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Prolog 
 
On the day after Thanksgiving, it is the perfect time for me to give thanks to all of the people I've 
known and worked with since joining “Project M” in 1962.  Without their interest and support, I 
would never have been able to accomplish much of the work I did, particularly in accelerator 
lattice modeling for design and control applications—work I have been doing for nearly three 
decades. 
 
More recently, I feel fortunate that I was able to return from retirement in 2005 to complete work 
that I began on OASIS Pathfinder. The publication of this SLAC report brings to a close over a 
year of intense work by bringing this project to a conclusion.  My objective in submitting this 
report is to share with all my friends and colleagues at SLAC and other laboratories and research 
centers around the world a original and simple approach to nonlinear programming and systems 
optimization. 
 
I started to write this report after OASIS Pathfinder was invented about five years ago and have 
only returned to finish it recently, after submitting a proposal in November 2008, for an SBIR 
Phase I grant.  As I now complete this report on my work, I realize that unlike the many small 
businesses that are unwilling to share information deemed proprietary, I am eager to share my 
work, my project, with my collaborators, colleagues and friends here at SLAC.  In sharing my 
work this way, I hope to mark and celebrate all the good times I’ve had at the laboratory over the 
past 46 years—I am thankful to my SLAC family for making all that I have worked for possible. 
 
Abstract 
 
Model-based electron accelerator control is the maintenance of optimal parameters of an electron 
beam such as its orbit, size, and shape, as well as machine parameters such as tunes.  It works 
well when the model reflects reality.  SLAC pioneered this technique in SPEAR about thirty 
decades ago.  Similar techniques are now employed in particle accelerator and synchrotron 
laboratories around the world.  There is still an inherently complex problem related to the 
employment of such techniques to manage the operation and analysis of accelerators and storage 
rings.  The problem arises from the use by those techniques of complex numerical algorithms 
commonly known as nonlinear solvers that are difficult to control and operate.  Lessons learned 
at SLAC have led to the development of a new, simple-to-use, and iterative nonlinear solver that 
holds much promise not only in advancing the derivation of errors in accelerators and storage 
rings at SLAC, but also in its ability to tackle a range of complex engineering problems.  We 
intend to further develop and validate this nonlinear solver for robust SLAC accelerator and 
other applications. 
 
 
A.  Statement of How the Problem is Being Addressed in this Propose Project 
 
Features in the new nonlinear solver—OASIS Pathfinder—will be tested with simulated data from a 
SPEAR3 error-resolving code.  The performance of the new solver’s convergence parameters will be 
analyzed and compared with existing SLAC lattice modeling codes.  How lattice expertise can be 
incorporated into the new nonlinear solver will be studied.  Requirements in running the new nonlinear 
solver directly on measured orbit data will be identified.  The incorporation of lattice expertise and an 
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ability to work directly with real-time orbit data allow the definition of requirements in turning the new 
nonlinear solver into a prototype code, to be developed on Phase II, which is capable of finding global 
minimum solutions in accelerator lattice error-resolving applications.  
 
 
B.  Applications and Benefits 
 
Existing nonlinear solvers are difficult to use.  How they may get to a solution is often far from being 
transparent to a user.  The new nonlinear solver to be developed is expected to introduce a simple-to-use 
approach that is based on an iterative procedure guided by just two solution-path-seeking and 
convergence parameters irrespective of the size of the problem.  The solution-path-seeking graphical 
approach also provides a high level of intuition for a user.  After development, the new solver is expected 
to find its place next to existing math tools that are used worldwide such as MATLAB and Mathematica.  
The developed solver is also expected to be found useful in synchrotron storage rings around the world.  
 
Analytical tools that can be used to efficiently resolve accelerator errors in U.S. synchrotron light sources 
(or high-brightness X-ray laboratories) will increase the up-time of those complex facilities which 
currently serve thousands of users from all scientific and engineering fields.  The proposed project intends 
to develop such a tool that is based on a new method to solve complex equations in a simplified way.  The 
developed tool also has many commercial applications, e.g., as a math-solution software toolkit and as a 
solver for complex engineering systems.   
 
