(2β + γ − δ) −2r′ sin(2β + γ + δ′)

+2r′ sin(2β + γ − δ′) −2r sin(2β + γ + δ) +2r′ sin(2β + γ + δ′) +2r sin(2β + γ + δ)

TABLE I: Contributions to the time dependence of tagged decays when the reconstructed decay is an appar-

ent flavor eigenstate, with doubly-CKM-suppressed decays considered only to first order. The dependences

proportional to 1 and to cos∆m∆t are unaffected. A small sin∆m∆t term is induced. Appropriate factors

of r and r′ have been removed to scale R to unity.

where ΓDX 12 is the contribution of states of the form DX to the off-diagonal part of the Γ matrix.

So

r′e−2iβ−iγ+iδ
′
=

q

p
ΓDX 12/ΓDX . (22)

If tagging does not capture every state, we can think of Γ12 and Γ as effective quantities, limited by

the partial sum over states. However, if that sum were complete, then δ′ would vanish. To see this,

imagine using as a basis of states fS not the physical states that are observed but instead a basis of

states that are eigenstates of the S matrix, that is a basis of states that each scatter into themselves.

Because we are summing over all states in a collection connected by strong interactions, there is

such a basis. Then the final state interaction phases associated with AfS
and AfS

would both be

eiδfS . These would cancel in A∗
fS
AfS

. In general, because tagging is incomplete, we cannot assume

that δ′ vanishes.
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[tag=B0(K+), rec=BCP ] [tag=B0(K−), rec=BCP ]

λt r′e−2iβ−iγ+iδ′ 1
r′ e

−2iβ−iγ−iδ′

λr λCP λCP

|a+|2 |λCP |2 − 2 Re r′e−2iβ−iγ+iδ′
λ∗

CP
1

r′2 − 2 1
r′ Re λCP e2iβ+iγ+iδ′

|a−|2 1− 2 Re r′e−2iβ−iγ+iδ′
λCP

|λCP |2
r′2 − 2 1

r′ Re λCP e−2iβ−iγ−iδ′

Im a∗+a− Im λCP + r′(1− |λ2
CP |) sin(2β + γ − δ′) − 1

r′2 Im λCP + 1
r′ (1− |λCP |2) sin(2β + γ + δ′)

R
1+|λ2

CP |
2 − 2r′ Re λCP cos(2β + γ − δ′) 1+|λ2

CP |
2 − 2r′ Re λCP cos(2β + γ + δ′)

C
|λ2

CP |−1
2 + 2r′ Im λCP sin(2β + γ − δ′) 1−|λ2

CP |
2 + 2r′ Im λCP sin(2β + γ + δ′)

S Im λCP + r′(1− |λ2
CP |) sin(2β + γ − δ′) − Im λCP + r′(1− |λ2

CP |) sin(2β + γ + δ′)

TABLE II: Contributions to the time dependence of tagged decays when the reconstructed decay is a CP

eigenstate, with doubly-CKM-suppressed decays considered only to first order. Appropriate factors of r and

r′ have been removed to scale R to unity in the limit in which the doubly-CKM-suppressed decays vanish.

VI. ESTIMATED SIZE OF DOUBLY-CKM SUPPRESSED AMPLITUDE

In the Introduction, we gave an estimate for the size of the DCS amplitude (r), relative to

the favored amplitude, to be approximately 0.02, which is simply the ratio of the CKM elements

involved |(V ∗
ubVcd)/(VcbV

∗
ud)|. Here, we discuss the uncertainty of this estimate as well as what

can be assumed, if anything, about the strong phase difference (δ) between the DCS and favored

amplitudes.

We use measured charm branching fractions as a test of our simple amplitude ratio estimate. The

charm decay D0 → K+π− is doubly-CKM suppressed relative to the favored D0 → K−π+ decay.

The amplitude ratio prediction, based solely on the CKM elements, gives r ≈ |(V ∗
cdVus)/(V

∗
csVud)| ≈

0.048 . The experimental value from the branching fractions [4] is 0.062±0.005, which is within 25%

of the ratio of CKM elements. For the singly-CKM suppressed charm decays D0 → K+K− and
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a)  opposite-flavor tag

b)  same-flavor tag
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FIG. 2: Time-dependent decay distributions for the final state D∗−π+, for a) a B0 tag, and b) a B0 tag.

