Determinations of the Matrix Element $V(ub)$ From Inclusive Semileptonic B Decays With Reduced Model Dependencyingle Ion Trapping for the Enriched Xenon Observatory

Edward J. Hill

Stanford Linear Accelerator Center
Stanford University
Stanford, CA 94309

SLAC-Report-814

Prepared for the Department of Energy
under contract number DE-AC02-76SF00515

This document, and the material and data contained therein, was developed under sponsorship of the United States Government. Neither the United States nor the Department of Energy, nor the Leland Stanford Junior University, nor their employees, nor their respective contractors, subcontractors, or their employees, makes an warranty, express or implied, or assumes any liability of responsibility for accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use will not infringe privately owned rights. Mention of any product, its manufacturer, or suppliers shall not, nor is it intended to, imply approval, disapproval, or fitness of any particular use. A royalty-free, nonexclusive right to use and disseminate same of whatsoever, is expressly reserved to the United States and the University.
UNIVERSITY OF CALIFORNIA, SAN DIEGO

Determinations of $|V_{ub}|$ from Inclusive Semileptonic B Decays
with Reduced Model Dependency

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Physics

by

Edward J. Hill

Committee in charge:
Professor David MacFarlane, Chair
Professor James Branson
Professor Bruce Driver
Professor Douglas Magde
Professor Anesh Manohar

2005
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Signature Page</th>
<th>iii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dedication</td>
<td>iv</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>v</td>
</tr>
<tr>
<td>List of Figures</td>
<td>vii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>viii</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>ix</td>
</tr>
<tr>
<td>Vita</td>
<td>xiii</td>
</tr>
<tr>
<td>Abstract</td>
<td>xxiv</td>
</tr>
</tbody>
</table>

1 Introduction

1.1 Outline of Dissertation ... 1

2 The Theory of Weak Interactions and the Extraction of $|V_{ub}|$

2.1 The Standard Model ... 5
2.2 The CKM Picture of Weak Interactions 8
2.3 Semileptonic Decays ... 13
2.4 Inclusive Decays of the B Meson 16
2.5 Extracting $|V_{ub}|$ from Charmless Inclusive Semileptonic Decays 17
2.6 Extracting $|V_{ub}|$ in the Real World 18
2.7 Extracting $|V_{ub}|$ with Reduced Model Dependency 22

3 The BABAR Experiment

3.1 PEP-II B Factory .. 28
3.2 BABAR Overview .. 32
3.3 Charged Particle Tracking System 35
 3.3.1 Silicon Vertex Tracker 35
 3.3.2 Drift Chamber .. 39
 3.3.3 Tracking Summary ... 41
3.4 Detector of Internally Reflected Cherenkov Light 43
3.5 Electromagnetic Calorimeter 46
3.6 Instrumented Flux Return .. 49
3.7 Trigger System .. 52
 3.7.1 The Level 1 Trigger System 52
 3.7.2 The Level 3 Trigger System 53
3.8 Data Acquisition System .. 55
4 Particle Reconstruction .. 57
 4.1 Charged Particle Reconstruction 57
 4.2 Charged Particle Identification 59
 4.2.1 Electron Identification 60
 4.2.2 Muon Identification 63
 4.2.3 Kaon Identification 64
 4.3 Neutral Particle Reconstruction 65
 4.4 π0 and K0 Reconstruction .. 67
 4.4.1 π0 Reconstruction 67
 4.4.2 K0 Reconstruction 68
 4.5 D Meson Reconstruction ... 69
 4.5.1 D+ Meson Selection 70
 4.5.2 D± Meson Selection 71
 4.5.3 D*± Meson Selection 73
 4.5.4 D*0 Meson Selection 73
 4.6 B Meson Reconstruction ... 74
 4.6.1 Energy conservation and ΔE variable 75
 4.6.2 B mass reconstruction and mBS variable 76

5 Semi-Exclusive Reconstruction ... 80
 5.1 Introduction .. 80
 5.2 Reconstruction Method ... 81
 5.2.1 Selection of B candidates 82
 5.3 Categorization and Summary of B Modes 83
 5.4 Signal Event Selection ... 84
 5.5 Selection of the Best B ... 85

6 Analysis on the Recoil .. 89
 6.1 Introduction .. 89
 6.2 Data and Monte Carlo Samples 91
 6.2.1 Data Sample ... 91
 6.2.2 Monte Carlo Samples 91
 6.2.3 Summary of Samples 97
 6.3 Recoil Reconstruction .. 99
 6.3.1 Recovery of Bremsstrahlung Photons 99
 6.3.2 Reconstruction of the Hadronic System 100
 6.3.3 Event Based Selection 101
 6.3.4 Comparison of Data and Monte Carlo 112