C. Identification and Significance of the Problem or Opportunity, and Technical 
Approach 
 
C.1  Current Model Based Control at SLAC   
 
One common theme in the operation of an electron storage ring is the use of a magnet lattice 
model for precision control of ring parameters.  When storage ring components operate 
normally, the task of maintaining quality electron beam storage with a long lifetime and small 
emittance is challenging yet straightforward.  However, component drift and other factors 
(temperature, ground motion, etc.) tend to detune the operating conditions away from optimal 
values.  As a consequence, on-going error identification and correction of lattice/beam 
parameters such as optical functions, beam emittance, lifetime, and coupling require intervention 
of experts to resolve discrepancies from their optimal values.  
 
C.2  Response Matrix Analysis  
 
Response Matrix Analysis, known as the Resolve technique1,2, is used to compare measured data 
against data generated from the accelerator model in order to diagnose discrepancies or faults 
among a large array of system parameters.  Typically, the following steps are used to diagnose 
errors in the accelerator elements such as focusing errors in the quadrupole magnets: 
 

1) The orbit response matrix is measured.  Each element in the response matrix is a 
measurement of the orbit change at one beam position monitor (BPM) due to a unit orbit 
kick at one corrector.  Hence, if there are N  BPMs and M orbit correctors, the measured 
response matrix is an N x M matrix.   
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2) A simulated response matrix is then “computed” using an accelerator modeling code.  
The analysis begins with the computation of the response matrix using the ideal magnet 
strength values in the lattice model. 

 
3) The analysis proceeds by varying the strength values of a chosen set of magnet 

components, such as normal and skew quadrupole components, sextupole feed-downs, 
and dipole correctors, in the model to make the computed response matrix agree with the 
one measured.  As the model and measured data converge, the model yields a 
progressively more accurate representation of the operational parameters of the actual 
accelerator and can be used for both machine control and predictive analysis leading to 
fault identification and machine parameter optimization for the production of more stable 
and brighter beams. 

 
A common problem occurs when the beam orbit shifts from the reference position. In this case 
the Resolve technique can specifically locate the cause of the orbit shift.  Similarly, to diagnose 
faults in a group of magnet components the accelerator model trajectory/orbit data can be 
analyzed in the following manner: 
 

1. Define the observed orbit change by the difference between measured and reference 
orbits. 

2. Simulate an ensemble of one-pass beam trajectories within different regions of the 
accelerator.  Look for the largest “error-free” region where there is a match between the 
simulated trajectory and the orbit change. 

3. Continue analysis by varying the strength values of the magnet components located 
outside of the error-free region found in step 2) until a match between the simulated orbit 
and the orbit change is found. 

 
C.3 Significant Problem 
 
There is an inherently complex problem in the current operation and analysis of storage rings.  
Though the aforementioned steps appear relatively straightforward, they involve the use of 
complex numerical algorithms commonly known as nonlinear solvers that are difficult to control 
and to operate.  For this reason, only accelerator modeling experts are able to use the Resolve 
method to analyze data and diagnose problems. Given these circumstances, the turn-around time 
(the period between when the problem is first discovered and when it is finally resolved) for any 
given diagnosis can vary from hours or days to weeks.  In most cases, operators resort to fixing 
the problem themselves.  They may be successful if the fix is simple enough, but their solutions 
may not address the underlying cause of the problem.  Very often, they fail and are left with no 
choice but to wait for the assistance of experts. As long as the problem goes unresolved, the ring 
will not operate optimally and the user program is compromised. 
 
In addition, there is another subtle problem in the current state of storage ring lattice modeling.  
Since the development of RESOLVE3 more than two decades ago, nearly a half-dozen modeling 
codes have been developed by various teams of experts.  Each of them uses a different nonlinear 
solver to solve for model errors.  To see the differences between these codes, consider a 
modeling code as a process with the orbit data as input and the magnet component strengths as 
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output.  Most of the codes have different inputs yet they are looking for the same output.  For 
example, the input data for one of the latest modeling codes, LOCO4, are the orbit response 
matrices computed from a modern lattice modeling code5.  The objective function is defined by: 
 
  ∑∑ −=

i j

meas
ij

el
ij
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obj maamaaf 2
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where ,...),( 21 aa  are the magnet component strengths.  Elements in the measured and model-
predicted response matrix, el

ijmmod  and meas
ijm , are defined to be, respectively, the ratio of the 

observed and computed change in the closed orbit at the ith beam position monitor due to a small 
kick from the jth dipole orbit corrector.  Similarly, the other existing codes, MIA6 and 
RESOLVE, minimize different objective functions, MIA

objf  and RESOLVE
objf , that are defined in terms 

of turn-by-turn or single turn betatron oscillation values.  Since the objective functions in 
LOCO, MIA, and RESOLVE are different, different possible outcomes can be expected: 
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Only when the values of these solutions are the same will all three codes have found the 
global minima of their corresponding objective functions.  In practice, LOCO, MIA and 
RESOLVE have not been able to consistently find the same global- minimum solution, thus 
making it difficult to compare their solutions.  
 
