Measurement of the CKM Angle Alpha at the BABAR Detector Using B Meson Decays to Rho Final States

Attila Mihalyi
MEASUREMENT OF THE CKM ANGLE ALPHA AT THE BABAR DETECTOR USING B MESON DECAYS TO RHO FINAL STATES

by

ATTILA MIHALYI

A dissertation submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY
(PHYSICS)

at the

UNIVERSITY OF WISCONSIN – MADISON

2005
Abstract

This thesis contains the results of an analysis of $B^0 \rightarrow \rho^+\rho^-$ using 232 million $\Upsilon(4S) \rightarrow B\bar{B}$ decays collected with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. From a fitted signal yield of 617 ± 52 events, the longitudinal polarizations fraction, j_L, of the decay is measured to be 0.978 ± 0.014 (stat) $^{+0.021}_{-0.023}$ (syst).

The nearly fully longitudinal dominance of the $B^0 \rightarrow \rho^+\rho^-$ decay allows for a measurement of the time dependent CP parameters S_L and C_L, where the first parameter is sensitive to mixing induced CP violation and the second one to direct CP violation. From the same signal yield, these values are found to be $S_L = -0.33 \pm 0.24$ (stat) $^{+0.08}_{-0.14}$ (syst) and $C_L = -0.03 \pm 0.18$ (stat) ± 0.09 (syst).

The CKM angle α is then determined, using these results and the branching fractions and polarizations of the decays $B^0 \rightarrow \rho^0\rho^0$ and $B^+ \rightarrow \rho^+\rho^0$. This measurement is done with an isospin analysis, in which a triangle is constructed from the isospin amplitudes of these three decay modes. A χ^2 expression that includes the measured quantities expressed as the lengths of the sides of the isospin triangles is constructed and minimized to determine a confidence level on α. Selecting the solution compatible with the Standard Model, one obtains $\alpha = 100^\circ \pm 13^\circ$.
Acknowledgments

I am very grateful for the support and guidance of my adviser Sau Lan Wu, who is always fully committed to helping her students achieve success.

I would also like to thank members of my research group in particular Paul Kutter, Mathew Graham, Monsumi Datta and Jimwei Wu for their friendship and help during my stay at SLAC. In addition I would like to thank Yibin Pan for his assistance when I was starting out at BABAR. This work would not have been possible without the close and fruitful collaboration with Adrian Bevan, Christophe Yecho and Christos Touramanis. I am forever indebted to them for their hard work and commitment to pursuing this analysis.

I also wish to thank my parents Juliana and Daniel Mihalyi for providing me with great opportunities and constant support to achieve my dreams. Finally I would like to thank my wife Michele, whose love, support and encouragement have been immensely important.
Contents

Abstract i

Acknowledgments ii

1 Introduction 1

1.1 Introduction to CP Violation 2
1.2 Origins of CP-violation within the SM 5
1.3 B-meson Mixing and Time Dependent Formalism 10
1.4 Types of CP-Violation in the B-meson System 14
 1.4.1 CP-violation in decay .. 14
 1.4.2 CP-violation in Mixing 15
 1.4.3 CP Violation in Interference Between Decays With and Without
 Mixing .. 16
1.5 $B^0 \rightarrow \rho^+ \rho^-$ Time Dependent Formalism 17

2 PEP-II B Factory and BABAR Detector 20

2.1 PEP-II Asymmetric B Factory 22
2.2 Silicon Vertex Tracker .. 25
2.3 Drift Chamber .. 27
2.4 Detector of Internally Reflected Cherenkov Light 32
2.5 Electromagnetic Calorimeter ... 36
2.6 Instrumental Flux Return ... 39
2.7 Trigger ... 42

3 Analysis Overview ... 45

3.1 Monte Carlo (MC) Simulation ... 46
3.2 Decay Dynamics .. 48
3.3 Signal Discrimination .. 50
 3.3.1 Signal and Background Topologies 53
3.4 Vertexing and Vertex Separation 58
3.5 B-Flavor Tagging .. 60
3.6 Data Sample and Event Reconstruction 64
 3.6.1 Choice of One Candidate per Event 66
 3.6.2 Misreconstructed Signal 68
3.7 Maximum Likelihood Fit ... 69
3.8 Probability Density Function Parameterizations 72
 3.8.1 Treatment of Δt for Signal and Background Events 73
 3.8.2 Treatment of correct and wrong track SCF Δt resolution 75
3.9 B-backgrounds .. 76
3.10 Validation of the Fitter .. 82
 3.10.1 Toy Monte Carlo Studies 83
 3.10.2 Real Monte Carlo Studies 88
 3.10.3 Likelihood Projections 91
3.11 Fit Results .. 91
3.12 Evaluation of Systematic Uncertainties 97
 3.12.1 PDF Uncertainties 97
 3.12.2 Systematics from the Neural Network 98
 3.12.3 Systematics from the B-background 100
 3.12.4 Systematic error from SCF fraction 102
 3.12.5 Systematic error from B-lifetime and mixing parameters ... 102
 3.12.6 Systematic error from the resolution function, tagging and dilution 103
 3.12.7 Systematic errors from the wrong track SCF 104
 3.12.8 Systematic error from CP violation in transverse signal 105
 3.12.9 Systematic error from non-resonant events 106
 3.12.10 DCSD decays 107
 3.12.10.1 Neglecting interference 108
 3.12.10.2 Fit Bias summary 109
 3.12.10.3 Uncertainty from floating B-background yields .. 110
3.12.11 SVT Local Alignment 110
 3.12.11.1 Systematic Error Summary 111
4 Determining \(\alpha \) with an Isospin Analysis