7 Signal Extraction and Results 120
 7.1 Extraction of δφ(e) ... 120
 7.1.1 Extraction of Nc, the Number of b — u/δ Signal Events .. 121
 7.1.2 Extraction of f ... 123
7.1.3 Extraction of \(N_{\text{SL}} \), the Number of Semileptonic Events 125
7.1.4 Efficiency Corrections ... 126
7.1.5 Fit Validation ... 126
7.1.6 Summary of \(\delta \Gamma(c) \) Results 127

7.2 Extraction of \(l_q \) and \(l_s \) from the differential \(b \rightarrow s\gamma \) Photon Spectrum 128
7.3 Determination of \(|V_{ub}| \) and \(B(\bar{B} \rightarrow X_s\ell\nu) \) 129

8 Systematic Uncertainties ... 138
8.1 \(\delta \Gamma(c) \) Systematics ... 138
8.1.1 \(B_{l\gamma\gamma} \) Reconstruction 138
8.1.2 Fit to the \(m_{\text{ES}} \) Distributions 139
8.1.3 Floating the Other Component 140
8.1.4 \(B_{l\gamma\gamma} \) Tagging Efficiency \((e^+/e^-) \) 140
8.1.5 Binning of the \(m_{\ell\nu} \) Distribution 140
8.1.6 Tracking ... 141
8.1.7 Lepton Identification ... 142
8.1.8 Charged Kaon Identification 142
8.1.9 Neutral Reconstruction ... 142
8.1.10 \(K^0_s \) Reconstruction .. 143
8.1.11 Semileptonic \(B \) Branching Fractions 143
8.1.12 \(B \rightarrow D^{*}\ell\nu \) Form Factors 144
8.1.13 Charm Decay Branching Fractions 145
8.1.14 Signal Model and Parameterization 145
8.1.15 Fermi Motion .. 146
8.1.16 Modelling of \(\bar{B} \rightarrow X_s\ell\nu \) Decays 147
8.1.17 Hadronization Uncertainties 148
8.1.18 \(s\bar{s} \) Popping .. 149
8.1.19 Monte Carlo Statistics ... 149
8.1.20 Stability Checks ... 149

8.2 Statistical and Systematic Uncertainties from the \(b \rightarrow s\gamma \) Photon Energy Spectrum ... 155
8.3 Theoretical Uncertainties on the Extraction of \(|V_{ub}| \) .. 155
8.3.1 Scale Uncertainty of \(\alpha \) .. 156
8.3.2 Perturbative Error ... 157
8.3.3 Non-perturbative Error ... 157

9 Conclusions .. 158

A Fits to the \(m_{\text{ES}} \) Distribution 162
B Fit Results on Various Subsamples 175