One approach to finding the global-minimum solutionI is to define an aggregate objective 
function such as a linear combination of the three objective functions: 
 
  RESOLVE

obj
MIA

obj
LOCO

obj
AOF

obj ffff ++= .   
 
In addition, a nonlinear program could be specifically developed to find the global minimum.  
The development of a simple, easy-to-use nonlinear program is a necessary step toward 
developing such an error solver for modeling of linear accelerators, storage rings, transport 
systems, and insertion devices. 
 
C.4 Opportunity  
 
Existing nonlinear programs can be classified into two basic types: One uses an analytical 
iterative method and the other relies on a stochastic search method such as a genetic algorithm. 
The inherent difficulty of using an iterative method to find the global-minimum solution is well 
known.  In general, an iterative method requires an initial guess solution.  If this start solution is 
too far from the global-minimum solution, the program will find only a local-minimum solution. 
As an illustration, a surface plot of the objective function for a minimization problem with two 

                                                 
I The global-minimum solution refers to the bounded multi-variable point having the overall 
lowest objective function value that may be difficult to find due to measurement noise in the orbit 
data. 
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variables is shown in Fig. 1.  This figure shows the locations of local-minimum points and the 
global-minimum point.  
 

  
 
A common approach to address this shortcoming is to use an ‘exhaustive search’ or a genetic 
algorithm.  However, there are notable limitations when using such methods—they are often 
difficult and time consuming to use, particularly when used to find the global-minimum solution 
to a large scale problem as is the case for accelerator modeling. 
How to find a way to overcome these limitations in the use of conventional nonlinear programs 
remains to be a challenge.  The nonlinear programming method proposed in this project is an 
attempt to mitigate these limitations. 
 
Furthermore, there is another problem in lattice modeling with existing iterative nonlinear 
programs.  In practice, the ‘start’ solution is often taken to be the ideal magnet component 
strengths.  On the one hand, this practice eliminates the need to search for a start solution.  
However, on the other hand, it may create another problem—there is an inherent difficulty 
known as the basin-of-attraction limit (BOA) to overcome.  A BOA is defined to be the biggest 
region around a given minimum solution.  The problem with the existing iterative nonlinear 
programs is that they will only find the actual solutions for a special case in which the start 
solution is inside the BOA corresponding to the global-minimum solution.  We propose to 
collaborate with a small business company to develop a nonlinear program that does not have the 
inherent BOA limitation of conventional nonlinear programs.  One intended goal is to find a 
solution path that ends at the actual lattice element errors even when the start solution is 
not inside the BOA corresponding to the global-minimum solution.   The next subsection 
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explains how a new technical approach can be developed to address the opportunity of reaching 
the goal.  
 
C.5  Technical ApproachII   
 
In this section, the framework of the new nonlinear program to be applied to SLAC’s accelerator 
modeling is presented.  A nonlinear program is a solver typically employed to find the global 
minimum of a given objective function subject to certain conditions known as constraints. An 
objective function of n variables ),...,,( 21 naaa is generally written as fobj (a1,a2,...,an ) .  In the 
accelerator lattice modeling, the variables are the strengths of a chosen set of magnet 
components. The complexity of finding the global minimum for the objective function depends 
on the degree of nonlinearity of the objective function and the number of variables. 
   
For this proposed project, two of the main components of the new nonlinear program to be 
developed for finding actual lattice element errors are Original and Simple Iterative Solution 
(OASIS) and Max-Jump-Look (MJL).  OASIS is a non-derivative based algorithm that finds 
the values of the variables iteratively for an initially-guessed start solution. The iterative process 
in OASIS is shown in Fig. 2. When the values of the variables converge, the set of values of the 
variables at the end point is a solution that corresponds to a minimum, maximum, or saddle point 
of the objective function.  This unique feature has led to the development of MJL—a new search 
method working in conjunction with OASIS to lead a warm start solution to the global minimum 
of the objective function.   

 
 
Fig. 2:  Block Diagram of OASIS —an iterative process to find a solution that minimizes the 
value of a given objective function.  
 