(2β + γ) is set to the value 1.86. The situation with no doubly-CKM-suppressed contribution on both the

tag-side and reconstruction-side is indicated with the solid line. The dotted line has r = 0.1 and δ = 0, but

no tag-side interference. The dashed line represents the example with r = r′ = 0.1, δ = 0, and δ′ = π. In

these examples, the r and r′ values are ×5 the expected values in order to clearly illustrate the differences

with respect to the case with r = r′ = 0.

D0 → π+π− we would estimate amplitude ratios relative to the allowed amplitude of |Vus/Vud| ≈
|Vcd/Vcs| ≈ 0.23, while the branching ratios give 0.329 ± 0.007 and 0.194 ± 0.005 for K+K− and

π+π−, respectively.

The decay B0 → D+π− is doubly-CKM suppressed, but this branching fraction has not been

measured. We can estimate its branching fraction from the related decay mode B0 → D+
s π

−,

which has been observed recently [5], and has a branching fraction of (3.2± 0.9± 1.0)× 10−5. The

amplitude ratio for B0 → D+π−, relative to B0 → D−π+ is estimated to be

rDπ ≈
√

B(B0 → D+
s π−)

B(B0 → D−π+)

∣∣∣∣VcdVcs

∣∣∣∣ fD
fDs

≈ 0.021 ± 0.005 ,

where we have used fD/fDs = 1.11± 0.01± 0.01 (from [6]) to approximate SU(3) breaking effects.

This is in good agreement with the naive estimate of 0.020, albeit with a large uncertainty.

There are some theoretical arguments for expecting the strong phase difference δ to be small [7],
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but we know of at least one case where a non-trivial strong phase has been observed in B decay.

The strong phase difference between the longitudinal and parallel polarization amplitudes of the

transversity basis in B → J/ψK∗(892) has been measured [8] to be 2.50 ± 0.22, which is about

3σ from π, in contradiction with the factorization prediction of 0 or π. The size of the effective

amplitude ratio (r′), given by Equation 16, depends on the δ values of the final states included in

the tagging category. As Eq. 17 shows, varying δ values between the states will tend to reduce r′.

Given the ≈ 50% uncertainty on the DCS amplitude ratio r for individual final states and

a)  B0 tag

b)  B
– 0 tag

c)  asymmetry

∆t (ps)

0.0

0.5

1.0

0.0

0.5

1.0

-0.5

0.0

0.5

-10 -5 0 5 10

FIG. 3: Time-dependent decay distributions for the CP eigenstate J/ψK0
S, with a) a B0 tag, and b) a B0

tag. We set (2β + γ) to 1.86. The situation with no tag-side interference is indicated with the solid line.

The dotted line represents the case with r′ = 0.1 and δ′ = 0, and the dashed line has r′ = 0.1, and δ′ = π. It

should be noted that, adding a non-zero DCS contribution, the slope and amplitude of the time-dependent

asymmetry work in opposite directions. In these examples, the r′ value is ×5 the expected value in order

to clearly illustrate the differences with respect to the case with r′ = 0.
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the general lack of knowledge concerning strong phase differences, we conclude that the most

conservative assumptions regarding the effective parameters r′ and δ′ would be to allow r′ values

from 0 (full cancellation in the sum) up to 0.04 (no cancellation with some enhancement over our

0.02 estimate) and to allow any value of δ′.

VII. UNCERTAINTIES IN FITTED ASYMMETRIES

In this section, we will discuss the uncertainties due to tag-side interference on some common

time-dependent asymmetries. In addition to the assumptions that we have already made (i.e.

z = 0, ∆Γ/Γ = 0, and |q/p| = 1), one usually assumes that the tag-side amplitude is dominated

by a single contribution, or r′ = 0. The time dependent coefficients in Eqns. 11 and 12 simplify

considerably with this assumption. For the case where the reconstructed B is a CP eigenstate, we

have

RCP = RCP , CCP = −CCP , SCP = −SCP , (23)

which can be seen from Table II with r′ set to zero. For the case where the reconstructed B is in

an apparent flavor eigenstate, the coefficients in Table I with r′ = 0 give

Rmix = Runmix , Cmix = −Cunmix , Smix = Sunmix = 0 , (24)

where the “mix” (“unmix”) subscript refers to the case where the tag and reconstructed B mesons

were the same (opposite) flavor at the time of decay. In the rest of this Section, we will evaluate

the bias on the fitted coefficients when fitting the data with the assumptions in Eqns. 23 or 24 of

nonzero tag-side interference.