References ... 179
LIST OF FIGURES

2.1 The three unitary triangles detailed in Eq. 2.13 (a), 2.14 (b), and 2.15 (c). 11
2.2 The unitary triangle. 12
2.3 The rescaled unitary triangle, drawn in the \((\rho , \eta)\) plane. 13
2.4 The experimental constraints for the sides and angles of the unitary triangle in the \((\bar{\rho} , \bar{\eta})\) plane. 14
2.5 The semileptonic decay of a \(B\) meson. The complicated QCD effects carried by the gluons (depicted by the curly lines) are located entirely within the hadronic current. 15
2.6 The contributing terms to the transition operator \(T\) (left), and the corresponding operators in the OPE (right). The open squares represent the four-fermion interaction in the weak Lagrangian \(\mathcal{L}_{\text{eff}}\) and the black dots represent local operators of the \(1/m_b\) expansion. 16
2.7 The lepton energy spectra of semileptonic decays. The charmless \(b \rightarrow u\ell\bar{\nu}\) decays are shown in blue while the \(b \rightarrow c\ell\bar{\nu}\) decays are shown in red. The high momentum region above 2.3 GeV/c is dominated by \(b \rightarrow u\ell\bar{\nu}\) decays. 19
2.8 The hadronic mass spectra from semileptonic decays before the effects of detector resolution. The charmless \(b \rightarrow u\ell\bar{\nu}\) decays are shown in blue while the \(b \rightarrow c\ell\bar{\nu}\) decays are shown in red. Note the logarithmic scale for the vertical axis. The low mass region is dominated by \(b \rightarrow u\ell\bar{\nu}\) decays and the region above \(m_B\) is dominated by \(b \rightarrow u\ell\bar{\nu}\) decays. 20
3.1 The Stanford Linear Accelerator Center. 28
3.2 The polar angle relationship between the CM frame (expressed as the inscribed \(\cos \theta_{CM}\) lines) and the laboratory frame (outer markings on the protractor). The detector active region lies between 350 mrad in the forward direction and 400 mrad in the backward direction. 29
3.3 The total integrated luminosity delivered by PEP-II (blue) and recorded by \(B\bar{B}(\text{Bar})\) (red). The delivered off-peak data is shown in green. 31
3.4 The daily recorded luminosity delivered by PEP-II (blue) and recorded by BABAR (red). ... 32
3.5 A longitudinal cutaway (top) and a horizontal cutaway (bottom) view of the BABAR detector. .. 34
3.6 The Silicon Vertex Tracker (SVT). ... 37
3.7 A longitudinal view of the SVT. The roman numerals indicate the six different types of sensor modules. ... 37
3.8 A cross-sectional view of the SVT. The orientation of the five layers and the individual strip sensors is shown. ... 38
3.9 A longitudinal cutaway view of the DCH. The dimensions shown are in units of mm. Note that the interaction point, labeled IP, is offset 370 mm from the center of the DCH. .. 40
3.10 The ten DCH superlayers (left) and the layout of the drift cells for the first four superlayers (right). The numbers on the right side of the right plot give the stereo angle of the layer in units of mrad and the lines drawn between field wires illustrate the boundaries of the drift cells. ... 41
3.11 Drift cell 100 ns isochrones in the third and fourth layer of an axial superlayer. The isochrones are quite circular near the sense wires but become non-circular near the edges of a cell. ... 42
3.12 The track reconstruction efficiency in the DCH at operating voltages of 1900 V and 1960 V, as a function of transverse momentum (top), and polar angle (bottom). The efficiency is measured using multi-hadron events. ... 43
3.13 Track parameter differences between upper and lower tracks for tracks with $p_T > 3$ GeV/c as determined from cosmic ray muons. ... 44
3.14 The p_T resolution as a function of p_T as determined from cosmic ray muons. The resolution is well described by a linear function. ... 44
3.15 The DCH dE/dx measurement vs. the track momentum. The lines display the Bethe-Bloch predictions for the dE/dx measurement. ... 45
3.16 A longitudinal cutaway view of the DRC. ... 46
3.17 DRC schematic. The radiator bar reflects Cherenkov photons and the PMTs provide the imaging to determine the Cherenkov angle θ_C. ... 47
3.18 The fitted Cherenkov angle versus track momentum from a sample of multi-hadron events. The lines drawn indicate the predicted values for the various particles.

3.19 The expected $\pi-K$ separation in $B^0 \rightarrow \pi^+\pi^-$ events versus the track momentum.

3.20 A longitudinal cutaway view of the top half of the EMC. Cross-sections of the 56 crystal rings are visible. Dimensions are listed in mm.

3.21 A schematic diagram of a single Cal(Tl) crystal. Please note that this figure is not to scale.

3.22 The energy resolution (left) and angular resolution (right) of the EMC. The solid lines are fits described in Eqs. 3.4 and 3.5.

3.23 The electron identification efficiency and the pion misidentification probability as a function of the momentum (a) and the polar angle (b). The efficiency is indicated by the axis labels on the left and the misidentification probability is indicated by the axis labels on the right.

3.24 An overview of the IFR. The Barrel is pictured on the left and the end doors are pictured on the right. The dimensions listed are in mm.

3.25 A cross sectional view of a planar RPC.

3.26 The muon identification efficiency and pion misidentification probability as a function of the momentum (a) and the polar angle (b). The efficiency is indicated by the axis labels on the left and the misidentification probability is indicated by the axis labels on the right.

3.27 A schematic of the BABAR DAQ system.

4.1 Event with looping tracks and ghost tracks. Note that this is not a common event. Loopers affect a relatively small number of events and to have the coincidence with ghost tracks (seen in the lower right quadrant) is very rare.

4.2 Distribution for E_{γ}/p (top left) using a control sample of electrons and E_{γ}/p versus momentum (top right), polar angle (bottom left) and azimuthal angle (bottom right).
4.3 Electron identification and hadron misidentification probability for the likelihood-based electron selector as a function of momentum (left) and polar angle (right). Note the different scales for identification and misidentification on the left and right ordinates, respectively. The measurements are for luminosity-averaged rates for Run-1 and Run-2. 63

4.4 Muon identification and hadron misidentification probability for the tight muon selector as a function of momentum (left) and polar angle (right). The solid markers indicate the efficiency in 2000, the empty markers the efficiency in 2001. Note the different scales for identification and misidentification on the left and right ordinates, respectively. 65