The new solver, OASIS Pathfinder, to be developed for SLAC’s needs is composed of OASIS 
and MJL components that are linked together by the following three functional blocks: Start 
Solution Search (SSS), Path Search (PS), and Framework Set Up (FSU).  The functional 
relationships among these five elements in OASIS Pathfinder are shown in Fig. 3.  
 

                                                 
II Material in this section has been disclosed to SLAC Office of Technology Transfer. 
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Fig. 3: Conceptual Layout of the Proposed Nonlinear Solver to be named OASIS Pathfinder. 

 
A main feature of this proposed solver is that using OASIS it can find the global-minimum 
solution even when the start solution is not within the BOA corresponding to the global-
minimum solution.  Another salient feature is that using MJL it can search for a path that ends 
at the global-minimum solution independent of the size and complexity of a given problem, i.e., 
no matter how many variables an objective function may have and how nonlinear the problem 
may be. 
 
OASIS Element 
 
The key component in OASIS Pathfinder—the OASIS element— is an original and simple 
iterative algorithmIII developed at SLAC from work performed on earlier CRADAs between 
SLAC and a few small businesses on their SBIR and STTR projects supported by DOE Office of 
Science (see Section H.2).  This new algorithm was developed for solving a set of equations of 
the form, 

 
y1 = f1(x1, x2,..., xm )  
y2 = f2(x1, x2,..., xm )  
… 
ym = fm (x1, x2,..., xm ) , 

 

                                                 
III A small business can license from SLAC the use of this technology for further development and 
eventual commercialization. 
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to find the values of (x1, x2,..., xm )  for given values of ),...,,( 21 myyy  or sydesired
k '  for 

k m= 1 2, ,..., .  This formalism, after some algebra, leads to an iterative procedure that is briefly 
summarized in the appendix and is shown in the equation immediately below.   
 
Before OASIS is used, the set of n variables ),...,,( 21 naaa is first transformed by the FSU element 
into a set of chosen m  ( n≥ ) “working” variables (x1, x2,..., xm ) .  The iterative algorithm can 
then be formulated as   
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where ),...,,(),( 21 mkk xxxfpsy =  is the value of each of the functions, sfk ' , evaluated at every 
iteration, and s and p are the two control parameters. The values of sydesired

k ' are determined for 

achieving the global minimum of the objective function at the end of the iteration, i.e. 0=
∂
∂
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for nj ,...,2,1= .  Note the changes in the working variables at each iteration (step-size) are given 
by 
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for mk ,...,2,1= .  The size of the first step as well as the sizes of all subsequent steps is 
determined by the choice of s and p values. When the values of the working variables converge, 
the size of the end step goes to zero: Δxk

end (s, p) → 0 for mk ,...,2,1= .  This condition implies 
that desired

k
end
k ypsy →),( for k m= 1 2, ,..., .   For this reason, s and p can be considered as 

convergence control parameters: s is called the “Size” parameter, and p the “Path” parameter.  At 
present, the values of (s , p ) are chosen manually in prototype code-testing studies.  In the 
following section, an idea is proposed for a systematic search procedure consisting of SSS and 
PS elements in the new solver for choosing the required values of s and p to find a path leading 
to the global-minimum solution.  On the Phase I project, a goal is, therefore, to develop an 
automated method to find the values of the actual lattice errors using the new solver.  
 
In practice, depending on the way the objective function approaches its end value, it is easy to 
see that the end point is a minimum.  From now on, the values of (a1,a2,...,an )iteration found by 
OASIS at each iterative step will be referred to as points along a path in the multi-variable space. 
To find a solution for a given minimization problem, the following steps are taken by OASIS:  
 

1. Read initial set of guess values for variables: guess
naaa ),...,,( 21 .  

2. Use guess
naaa ),...,,( 21 values to compute start

mxxx ),...,,( 21 . 
3. Use start

mxxx ),...,,( 21 values in the iterative formulae to compute first
mxxx ),...,,( 21 . 
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4. Use first
mxxx ),...,,( 21  to iteratively compute ond

mxxx sec
21 ),...,,( .  

5. OASIS continues this process to find the values of third
mxxx ),...,,( 21 ,  fourth

mxxx ),...,,( 21 , 
and so on.   