In the relations above, the R coefficients are independent of the final state configuration, so

they are usually absorbed into the C and S coefficients by fitting for C ≡ (C/R) and S ≡ (S/R).

A fairly reliable estimate of the fitted C coefficient is simply the asymmetry at ∆t = 0. This would

be

Cfit ≈ C +R− C −R

C +R+ C +R
(25)

for a CP asymmetry, or

Cfit ≈ Cunmix +Runmix − Cmix −Rmix

Cunmix +Runmix + Cmix +Rmix
(26)
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for a mixing asymmetry. A similar, but slightly less reliable, estimate for the fitted S coefficient

in a CP asymmetry is simply the flavor-averaged S coefficient, or

Sfit ≈ 1
2

(
S

R
− S

R

)
. (27)

Precise estimates can be derived using a simple maximum likelihood technique, where the

likelihood to be maximized with respect to Cfit and Sfit is

L = N

∫ ∞

−∞
d∆t e−Γ|∆t| [F (∆t) lnFfit(∆t) + F (∆t) lnF fit(∆t)

]
, (28)

with Ffit and F fit evaluated using the assumptions in Eq. 23. We confirmed that Eqns. 25 and 27

give reasonable estimates of Cfit and Sfit with unbinned maximum likelihood fits of simulated data

samples.

A. Mistag calibration with flavor oscillation amplitude

As was mentioned above, the sign of the tagging kaon charge does not always give the correct

flavor tag. For example, CKM-suppressedD decays, such as D+ → K+K0, can produce wrong-sign

kaons. Pions, incorrectly identified as kaons, can also produce wrong-sign kaons. The amplitude

of any measured asymmetry using kaon tags will be reduced by a factor of (1 − 2ω), sometimes

called the dilution factor, where ω is the fraction of tagging kaons that have the wrong sign (mistag

fraction). The mistag fraction ω is usually measured from the amplitude of time-dependent flavor

oscillations in a sample of reconstructed B0 decays to flavor-specific final states [9]. The measured

value of C will be a direct measurement of (1− 2ω), which can then be used to translate measured

CP asymmetry coefficients.

To first order in r and r′, the R and C coefficients are the expected ones, as can be seen in

Table I. The only effect is in the S coefficient, which is usually assumed to be zero in the analysis of

mixing data. This means that the measured mistag fractions will be unaffected by DCS amplitude

contributions, either on the tag side or the reconstructed side, since our estimator for Cfit only

depends on the R and C coefficients. Contrary to what one may guess, the corrections due to DCS

amplitude contributions are not simply absorbed into the mistag fractions.

Using Monte Carlo pseudo-experiments, we also find that ∆md is unaffected to the level of 0.001

ps−1 if allowed to float in the fit.
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B. Fully reconstructed CP eigenstates

The size of CP asymmetries in B decays to CP eigenstates are in general of order one in the

Standard Model. For example, CP asymmetry in B → J/ψK0
S (and related charmonium modes)

has been measured to be Sfit = 0.735± 0.055 [10, 11]. Any deviations due to tag-side interference

(≈ 0.02) will be comparatively small (see Fig. 3), and can be treated as perturbations on the usual

measurements.