4.5 Charged kaon identification and pion misidentification probability for the tight kaon micro selector as a function of momentum (left) and polar angle (right). The solid markers indicate the efficiency for positive particles, the empty markers the efficiency for negative particles. Note the different scales for identification and misidentification on the left and right ordinates, respectively. 66

4.6 Definition of the variables r_{μ}, φ_{μ} and R_{μ}. .. 67

4.7 π^0 peaks for simulated events and for data. ... 68

4.8 Mass distributions for $K^0_s \rightarrow \pi^+\pi^-$. The distribution is fitted with a sum of a double Gaussian and a first-order polynomial function. 69

4.9 K_S momentum (left) and polar angle (right) distributions in data (solid markers) and Monte Carlo simulation (hatched histogram). 69

4.10 D^0 candidates selected for $D^0 \rightarrow K\pi$, $D^0 \rightarrow K\pi^0$, $D^0 \rightarrow K^0_S\pi\pi$, and $D^0 \rightarrow K^0_S\pi\pi$ modes. ... 71

4.11 Distribution of soft pion momentum in the $T(4S)$ frame (left) and $m(D^0\pi^+) - m(D^0)$ mass distribution for $D^+\pi^0$ candidates in the $B \rightarrow D^{*+}\pi^0$, $D^0 \rightarrow K\pi$ mode. Vertical lines indicate the signal windows used in the selection. 73

4.12 Δm distribution for $D^{\ast 0} \rightarrow D^0\pi^0$ decays, where $p^*(D^0) < 2.5 \text{ GeV}/c$. 75

4.13 An example of ΔE distribution for $B \rightarrow D^{*+}\pi^-$ with $D^0 \rightarrow K\pi$. 76

4.14 ΔE versus m_{FSR} for the decay $B \rightarrow D^{*+}\pi^-$ with $D^0 \rightarrow K\pi$. 77

xi
4.15 Left: \(m_{\text{ES}} \) distribution for candidates in the off-resonance data (40 MeV below the \(T(4S) \) mass). Right: \(m_{\text{ES}} \) distribution for \(b \bar{b} \) background (\(B^0 \) reconstructed as \(B^+ \)). ARGUS shape fit is superimposed in both cases.

4.16 MC \(m_{\text{ES}} \) distributions for reconstructed B modes with (left) no \(\pi^0 \) in the final state, (middle) 1 \(\pi^0 \) in the final state and (right) 2 \(\pi^0 \)s in the final state. The fit function is a sum of crystal ball and ARGUS function.

5.1 Definition of the \(m_{\text{ES}}-\Delta E \) regions. In each iteration of the semi-exclusive reconstruction a combination is used (A) only as candidate, (B) both as candidate and as seed, (C) used as seed but not as candidate and (D) discarded.

5.2 \(\Delta E \) distributions for the four \(D^0 \) decay modes in \(B \to D^* \pi^0 \), \(D^* \to D^0 \pi \): a) \(D^0 \to K \pi \), b) \(D^0 \to K \pi \pi^0 \), c) \(D^0 \to K3\pi \), and d) \(D^0 \to K^0_s \pi \)

5.3 Dependence of the quality factor \(S/\sqrt{S+B} \) as a function of the yield when adding modes for the \(B^0 \to D^{*+}X \) case. Statistics corresponds to 80 fb\(^{-1}\).

6.1 Semileptonic \(B_{\text{sem}} \) decay recoiling from a fully reconstructed \(B \) meson.

6.2 \(m_X \) distributions at generator level for pure resonant (left) and pure non-resonant \(b \to u \ell \bar{v} \) MC simulation (right).

6.3 Parton-level distributions for the generator without Fermi motion. The upper left plot shows the scaled lepton energy \(x = 2E_\ell/m_b \), the upper right plot the scaled hadron energy \(z = 2(E_h - M)/m_h \), the lower left plot shows the scaled hadron mass squared \(s_h = m_h^2/m_b^2 \) and the lower right plot shows the scaled virtual \(W \) mass squared \(Q^2 = q^2/m_b^2 \). The red lines denote analytical single differential functions with the same input quantities and the green lines show the tree results without \(\alpha_s \) corrections.

6.4 \(m_X \) distribution at the generator-level for the hybrid signal Monte Carlo for \(b \to u \ell \bar{v} \) events. The resonant and non-resonant contributions to the hybrid are shown in magenta and red respectively along with the purely non-resonant distribution in blue.
6.5 Event yields for all seeds combined without additional requirement on the recoil system (left) and after requiring a lepton with $p_{T,\text{ene}} > 1 \text{ GeV}/c$ (right). The numbers printed on each plot indicate signal yield (S), background yield (B), and purity (P) all in the signal region defined by $m_{BS} > 5.27 \text{ GeV}/c^2$. Only the Argus background is fitted in these plots, with the signal yield taken as the difference between the histogram and the fitted Argus background. These plots serve as an illustration of the event yields and are not used in the analysis.