6. The iteration then stops when the values of all the sxk ' converge, i.e.  1−≅ end
k

end
k xx for 

mk ,...,2,1= .  
7. At the end, OASIS uses the end

mxxx ),...,,( 21 values to compute the values of the end 
solution as well as the end value of the objective function: end

naaa ),...,,( 21 and 

fobj (a1,a2,...,an )end  or fobj
end .   

 
Example of a Two-Variable Problem: As an illustration of how OASIS works, the results 
obtained for a typical small-scale minimization problem with two variables 1a  and  2a  are 
presented.  In this example, the same bounds, 2.0=Δ , are imposed on the values of both 
bounded variables: Δ−>−>Δ )( start

kk aa  for 2,1=k  with 1001 =starta and 1022 =starta .  By 
running OASIS repeatedly with different (s, p)  values, OASIS is able to find a set of solution 
paths starting at the same point and ending at the global minimum point as shown in Fig. 4A.  
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It can be seen from this plot that, because OASIS Pathfinder is a non-derivative-based algorithm, 
the objective function values it finds for points on the solution paths first rise above the objective 
function value at the start point before falling toward zero.  One of these solution paths is shown 
in Fig. 4B.  (In contrast, the objective function values found by using conventional derivative-
based algorithms will always be less than the objective function value at the start point.)  Since 
all paths end at the same global-minimum point, the variable values at the global-minimum point 
are given by 13.1001 =enda  and 04.1022 =enda .   
 
Figure 4B also shows another special feature of OASIS Pathfinder—Its unique ability to find the 
global-minimum solution when the start point is outside of the BOA of the global-minimum 
point.  At present, for a given start point, a manual method is used to search for the appropriate 
values of the control parameters (s, p) to find solution paths that end at the global-minimum 
point.  Using this manual search method, OASIS has been able to find the global-minimum 
solutions for small-scale problems having less than ten variables.  Based on this experience, We 
are confident that OASIS is capable of addressing larger scale problems. 
 

 
 
Max-Jump-Look Process 
 
 The development of MJL is guided by the following observations: 
 

1. The value of the objective function at a local minimum point is proportional to the 
distance between that local minimum point and the global minimum point 
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2. When the objective function value at any given point is less than the objective function 
value at a certain local minimum point, that given point is inside the BOA of another 
local minimum point which is closer to the global minimum point than the original local 
minimum point. 

3. For a given start point, there is a region in the control parameters space such that every 
pair of (s,p) values inside the region produces a path that ends at a minimum point of the 
objective function. As this given start point gets closer to the end point, the larger is this 
region and easier it is to find the values of the control parameters (s,p) for a path that ends 
at the global-minimum point. 

 
When there are multiple solution paths, MJL looks for and records the pair of (s,p) that refers to 
the path having the overall largest jump (downward) of the objective function value as shown in 
Fig. 5.  Hence, this process is named: Max-Jump-Look (MJL).  The recorded solution will be 
used as the start point when the MJL process is repeated.  Using the solution at the first max-
jump point to repeat MJL, OASIS finds the value of the objective function at the second local 
minimum point can be found.   It is easy to see that each time the MJL process is repeated, the 
point with the largest downward jump in objective function it finds will get closer to the global 
minimum point. Thus far, the result of using the MJL manually in conjunction with OASIS 
has demonstrated that this combined process can find the global-minimum solution for 
small scale problems (less than 10 variables with a small number of local minimum points 
surrounding global minimum).  On this Phase I project, another goal is to further develop the 
MJL’s dual search methods (SSS and PS) so that they can find a path leading to the global-
minimum solution automatically.  
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OASIS Working with Max-Jump-Look Method 
 
In this section, the role the s- and p-parameters play in the MJL process to search for a ‘warm’ 
start solution and a proper path that leads to the global-minimum solution is described.  When 
OASIS is used to find the real lattice model of an accelerator or storage ring, the first step is to 
select a set of variables and define an objective function.  In practice, the variables (a1,a2,...,an )  
include the strengths of magnet components as well as the calibrations of the BPMs that are used 
in measurement of the orbit response matrix.  The iterative process begins with the ideal 
strengths and calibrations as the start solution: (a1,a2,...,an )start = (a1,a2,...,an )ideal . The success of 
calibrating the real magnet strengths will depend on finding the ),( ps values for a path that ends 
at the global-minimum solution. Table I is a comparison of the proposed method (OASIS plus 
Max-Jump-Look) and the conventional methods for finding the real lattice errors in accelerators 
and storage rings. 
 