In what follows, the nominal values for the fitted CP asymmetry coefficients without any tag-

side interference from doubly-CKM suppressed decays are defined as

C0 =
|λCP |2 − 1
|λCP |2 + 1

(29)

S0 =
2ImλCP

|λCP |2 + 1
. (30)

The expected fitted coefficients, when the fit is performed with the assumptions in Eq. 23, can be

found by inserting the R, C, and S values from Table II into Eqns. 25 and 27. Working to first

order in r′, we find

Cfit = C0 [1 + 2r′ cos δ′ {G cos(2β + γ)− S0 sin(2β + γ)}]
− 2r′ sin δ′ {S0 cos(2β + γ) + G sin(2β + γ)} (31)

Sfit = S0 [1 + 2r′ cos δ′G cos(2β + γ)
]
+ 2r′ sin δ′C0 cos(2β + γ) , (32)

where G ≡ 2ReλCP /(|λCP |2 + 1). Note that, with respect to the nominal values, there are both

multiplicative and additive corrections which proportional to cos δ′ and sin δ′ respectively. In the

limit of a vanishing effective tag-side strong phase difference (δ′ → 0), only the multiplicative

corrections remain.

For B0 → J/ψK0
S , the dominant tree and penguin amplitude contributions share the same

weak phase. The highly suppressed u-quark penguin, which has a different relative weak phase, is

typically ignored, giving the Standard Model prediction of λJ/ψK0
S
= −e−i2β. Inserting this into

Eqns. 31 and 32 gives

Cfit[J/ψK0
S ] = −2r′ sin γ sin δ′ (33)

Sfit[J/ψK0
S ] = S0

[
1− 2r′ cos δ′ {cos 2β cos(2β + γ) +K sin 2β sin(2β + γ)}] , (34)
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with C0 = 0 and S0 = sin 2β. The last term in Eq. 34 proportional to K is a correction to the

simple estimate given by Eq.(32). The correction K was derived from the more precise likelihood

analysis given by Eq.(28). The value of K is between 0.10 and 0.35, depending on the value of

sin 2β. If we assume sin 2β = 0.74 and allow γ to be in the range [45◦,90◦], then K = 0.28 and

the magnitude of the deviation of Sfit away from the nominal value S0 is < 0.7 r. The size of the

deviation of Cfit[J/ψK0
S ] could be as large as 2 r′. These corrections to Sfit = S0 and Cfit = 0 could

be as large or larger than Standard Model corrections [12].

The uncertainty estimates in the previous paragraph apply to a measurement that only uses

kaon tags. In practice, all useful sources of flavor information from the tag side B are employed

in order to maximize the sensitivity of the measurement. The statistical error on the measured

asymmetry scales as 1/
√∑

iQi, where each flavor tagging category contributes Qi = εi(1− 2ωi)2

and εi is efficiency for category i. Lepton flavor tags do not have the problem of a suppressed

amplitude contribution with a different weak phase, so we assume that r′ = 0 for lepton tags. If

a measurement uses both lepton and non-lepton tags, the magnitude of the tag-side interference

uncertainty will be scaled down by a factor of Qnon−lep/(Qlep+Qnon−lep). For example, the BaBar

flavor tagging algorithm[10] has roughly Qlep ≈ 0.1 and Qnon−lep ≈ 0.2. This gives a reduction of

the tag-side interference uncertainty of about a factor of 3/2.

The CP asymmetry for B → π+π− is more complex. This decay has both tree and penguin

amplitude contributions which are comparable in magnitude, have different weak phases, and have

an experimentally unknown relative strong phase difference. Equations 31 and 32 do not become

more transparent after inserting the value for λππ given below

λππ = e−2i(β+γ)
(

1 + |P/T |eiδeiγ
1 + |P/T |eiδe−iγ

)
, (35)

where the t-quark penguin has been absorbed into the tree and penguin amplitudes using unitarity

of the CKM matrix, as in [13]. Clearly, both the reconstructed and tag B amplitudes now depend

on γ, so care must be taken in evaluating the tag-side interference uncertainty, which in general

can be as large as 2 r′ for either the multiplicative or additive terms in Eqns. 31 and 32.
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VIII. MEASUREMENT OF SIN(2β + γ) WITH D(∗)π

One technique for measuring or constraining γ is to perform a time-dependent analysis of a

decay mode that is known to have a non-zero DCS contribution, such as D∗+π− [14]. The time-

dependent asymmetry coefficients are those given in Table I. In the usual case, tag-side interference

is ignored (r′ = 0) and the amplitude of the sin∆m∆t term is 2r sin(2β+γ±δ), where r is the ratio

of the DCS to CKM-favored amplitude contributions for the reconstructed, or non-flavor-tag, B

and δ is the strong phase difference between the two amplitudes. Measuring r and sin(2β + γ ± δ)

simultaneously is very challenging, so it is likely that r will have to be constrained from other

measurements [5].