6.6 Signal MC: a) p_T resolution for all electrons, b) p_T resolution for electrons that are known through generator truth-matching to contain at least one Bremsstrahlung photon, c) m_X distribution. The blue line corresponds to no recovery and the red points correspond to recovery of photons within $\Delta\theta_{\text{cone}} < 0.08$.

6.7 Left: Missing-mass squared of the event before (upper plot) and after (lower plot) the kinematic fit. Due to the zero-mass hypothesis for the neutrino, the missing-mass of the event after the fit is within the precision compatible with zero. Right: Mass resolution of the B_{neo} (left side) before (upper plots) and after (lower plots) the kinematic fit. Due to the imposed equal-mass constraint, the masses of the two B mesons are, within precision, identical after the fit.

6.8 Cocktail MC: The resolution on the kinematically fitted hadronic mass with all analysis cuts applied for $b \rightarrow u\bar{u}v$ events (left) and $b \rightarrow c\bar{c}v$ events (right).

6.9 Cocktail MC: The mean (left) and RMS (right) of the resolution on the kinematically fitted hadronic mass with all analysis cuts applied in bins of true m_X (upper) and m_{fits} (lower). The blue points are $b \rightarrow u\bar{u}v$ events and the red points are $b \rightarrow c\bar{c}v$ events.

6.10 Generic MC: Statistical significance $(S/\sqrt{S+B})$ as a function of the purity of the mode of the reconstructed B sample for the four charm seeds after all cuts: clockwise (starting from the upper left plot) the seeds are $B^0 \rightarrow D^{*+}X$, $B^0 \rightarrow D^{*0}X$, $B^{+} \rightarrow D^{0}X$, $B^{+} \rightarrow D^{*0}X$.

6.11 Cocktail MC: The lepton momentum spectrum with all analysis cuts applied.

6.12 Cocktail MC: The number of leptons observed with all analysis cuts applied.

6.13 Cocktail MC: The total event charge with all analysis cuts applied.

6.14 Cocktail MC: The missing-mass squared with all analysis cuts applied.

xlii
6.15 Cocktail MC: Left: the number of charged kaons with all analysis cuts applied Right: the number of \(K_S \) with all analysis cuts applied

6.16 Cocktail MC: The missing momentum with all analysis cuts applied

6.17 Cocktail MC: The cosine of the angle of the missing system with all analysis cuts applied

6.18 Cocktail MC: The momentum of the slowest track with all analysis cuts applied

6.19 Cocktail MC: Missing-mass distribution \(m_{miss,\mu_R} \) for a) \(D^+ \to D^0 \pi^+ \), b) \(D^+ \to D^0 \pi^+ \), c) \(D^{*0} \to D^0 \pi^0 \)

6.20 \(B^0 \) (left) and \(B^+ \) (right) lepton spectra (side-band subtracted) in generic/cocktail MC and data for \(b \to u \ell \nu \) enhanced (top row) and depleted (bottom row) event samples.

6.21 Electron (left) and muon (right) spectra (side-band subtracted) in generic/cocktail MC and data for \(b \to u \ell \nu \) enhanced (top row) and depleted (bottom row) event samples.

6.22 Reconstructed (left) and kinematically fitted (right) hadronic recoil invariant mass spectra (side-band subtracted) in generic/cocktail MC and data for \(b \to u \ell \nu \) enhanced (top row) and depleted (bottom row) event samples.

6.23 Missing-mass squared (left) and \(Q^2 \) (right) distributions (side-band subtracted) in generic/cocktail MC and data for \(b \to u \ell \nu \) enhanced (top row) and depleted (bottom row) event samples.

6.24 Missing momentum (left) and \(\Theta_{n\nu\ell} \) (right) distributions (side-band subtracted) in generic/cocktail MC and data for \(b \to u \ell \nu \) enhanced (top row) and depleted (bottom row) event samples.

6.25 Charged (left) and neutral (right) multiplicity distributions (side-band subtracted) in generic/cocktail MC and data for \(b \to u \ell \nu \) enhanced (top row) and depleted (bottom row) event samples.

6.26 Total charge (left) distributions (side-band subtracted) in generic/cocktail MC and data for \(b \to u \ell \nu \) enhanced (top row) and depleted (bottom row) event samples.