 
Comparison LOCO, MIA The New Solver 
Basin of Attraction around a 
minimum point: BOA 

Larger Smaller 

Ideal start point: 
(a1,a2,...,an )ideal  
 

Must be inside BOA of the 
Global-minimum solution 

Can be outside BOA of the 
Global-minimum solution 

Convergence: Ideal start 
point outside BOA of the 
global minimum point 

Cannot find the global-
minimum solution unless 
first search successfully for 
a warm start solution over a 
n –variable space, 

),...,,( 21 naaa . 

Can find the global-
minimum solution through 
search over only a 
2-parameter space, 
 (s , p). 

 
Table I: Summary and comparison of the basic differences between the proposed method and 
existing minimization methods to find the real magnet strength calibrations. 
 
 
D. Anticipated Public Benefits 
 
There are a number of benefits from the proposed project that will affect different U.S. 
constituencies which we enumerate below. 
 
D.1 Benefits to SLAC 
 
The proposed project intends to study a new approach in the performance of lattice modeling 
programs at SPEAR3, making use of currently available modeling techniques while adding 
functionality to it.  The new functionality is expected to increase the efficiency and confidence 
with which accelerator-control experts can make changes to their machine and this translates 
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directly to savings on the overall operational costs of accelerators.  A more specific near-term 
goal is to produce an efficient means to manipulate the lattice for extremely short pulse 
synchrotron light. This will enable the facility to serve increasingly stringent requirements of its 
scientific and industrial users. 
 
D.2 Benefits to DOE 
 
The potential savings expected in future in SPEAR3 operations imply that the facilities funded 
by DOE’s Basic Energy Sciences (BES) program will be able to do more for scientific and 
industrial research users. Specifically, it could provide a more sophisticated means to tune 
complex accelerator and free electron laser facilities such as SPEAR3 and the LCLS. The short 
bunch lengths associated with a low-α mode, for example, provide fast, broadband X-ray pulses 
that can be used for studies of ultra-fast dynamical systems along the line of research carried out 
by the BES Division of the DOE Office of Science. The developed techniques can even be 
transferred to other DOE light source user facilities.  
 
D.3 Benefits to Small Businesses 
 
An outside small business can leverage the DOE SBIR Phase I funding (and, hopefully, in a later 
Phase II-funded project) to also study the requirements for: 1) the development of a software 
toolkit to market to synchrotron light sources throughout the world; and 2) the development of a 
commercially viable product to specifically serve industrial needs in seeking optimized solutions 
for complex engineering systems.  This small business also can plan to develop OASIS 
Pathfinder as a nonlinear solver to be widely licensed to developers of math software tools such 
as MatLab.  When those requirements have been identified, the small business can then plan to 
develop a commercialization plan and seek funding to bring the above-mentioned products to 
their respective markets. 
 
E. Technical Objectives 
 
As noted in the preceding sections, the key limitation of most conventional approaches has to do 
with its inability to find the global-minimum solution for large-scale nonlinear programming 
problems. The overall objective of the OASIS-based approach is to develop a new solver that can 
overcome this limitation.  For simplicity, this new solver will be referred to as the OASIS 
Pathfinder.  The orbit response matrix values obtained from SPEAR3 model simulation and 
actual measurement will be used for validating OASIS Pathfinder’s global-minimum solutions. 
The particular steps planned to take in developing OASIS Pathfinder are described in this 
section. 
 
E.1 Overall Objective 
  
A current requirement for running OASIS Pathfinder is that the user needs to specify the range of 
s and p for the program to scan uniformly to find the optimal pair.  For each scanned pair of s 
and p, the objective functions are recorded for all iterations.  Among all objective functions 
recorded, the one with the lowest value is identified and the corresponding pair of (s,p) is chosen 
to run OASIS Pathfinder. In the course of this study a number of alternative strategies for finding 
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the optimal (s,p) more systematically will be investigated.  After a workable search method is 
identified, the requirement for building an automated search method based on an expert-system 
approach7 will be defined for further development in a Phase II project.  Expert systems are 
computer programs that use codified expertise of human experts to provide expert-level 
performance without an expert present. Expert systems often involve if-then type rules and an 
inference engine to chain together logical reasoning that solves a problem. 
 