Symbol Reco Tag sin(∆m∆t) coefficient

S1 B0 (D∗−π+) B0 (K+) −2 r sin(2β + γ − δ) + 2 r′ sin(2β + γ − δ′)

S2 B0 (D∗−π+) B0 (K−) 2 r sin(2β + γ − δ) + 2 r′ sin(2β + γ + δ′)

S3 B0 (D∗+π−) B0 (K+) −2 r sin(2β + γ + δ) − 2 r′ sin(2β + γ − δ′)

S4 B0 (D∗+π−) B0 (K−) 2 r sin(2β + γ + δ) − 2 r′ sin(2β + γ + δ′)

TABLE III: The 4 coefficients of the sin∆m∆t term in the time-dependence of D∗π. The 2nd and 3rd

columns give the interpretation of the observed final state (given in parentheses) in terms of the dominant

amplitude.

Since both r and r′ are expected to be of the same order (≈ 0.02), it is clear that tag-side

DCS interference can not be treated as a perturbation on the usual case. This effect is illustrated

in Fig. 2. The time dependent analysis should be performed in a way that is general enough to

accommodate r′ ≈ r and any value of δ′.

Table III gives the sin∆m∆t coefficients, taken from Table I, for the 4 combinations of recon-

structed and flavor tag B final states, where we have neglected r2, rr′, and r′2 contributions. It is
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useful to rewrite the relations for the S coefficients in the following way

S1 = −a+ b+ c (36)

S2 = +a+ b− c (37)

S3 = −a− b− c (38)

S4 = +a− b+ c , (39)

where the 3 variables to be determined in the time-dependent analysis are

a ≡ 2 r sin(2β + γ) cos δ (40)

b ≡ 2 r′ sin(2β + γ) cos δ′ (41)

c ≡ 2 cos(2β + γ)
(
r sin δ − r′ sin δ′

)
. (42)

This parameterization makes no assumptions about the magnitude of r′ or δ′, and is attractive

for several reasons. First, a does not depend at all on the tag-side parameters r′ and δ′. In the

case where δ = 0, which is favored by some [7], a is exactly what one wants to know (sin(2β +

γ)). Secondly, this parameterization cleanly separates the flavor-tag symmetric and antisymmetric

components; the a and c coefficients are diluted by a factor of (1 − 2ω), while the b coefficient is

not, since it has the same sign for tag-side B0 and tag-side B0 events. The minimum number of

independent parameters in which the S coefficients can be written is three. We recommend using

the a, b, and c coefficients as the experimental parameters to be determined in the time-dependent

asymmetry analysis.

The set of kaon tagging final states that yields correct tags is in general quite different from

the set of final states that yields incorrect tags. This means that within a tagging category, the

effective r′ and δ′ values for correct tags are different from those for incorrect tags. In the sum over

correct and incorrect tags, the terms linear in r′ that appear in the observables of the asymmetry

are

(1 − 2ω)r′eiδ
′
= (1− ω)r′ce

iδ′c − ωr′ie
iδ′i . (43)

This equation gives effective r′ and δ′ parameters in terms of the mistag fraction ω, effective

parameters for correct tags (r′c and δ′c) and incorrect tags (r′i and δ′i). This implies that, in order

to have a completely general parameterization in the data analysis, each tagging category (kaon,
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lepton, slow pion, etc.) must have different effective r′ and δ′ parameters, and thus different b and

c parameters, due to the dependence on the mistag fraction ω. One particular case that is relevant

for a kaon tag category is when r′i = 0. In this case r′ = r′c(1− ω)/(1− 2ω), which means that the

effective r′ is enhanced by a factor of (1− ω)/(1 − 2ω).