7.1 The fit results for \(m_X < 1.55 \text{ GeV}/c^2 \)
7.2 The fit results for $m_X < 1.50 \text{GeV}/c^2$.. 124
7.3 The fit results for $m_X < 1.67 \text{GeV}/c^2$.. 124
7.4 The fit results for $m_X < 1.75 \text{GeV}/c^2$.. 125
7.5 The fit results for $m_X < 1.83 \text{GeV}/c^2$.. 125
7.6 The fit results for $m_X < 2.50 \text{GeV}/c^2$.. 125
7.7 The fit results for the depleted sample. .. 127
7.8 Photon energy spectrum for the decay $b \rightarrow s \gamma$ measured by BABAR [69].
This measurement is based on the sum of exclusive modes and results in
an excellent photon energy resolution. .. 129
7.9 $b \rightarrow s \gamma$ photon energy spectrum as a function of $u = 2E_u/m_B$, with
the weight functions $i_0(u)$ and $i_u(u)$, calculated for a cut on the
hadronic mass $m_X < 1.67 \text{GeV}/c^2$. The integral of these functions corre-
spond to I_0 and I_u, respectively. .. 130
7.10 $|V_{cb}|$ vs. the upper cut on m_X. The error bars illustrate (from innermost to
outermost) the experimental (statistical plus detector systematics), back-
ground and signal modeling, $b \rightarrow s \gamma$ errors. Points without the inner
error bars have only the statistical error displayed. The shaded error band
illustrate the perturbative error (innermost yellow band) and the total the-
oretical error (outermost bluish band) where the QED scale uncertainty,
the perturbative and non-perturbative error have been added in quadrature. 131
7.11 Enlarged view of $|V_{cb}|$ vs. the upper cut on m_X with special emphasis on
the statistical error from the $b \rightarrow s \gamma$ photon energy spectrum. The error
bars illustrate (from innermost to outermost) the statistical error from the
$b \rightarrow s \gamma$ photon energy spectrum and the total error (statistical, experimen-
tal systematics, signal and background modeling). The shaded error band
illustrate the perturbative error (innermost yellow band) and the total theor-
etical error (outermost bluish band) where the QED scale uncertainty,
the perturbative and non-perturbative error have been added in quadrature. 132
8.1 Integrated purity for cocktail MC (left), generic MC (middle) and data
(right), as an indicator of the sample composition. 139
8.2 The $b \rightarrow c \ell \nu m_X$ distribution (all cuts applied) for cross-feed events com-
pared with the total sample. Left plot corresponds to B^0's, right to B^+'s. 140
8.3 Relative efficiency for Monte Carlo (histogram) and for data (dots) for the soft pions from \(D^{*+} \rightarrow D^0 \pi^+ \), \(D^0 \rightarrow K^- \pi^+ \) decays, as a function of the momentum. .. 141

8.4 Measurement of \(R_{cb} \) as a function of the \(m_{X} \) cut applied. The left column displays the results with correlated errors. The right column shows the difference to the default analysis working point with uncorrelated errors shown. The errors are statistical only. .. 151

8.5 Measurement of \(R_{ss} \) as a function of the \(m_{X}^{max} \) cut applied. The left column displays the results with correlated errors. The right column shows the difference to the default analysis working point with uncorrelated errors shown. The errors are statistical only. .. 152

8.6 Measurement of \(R_{cb} \) as a function the cut on the lepton momentum applied. The left column displays the results with correlated errors. The right column shows the difference to the default analysis working point with uncorrelated errors shown. The errors are statistical only. .. 153

8.7 Relative error estimation for \(|V_{cb}| \) due to the combined statistical and systematic error in the \(b \rightarrow s \gamma \) photon energy spectrum. .. 156

9.1 Results for \(|V_{cb}| \) extractions from other experiments. The world average is calculated by HFAG [83]. The inclusive results are obtained with shape function parameters obtained from fits to the Belle \(b \rightarrow s \gamma \) photon spectrum [82]. .. 161

A.1 DATA: The total \(m_{BS} \) distribution (top left) and the individual \(m_{BS} \) distributions in each bin of \(m_{X} \) for \(B^\pm s \). .. 163

A.2 DATA: The total \(m_{BS} \) distribution (top left) and the individual \(m_{BS} \) distributions in each bin of \(m_{X} \) for right sign \(B^0 s \). .. 164

A.3 DATA: The total \(m_{BS} \) distribution (top left) and the individual \(m_{BS} \) distributions in each bin of \(m_{X} \) for wrong sign \(B^0 s \). .. 165

A.4 GENERIC MC, \(b \rightarrow c \bar{s} \nu \): The total \(m_{BS} \) distribution (top left) and the individual \(m_{BS} \) distributions in each bin of \(m_{X} \) for \(B^\pm s \). .. 166