For OASIS Pathfinder the expertise involves both in-depth knowledge of accelerators as well as 
limited knowledge in how OASIS and MJL work. Since OASIS Pathfinder is being used in an 
accelerator lattice error-finding problem, the knowledge needed for running OASIS Pathfinder 
mostly involves accelerator expertise because the various parameters involved have relationships 
that are known to experts in the field. For example, in solving the SPEAR3 storage ring lattice 
modeling problem, realistic bounds on the values of the magnet strengths will be imposed on the 
minimization process.   
 
The fully developed expert system will enable OASIS Pathfinder to carry on a dialog with the 
user/operator, who is possibly a non-expert, to guide that person through the various tasks 
performed by the MJL element.  Based on a logical chain of questions posed by OASIS 
Pathfinder and garnered through the experience of human experts, an operator will be able to 
safely and efficiently pilot the lattice modeling process through the steps found by OASIS 
Pathfinder toward the goal of finding the actual magnet strength values. 
 
E.2 Specific Objectives 
 
A four-step approach will be used in this Phase I project to develop OASIS Pathfinder and 
compare the global-minimum solution to be found by OASIS Pathfinder with some of the 
existing solutions obtained by the conventional methods for the lattice modeling problem in 
SPEAR3.  The objectives to be reached in the four steps are:  
 

1. Explore different means to search for a set of ‘warm’ start solutions and ‘max-jump-look’ 
paths that lead to the global-minimum solution.  Simulated orbit response matrices from 
SPEAR3 will be used to develop automated processes with OASIS Pathfinder. 

 
2. Develop the expert system that uses OASIS Pathfinder to find the magnet strength errors 

in the model.  A number of test cases will be run that involve simulations using different 
sets of magnet strength errors in an ideal lattice. 

 
3. Test the fully automated OASIS Pathfinder on actual measured SPEAR3 response 

matrices by comparing the global-minimum solution with solutions found by LOCO.   
 

4. Investigate how the fully automated OASIS Pathfinder can be further developed to 
become a training tool for accelerator physicists and operators—simulated data and 
realistic constraints can be added to the modeling process and different aggregate 
objective functions can be studied. The aim is to find a way to make expert knowledge 
learned from simulation available to accelerator operators by capturing it in OASIS 
Pathfinder. 



 16

 
F. Phase I Work Plan 
 
To implement the technical approach for achieving the objectives as started above, the following 
work plan is proposed: 
 

1. Merge LOCO and OASIS Pathfinder into one integrated system in MATLAB. 
 

2. Study means to develop hands-free automated search procedures to find optimal 
convergence control parameters s and p (Objective 1). 

 
3. Incorporate lattice expertise together with an automated OASIS Pathfinder to produce 

prototype code for testing OASIS Pathfinder’s ability to find the global-minimum 
solution with simulated data from a SPEAR3  model (Objective 2). 

 
4. Investigate extensions to OASIS Pathfinder so it runs directly on measured orbit data 

(Objective 3). 
 

5. Investigate, and identify the requirements, in the use of OASIS Pathfinder as a training 
tool for operators so that expert analysis can be brought into the control room at all times 
for finding faults without expert interventions (Objective 4).  

 
6. Define requirements for further research and development leading to Phase II proposal. 

 
7. Write final report.  

 
G.  Phase I Performance Schedule 
 
The Phase I contract will be executed over a nine month time period as indicated below.  
 
Task                                                                Months From Project Start         
                                                                        0     1     2     3     4     5     6     7     8     9 
1. Integrate LOCO and OASIS Pathfinder      |-------| 
 
2. Study means to find warm start solution            |------| 
and max-jump-look path (Objective 1) 
 
3. Make OASIS Pathfinder prototype   
 and test OASIS Pathfinder on  
 simulated data (Objective 2)                                     |----------| 
 
4. Test multiple lattice errors                                                |---------------------| 
 using measured orbit data (Objective 3) 
 
5. Study OASIS Pathfinder training tools                                          |--------------| 
 (Objective 4) 
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6. Identify requirements Phase-II R&D                                                             |--------| 
 
7. Write final report                                                                                         |---------------| 
 
 
H. Related Research and R&D 
 
While Dr. Martin Lee was an employee at SLAC, he developed the ideas of OASIS Pathfinder 
based on work performed on earlier CRADAs between SLAC and a few small businesses on 
their SBIR and STTR projects supported by DOE Office of Science.  Those DOE SBIR/STTR 
projects are shown below.  

H.1 Phase I Projects 
 
Optimal Model-Based Fault Estimation and Correction for Particle Accelerators and Industrial 
Plants Using Combined Support Vector Machines and First Princiles— Pavilion Technologies, 
Inc. (2007). 
 