5 Summary

A Variable Distributions and PDF Shapes

B Correlations Between Discriminating Variables
List of Figures

1.1 The rescaled Unitarity Triangle .. 9
1.2 Tree and gluonic penguin diagrams contributing to the process $B \rightarrow \rho \rho$ 18
2.1 BABAR detector longitudinal cross section 21
2.2 Schematic view of the SVT .. 25
2.3 Schematic view of SVT transverse section 27
2.4 Longitudinal section of the DCH with principal dimensions 29
2.5 Schematic layout of drift cells for the four innermost superlayers 30
2.6 Measurement of dE/dx in the DCH as a function of track momenta 31
2.7 Schematics of the DIRC fused silica radiator bar and imaging region. 33
2.8 Exploded view of the DIRC mechanical support structure 34
2.9 Kaon-pion separation as a function of track momentum 36
2.10 A longitudinal cross section of the EMC 38
2.11 Overview of the IFR ... 41
3.1 Comparison of signal and continuum background for m_{EE} and ΔE 52
3.2 The input variables used in training the neural network 56
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3</td>
<td>Neural Network efficiencies</td>
<td>57</td>
</tr>
<tr>
<td>3.4</td>
<td>Time evolution of the $B - \bar{B}$ system</td>
<td>58</td>
</tr>
<tr>
<td>3.5</td>
<td>The PDFs for m_ρ and ρ helicity for (top) true and (bottom) fake $a_2\pi^0$</td>
<td>82</td>
</tr>
<tr>
<td>3.6</td>
<td>The PDFs for m_ρ and ρ helicity for (top) true and (bottom) fake $a_2\pi$</td>
<td>83</td>
</tr>
<tr>
<td>3.7</td>
<td>The PDFs for m_ρ and ρ helicity for (top) true and (bottom) fake $\rho\pi^0$</td>
<td>84</td>
</tr>
<tr>
<td>3.8</td>
<td>Pull distributions for toy MC</td>
<td>86</td>
</tr>
<tr>
<td>3.9</td>
<td>Distribution of the likelihood values from the toy MC fits</td>
<td>87</td>
</tr>
<tr>
<td>3.10</td>
<td>Comparison of signal and background likelihoods</td>
<td>91</td>
</tr>
<tr>
<td>3.11</td>
<td>Comparison of signal, MC and offpeak data likelihoods</td>
<td>92</td>
</tr>
<tr>
<td>3.12</td>
<td>The m_{ES}, ΔE, m_{x+y}, and $\cos \theta$, PDFs projected on data</td>
<td>94</td>
</tr>
<tr>
<td>3.13</td>
<td>The PDF for the total likelihood projected on data</td>
<td>95</td>
</tr>
<tr>
<td>3.14</td>
<td>The Δt PDF projected on data</td>
<td>96</td>
</tr>
<tr>
<td>3.15</td>
<td>MC and data comparison of the monomials L_0 and L_2</td>
<td>99</td>
</tr>
<tr>
<td>3.16</td>
<td>NN output before and after the systematic correction</td>
<td>100</td>
</tr>
<tr>
<td>4.1</td>
<td>Isospin Triangles for $B \rightarrow \rho\rho$ longitudinal polarization decays</td>
<td>115</td>
</tr>
<tr>
<td>4.2</td>
<td>Confidence Level on a for a pedagogical example</td>
<td>120</td>
</tr>
<tr>
<td>4.3</td>
<td>Confidence level on a</td>
<td>121</td>
</tr>
<tr>
<td>A.1</td>
<td>Distributions and PDFs for m_{ES} and ΔE for truth matched signal MC</td>
<td>126</td>
</tr>
<tr>
<td>A.2</td>
<td>Distributions and PDFs for m_{ES} and ΔE for transversely polarised SCF</td>
<td>126</td>
</tr>
</tbody>
</table>
A.3 Distributions and PDFs for m_{ES} and ΔE from longitudinally polarised correct (right) and wrong track (left) SCF. 127
A.4 Distributions and PDFs for m_{ρ} and two ρ helicity for truth matched signal MC ... 128
A.5 Distributions and PDFs for m_{ρ} and ρ helicity for correct(left) and wrong(right) track longitudinally polarized SCF. 129
A.6 Distributions and PDFs for m_{ρ} and ρ helicity for transversly polarized SCF. ... 130
A.7 Distributions and PDFs for Neural net work for true longitudinal signal 131
A.8 Distributions PDFs for Neural net work for true transverse signal ... 132
A.9 Distributions and PDFs for Neural net work for longitudinal correct track SCF ... 133
A.10 Distributions and PDFs for Neural net work for longitudinal wrong track SCF ... 134
A.11 Distributions and PDFs for Neural net work for transverse SXF 135
A.12 Distributions and PDFs for continuum ρ helicity 136
A.13 The distributions and PDF for continuum ρ-mass 137
A.14 The variable distributions and PDF shapes for $B^+ \rightarrow ThreeBody$. [CL0] 138
A.15 The variable distributions and PDF shapes for $B^+ \rightarrow FourBody$. [CL1] 139
A.16 The variable distributions and PDF shapes for $B^+ \rightarrow FiveBody$. [CL2] 140
A.17 The variable distributions and PDF shapes for $B^\pm \rightarrow a_1(\rightarrow (\rho\pi)^0)\pi^\pm$.