A.5 GENERIC MC, \(b \rightarrow c \bar{t} \nu \): The total \(m_{BS} \) distribution (top left) and the individual \(m_{BS} \) distributions in each bin of \(m_{X} \) for right sign \(B^0 s \). .. 167
A.6 GENERIC MC, $b \rightarrow c f \bar{f}$: The total m_{ES} distribution (top left) and the individual m_{ES} distributions in each bin of m_X for wrong sign B^0s. 168

A.7 GENERIC MC, other: The total m_{ES} distribution (top left) and the individual m_{ES} distributions in each bin of m_X for B^\pms. 169

A.8 GENERIC MC, other: The total m_{ES} distribution (top left) and the individual m_{ES} distributions in each bin of m_X for right sign B^\pms. 170

A.9 GENERIC MC, other: The total m_{ES} distribution (top left) and the individual m_{ES} distributions in each bin of m_X for wrong sign B^\pms. 171

A.10 SIGNAL MC: The total m_{ES} distribution (top left) and the individual m_{ES} distributions in each bin of m_X for B^+s. 172

A.11 SIGNAL MC: The total m_{ES} distribution (top left) and the individual m_{ES} distributions in each bin of m_X for right sign B^\pms. 173

A.12 SIGNAL MC: The total m_{ES} distribution (top left) and the individual m_{ES} distributions in each bin of m_X for wrong sign B^\pms. 174

B.1 Fit results for $m_X < 1.55$ GeV/c2: The left plot is neutral B and the right plot is charged B. .. 175

B.2 Fit results for $m_X < 1.59$ GeV/c2: The left plot is neutral B and the right plot is charged B. .. 175

B.3 Fit results for $m_X < 1.67$ GeV/c2: The left plot is neutral B and the right plot is charged B. .. 176

B.4 Fit results for $m_X < 1.75$ GeV/c2: The left plot is neutral B and the right plot is charged B. .. 176

B.5 Fit results for $m_X < 1.83$ GeV/c2: The left plot is neutral B and the right plot is charged B. .. 176

B.6 Fit results for $m_X < 2.50$ GeV/c2: The left plot is neutral B and the right plot is charged B. .. 176

B.7 Fit results for $m_X < 1.55$ GeV/c2: The left plot is electrons and the right plot is muons. .. 177

B.8 Fit results for $m_X < 1.59$ GeV/c2: The left plot is electrons and the right plot is muons. .. 177
B.9 Fit results for $m_X < 1.67 \text{GeV}/c^2$: The left plot is electrons and the right plot is muons. .. 177

B.10 Fit results for $m_X < 1.75 \text{GeV}/c^2$: The left plot is electrons and the right plot is muons. .. 177

B.11 Fit results for $m_X < 1.83 \text{GeV}/c^2$: The left plot is electrons and the right plot is muons. .. 177

B.12 Fit results for $m_X < 2.50 \text{GeV}/c^2$: The left plot is electrons and the right plot is muons. .. 178
LIST OF TABLES

2.1 The six quarks and six leptons and their properties are presented in this table. They are split into three generations. u is the "up" quark, d is the "down" quark, c is the "charm" quark, s is the "strange" quark, t is the "top" quark, b is the "bottom" quark, e is the electron, \(\mu \) is the muon, \(\tau \) is the tau lepton, and \(\nu \) are the corresponding neutrinos. .. 6

2.2 The fundamental forces of nature and their associated force-carrying gauge bosons, spins, masses, effective range, sources and couplings. .. 7

3.1 The PEP-II beam design parameters and the corresponding achieved values as of July 2004. \(\sigma_{Lx}, \sigma_{Ly}, \sigma_{Lz} \) refer to the size of the interaction region of the collision. .. 30

3.2 The cross-sections for the production of various states at the \(\sqrt{s} = M(T_{(4S)}) \) mass. .. 30

3.3 Overview of the coverage, segmentation, and performance of the BABAR detector systems. The notation (C), (F), and (B) refers to the central barrel, forward and backward components of the system, respectively. The detector coverage in the laboratory frame is specified in terms of the polar angles \(\theta_1 \) (forward) and \(\theta_2 \) (backward). The number of readout channels is listed. Performance numbers are quoted for 1 GeV/c particles, except where noted. The performances for the SVT and DCH are quoted for a combined Kalman fit (for the definition of the track parameters, see section 3.3) .. 36

4.1 Summary of track selection criteria. .. 60

4.2 Summary of selection criteria for the \(D^0 \) selection .. 70

4.3 Summary of selection criteria for the \(D^+ \) selection .. 72

4.4 Summary of the selection criteria for the \(D^{+}\) selection .. 74

4.5 Summary of selection criteria for the \(D^{*0} \) selection .. 74
5.1 Some of the inclusive and exclusive branching fractions relevant to the semi-exclusive reconstruction [6]. The reason that the branching fractions sum to a value greater than unity is that for inclusive $B \rightarrow D^{(*)} Y$ decays, there can be a significant amount of overlap as the Y can include $D^{(*)}$ mesons.