The experimental knowledge of δ depends on c, so even though the a parameter does not depend

on r′ and δ′, one does not avoid uncertainties due to r′ and δ′ in the analysis. The best way to

reduce this uncertainty is to take advantage of the fact that lepton tags are immune to the problem

(r′ = 0). If the fit is performed with an independent c coefficient for lepton tags, clep combined

with the a parameter measured by all flavor tagging categories will help resolve δ and thus (2β+γ).

If r′ and δ′ are not constrained from other measurements, one must allow for values of r′ and δ′

that are consistent with the measured values of b and c. Since it is possible to have a measured set

of a, b, and c parameters that are consistent with r′ = 0 when r′ 
= 0, one must always consider all

r′ values between 0 and r′max consistent with b and c, where r′max is the largest allowed single-final-

state value. This point is illustrated in Figure 4. The uncertainty on (2β + γ) due to r′ and δ′ is

maximal when a is small. In this case, the sensitivity to (2β + γ) is mostly from the c coefficient

and one must rely on flavor tag categories that are known to have r′ = 0, such as lepton tags.

Using Monte Carlo pseudo-experiments, we perform a simplified study of the impact of DCS

tag-side interference on a system with only two tagging categories: one for unaffected lepton

tags, and the other containing kaon tags. The significance ratio of both categories is set to

Qlep/Qnon−lep = 0.6. All tests use the realistic value of 0.02 for r and r′. Each category shares the

same a parameter. The lepton category constrains clep, and the kaon category fits b and c. All fit

parameters are unbiased, and conform to Gaussian distributions. Compared to the situation with

no DCS contribution, having one tagging category and identical errors for its two parameters a

and c, the statistical error on a is unchanged, and that on clep has increased by a ratio compatible

with ((Qnon−lep +Qlep)/Qlep)1/2 = 1.6. The parameters a and b show a 20% correlation, while all

other correlations are smaller than 1%.

One experimental strategy for reducing the uncertainties due to r′ and δ′ would be to constrain

them by performing a time-dependent analysis of a flavor-specific final state that has no DCS

contribution (r = 0), such as D∗+l−ν. For such a final state, the undiluted b coefficient is the

same as for D∗+π− and c now has r = 0. This information can be used to recover the (2β + γ)
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FIG. 4: An example of three amplitude configurations that all give the same set of S coefficients. For

each set (a, b, or c) the S coefficients are consistent with no tag-side interference (r′ = 0), while this is

only true in the first case. Each configuration is represented by four diagrams showing the addition of the

reconstructed and tag-side amplitude vectors in the complex plane. The observable coefficient (S) is the

imaginary part, represented by the vertical band on the right side of each diagram. The parameters for the

three configurations are: r = 0.02; (2β+ γ) = 2.10, 1.87, 1.73; r′ = 0.00, 0.02, 0.03; δ = 0.30, −0.53, −0.58;

and δ′ = NA, 1.57, 1.57.

sensitivity in the c coefficients in the signal sample that was lost due to the lack of knowledge of r′

and δ′. Another option would be to include in the analysis events for which it was not possible to

determine the flavor of the tag, so-called untagged events. From Equations 36 through 39, one can

see that the untagged S coefficient for a reconstructed D∗−π+ (D∗+π−) is equal to S1 + S2 = b

(S3 + S4 = −b), thus untagged events provide a further constraint on b.

The measured a, b, and c coefficients for the various tagging categories and samples can be

combined by forming a χ2 using the measured parameters and the inverted covariance matrix.

This assumes that the measurement uncertainties on the a, b, and c parameters are Gaussian. A

constraint on (2β + γ) can be derived from the χ2 by scanning the χ2 vs (2β + γ) where for each

(2β + γ) value the χ2 is minimized with respect to the unknown parameters δ, δ′, and r′. If there

are no external constraints on r′ and δ′, such as from the analysis of D∗+l−ν suggested above,

the b and c parameters from non-lepton tags do not provide much information, since r′ must be

varied from its minimum value compatible with b to its maximum possible value (for example, see