[CL3] ... 141

A.18 The variable distributions and PDF shapes for $B^\pm \rightarrow a_1(\rightarrow (\rho\pi)^+)\pi^\pm$.

[CL4] ... 142

A.19 The variable distributions and PDF shapes for $B^\pm \rightarrow a_1(\rightarrow (\rho\pi)^0)\rho^+$.

[CL5] ... 143

A.20 The variable distributions and PDF shapes for $B^\pm \rightarrow \rho^+\rho^0$. [CL6] ... 144

A.21 The variable distributions and PDF shapes for $B^\pm \rightarrow K^{*+}\pi$. [CL7] ... 145

A.22 The variable distributions and PDF shapes for $B^\pm \rightarrow K^{*-}\rho$. [CL8] ... 146

A.23 The variable distributions and PDF shapes for $B^\pm \rightarrow c$ 147

A.24 The variable distributions and PDF shapes for $B^0 \rightarrow Four\ Body$. [CL10] ... 148

A.25 The variable distributions and PDF shapes for $B^0 \rightarrow Five\ Body$. [CL11] ... 149

A.26 The variable distributions and PDF shapes for $B^0 \rightarrow \rho\pi$. [CL12] ... 150

A.27 The variable distributions and PDF shapes for $B^0 \rightarrow K\pi$. [CL13] ... 151

A.28 The variable distributions and PDF shapes for $B^0 \rightarrow K^{*+}\pi$. [CL14] ... 152

A.29 The variable distributions and PDF shapes for $B^0 \rightarrow K^{*-}\rho$. [CL15] ... 153

A.30 The variable distributions and PDF shapes for $B^0 \rightarrow a_1(\rightarrow \rho\pi^0)\pi^\mp$.

[CL16] ... 154

A.31 The variable distributions and PDF shapes for $B^0 \rightarrow a_1(\rightarrow \rho\pi^0)\pi^0$.

[CL17] ... 155

A.32 The variable distributions and PDF shapes for $B^0 \rightarrow c$ 156
A.33 $B^+ \rightarrow c$(left) and $B^0 \rightarrow c$(right) PDPs for m_{ES}, parametrised with an Argus shape 157

B.1 2D projection plots of longitudinally polarized truth matched signal MC for ΔE vs $\cos \theta_1$ 162

B.2 2D projection plots of longitudinally polarized correct track SCF signal MC for ΔE vs $\cos \theta_1$ 162

B.3 2D projection plots of longitudinally polarized wrong track SCF signal MC for ΔE vs $\cos \theta_1$ 163

B.4 2D projection plots of transversely polarized signal MC for ΔE vs $\cos \theta_1$ 163
List of Tables

2.1 PEP-II beam parameters ... 22

2.2 Cross sections, production and trigger rates for the principal physics
processes at 10.58 GeV for a luminosity of 3×10^{32} cm$^{-2}$s$^{-1}$ 43

3.1 The Monte Carlo samples used in this analysis. 47

3.2 Current experimental knowledge of the decay $B \to pp.$ 50

3.3 The performance of the tagger 63

3.4 Selection efficiencies .. 67

3.5 Average multiplicity in Monte Carlo and data. 67

3.6 Summary of the fraction of SCF and efficiency for $B^0 \to p^+ p^-$ 68

3.7 SCF and wrong track fractions, split by tagging categories 71

3.8 The types of PDFs used to model the discriminating variables 73

3.9 Parameters of the Δt model 75

3.10 Classification of background from charged B's 79

3.11 Classification of background from neutral B's 80

3.12 Results from fits to collections of real MC samples 89
3.13 Average fitted polarization for different generated values 90
3.14 Fit results for the final fit to the full onpeak sample 93
3.15 Systematic error summary ... 112

4.1 Input parameters for the calculation of α 118

B.1 Correlation coefficients for true Longitudinal Signal MC 159
B.2 Correlation coefficients for SCF correct track Longitudinal Signal MC. . 159
B.3 Correlation coefficients for SCF wrong track Longitudinal Signal MC . 159
B.4 Correlation coefficients for onpeak data 160
B.5 Correlation coefficients for onpeak data 160
B.6 Correlation coefficients for offpeak data 160