5.2 Summary of the number of semi-exclusive modes.

6.1 Monte Carlo event samples used in this analysis. Equivalent statistics in $|V_{ub}|$ MC assumes $\mathcal{B}(b \rightarrow u\ell\nu) = 1.7 \times 10^{-8}$.

6.2 Branching ratios used in the resonant and non-resonant $\bar{B} \rightarrow X_s \ell\nu$ signal MC (before the hybrid reweighting). The hadron masses m_X are those used in the generator.

6.3 Branching fractions used in the $\bar{B} \rightarrow X_s \ell\nu$ hybrid signal MC after the reweighting.

6.4 Signal yield, S, and background, B, per charm seed mode of the B_{reco} candidate. The numbers are obtained from fits to the m_{ES} distributions.

6.5 Selection criteria for $b \rightarrow q\ell\nu$ and $b \rightarrow u\ell\nu$ events.

7.1 The χ^2/DOF results from the fits to the hadronic mass spectrum.

7.2 Analysis validation and fit results for high-statistics cocktail MC. The generated value corresponds to $R_\nu \equiv \mathcal{B}(b \rightarrow u\ell\nu)/\mathcal{B}(b \rightarrow c\ell\nu) = 0.0116$.

7.3 The fraction of signal events below a cut-off in the hadronic mass spectrum. The error shown is statistical. This number is only used in the extraction of the total charmless branching fraction (Eq. 7.2) for the full rate measurement.

7.4 Summary of the fit parameters for data, on the full (top) and depleted (bottom) samples.

7.5 Summary of the fit parameters for data, on the neutral B (top) and charged B (bottom) samples.

7.6 Summary of the fit parameters for data, on the electron (top) and muon (bottom) samples.
7.7 Differential $b \to s\gamma$ branching fraction in bins of photon energy E_{γ}. Note that these numbers are normalized to the bin width and not to 100 MeV as in Fig. 7.8. The systematic error has been symmetrized. .. 136

7.8 The results for the determination of $|V_{ub}|$ and summary of the relative uncertainties. The first part of the table shows the results obtained in the framework of Leibovich, Low, and Rothstein and the right-most column provides the results based on the full rate. .. 137

8.1 Smearing factor in different neutral energy bins. .. 143

8.2 The current best measurements for the branching fractions for $B \to X_s\ell\bar{\nu}$ decays and values used in MC simulation. The non resonant $B \to D_h\nu X$ is obtained by difference of the inclusive rate and the other 4 components. .. 144

8.3 D^+ branching fractions, current best measurements and values used in the MC. .. 146

8.4 D^0 branching fractions, current best measurements and values used in the MC. .. 147

8.5 $\delta\Gamma(c) \times 10^3$ results and errors for various m_{X} cuts for the signal modeling studies in sections 8.1.14–8.1.17. The error is determined from the largest deviations to the nominal value. .. 148

8.6 Summary of errors on the partial $b \to u\ell\bar{\nu}$ rate $\delta\Gamma(c)$. The errors are listed in units of $%$ of $\delta\Gamma(c)$. .. 154
Acknowledgments

The work in this thesis would not be possible if not for the instruction and support I have received from my colleagues along the way. There are many people to thank, and I will attempt to list them below. I apologize to anyone who I may have forgotten.

Rolf Dubitzky and Urs Langenegger. Thanks for working with me on this analysis. It was a pleasure working with both of you.

Adam Leibovich, Ian Low, and Ira Rothstein. Thanks for consistently and patiently answering my questions.

The members of the Semileptonic AWG, in particular Daniele Del Re, Riccardo Faccini, Virginia Azzolini, Concezio Bozzi, Kerstin Tackmann, and Dominique Fortin. The work in this thesis has benefited greatly from your work.

The members of BABAR who devoted time to reviewing this analysis and helping prepare it for publication.

The UC San Diego BABAR group of past and present. In particular, I would like to thank my advisor, David MacFarlane, for his support.

Lastly, I would like to offer a special thank you to Urs Langenegger. This analysis would not have been possible without you. Thanks for being limitlessly patient and always finding time to speak with me from the other side of the Atlantic, regardless of the time. You’ve been a true mentor and friend.