Figure 4). The non-lepton-tag b and c parameters still must be included in the fit, but they are
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FIG. 5: Scans of χ2 from measured a, b, and c coefficients as a function of (2β + γ) illustrating two cases:

one with non-zero tag-side DCS interference a) and one without tag-side interference b). The uncertainty

on r′ in both cases is illustrated by the collection of thin curves. The ultimate χ2 constraint on (2β + γ) is

from the lowest of all of the curves for each value of (2β+ γ). If r′ were varied to arbitrarily large values for

a), this constraint would be described by the thick, dashed green curve, which is equivalent to the constraint

from the r′ = 0 example, shown in b). The input values were (2β + γ) = 1.86, r = 0.02, and δ = 0.9. The

tag-side parameters for a) were r′ = 0.02 and δ′ = 0.3. The thick black curves were made with the true

value of r′, while the thin curves were made by scanning r′ in steps of 0.001 from 0 to 0.04. The measured

values were set to the correct values. The statistics of the hypothetical measurement correspond to roughly

450 fb−1 of B factory data from one experiment, including a constraint from D∗lν. There is a discreet

ambiguity that gives exactly the same curves after adding π to the horizontal axis (2β + γ).

not very useful in the χ2 analysis.

Figure 5 shows an example of the χ2 procedure for a hypothetical measurement where (2β+γ) =

1.86, r = 0.02, and δ = 0.9. The measured values were set to the correct values, so the χ2 is zero

at the correct and degenerate solutions. In this example, we chose to include the non-lepton b

and c parameters, fix r′ for the curves in Figure 5 and then vary it by its uncertainty, where each

curve corresponds to a different r′ value. In this case, one must use the lowest curve for each

(2β + γ) value. The statistical errors correspond to a measurement from D∗π in roughly 450 fb−1

of B-factory data from one experiment including a constraint from D∗lν.

Three important conclusions can be drawn from Figure 5. First, comparing the r′ = 0.02 case

to the r′ = 0 case, between (2β + γ) = 0.045 and 2.7, the measurements give nearly identical
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constraints on (2β + γ). This means that the uncertainty on r′ and δ′ does not degrade the

measurement. This is especially clear from the plots for r′ = 0, where all of the red curves, which

have r′ set to nonzero values, give worse χ2 values. The second important conclusion is that if r′ is

in fact non-zero, the constraint on (2β+ γ) is actually better than the case where r′ is zero; the χ2

curves for the r′ = 0.02 case rise sharply at (2β + γ) = 0.045 and 2.7. If r′ is non-zero, the b and

c parameters in the D∗lν sample will be non-zero. Even though r′ was varied from zero to twice

its true value, the non-zero b and c parameters in the D∗lν sample provide useful information for

constraining (2β + γ). If r′ were varied to arbitrarily large values, this information would be lost

and the (2β + γ) constraint would be completely equivalent to the one derived from the sample

where the true r′ value was zero.

Thirdly, the result for D∗π alone, after varying r′ to arbitrarily large values, is equivalent to the

χ2 curve constructed from only a and clep. In other words, when not including the D∗lν sample in

the analysis, the b and other c parameters do not contribute to the sensitivity to (2β + γ).

IX. CONCLUSIONS

Interference effects between CKM-favored b → cud and doubly-CKM-suppressed b → ucd am-

plitudes in final states used for flavor tagging in coherent B0B0 pairs from Υ (4S) decays intro-

duce deviations from the standard time evolution assumed in CP violation measurements at the

asymmetric-energy B factories. To our knowledge, the uncertainty introduced by this interference

has been neglected in most B factory CP violation measurements published to date, with the

exception of [10]. The uncertainties introduced in the sin 2β measurement in (cc)K0 decay modes

and the time dependent analysis of the π+π− final state are at most of the order of 5% and can

be limited to < 2% in most cases with reasonable assumptions.

In proposed measurements of sin(2β+γ) which explicitly use interference between CKM-favored

and doubly-CKM-suppressed amplitude contributions in the final state that is reconstructed, such

as D∗π, tag-side interference effects can be as large as the interference effects one is trying to

measure. In any such analysis, the data must be analyzed in a way that is general enough to

allow for tag-side interference effects. We have proposed a general framework for dealing with

tag-side interference effects in sin(2β + γ) measurements. It is possible to achieve an experimental
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sensitivity to (2β + γ) similar to the originally proposed measurements.
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