Self-Validating Knowledge-Guided On-Line Optics and Orbit Correction in an Electron Storage 
Ring Using a Combined Neural Network and First-Principles Model—Pavilion Technologies, 
Inc. (2004). 
 
Adaptive, Nonlinear Model Predictive Control for Accelerator Feedback Control Systems—
Pavilion Technologies, Inc. (2000). 
 
An Automatic Beam-Based System for Analyzing Accelerator Misalignment Problems—Sandia 
View Software, Inc. (1999). 
 
Automatic Component Calibration and Error Diagnostics for Model-Based Accelerator 
Control—Vista Control Systems, Inc. (1998). 

 

H.2 Phase II Projects 
 
Development of PUNDA (Parametric Universal Nonlinear Dynamics Approximator) Models for 
Self-Validating Knowledge-Guided Modeling of Nonlinear Processes in Particle Accelerators 
and Industry—Pavilion Technologies, Inc. (2005). 
 
Robust Optimal Adaptive, System Identification & Nonlinear Model Predictive Control Strategy 
for Accelerator Feedback Control System—Pavilion Technologies, Inc. (2001). 
 
Intelligent Automated Tuning Systems Based on Hybrid Neural Networks—Physical Optics 
Corporation (1998). 
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Appendix - Setting Up the Framework for OASIS Pathfinder   
 
In this proposal, the global-minimum solution refers to the bounded multi-variable 
point ),...,,( 21 nbbb  having the overall lowest objective function value. To use OASIS 
Pathfinder, the first step is to transform the set of n bounded variables ),...,,( 21 nbbb  to a set of 
free variables ),...,,( 21 naaa .  The second step is to transform this set of free variables into a set of 
chosen m  ( n≥ ) “working” variables (x1, x2,..., xm ) .  Both of the transformations are done in the 
SFU element.  In this section, a brief description of the FSU element of the OASIS Pathfinder is 
described.   
 
In practice, the set of n variables bounded by constants can be transformed into another set of 
equal number of free variables that are bounded automatically.  For example, the bounded 
variable, 2/2/ ππ −>> kb , can be transformed into a free variable, )tan( kk ba = .  Similarly, the 
set of functional constraints can be absorbed by introducing another set of equal number free 
variables.  Each of the free variables is accompanied by an auxiliary function which is added to 
the given objection function to become an aggregate objective function aoff .  Therefore, a square 
extended ( m x m ) Hessian matrix can always be formed with m equal to n plus the number free 
variables added, i.e., nm ≥ .    
 
Let the extended Hessian matrix evaluated at the start point (a1,...,am )startbe denoted as H with 

its elements given by
kj

start
aof

jk aa
f

h
∂∂

∂ 2

= .   Singular Value Decomposition of H  gives 

TVUH Λ= , 
where U  and V are unitary matrices, i.e., TUU =−1 and TVV =−1 , and the elements of the 
diagonal Λ-matrix  are the singular valuesIV. 
 
FSU first transforms the variables T

maaa ),...,( 1=
r  into the working variables T

mxxx ),...,( 1=
r such 

that aVx T rr
=  .  Then FSU introduces the path-control parameter p into the OASIS framework:  

 
startTstartT aHpUJJUy rrrr

+−= )( , 
  

where J
r

 is the Jacobian of the objective function with its thk element given by 
k

maof

a
aaf

∂
∂ ),...,( 1  

for k =1,2,...,m .   Furthermore, since xVa rr
= , the above equation can be expressed in terms of a 

set of functions that are used in the OASIS algorithm  

                                                 
IV Degeneracy in the Hessian can be avoided by shifting the start point (a1,...,am )start  slightly.  
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  startTstartT xHVpUxJxJUxfy rrrrrrrr

+−== ))()(()( . 
 
Since  

r 
y  depends on the value of the path parameter, p, variations of the objective function along 

a path also depend on p.  In addition, in order for the objective function value to be minimized, 

the Jacobian evaluated at the end point must approach zero, i.e., 0→
k

end
aof

a
f
∂

∂
 for k =1,2,...,m .  To 

satisfy this condition, the desired value of yr is chosen to be 
 

startTstartTdesired xHVpUxJUy rrrr
+−= ))(( .   

 
 
Epilog   
 
For completeness, a simple derivation of the OASIS Algorithm is described in this section.   
 
In general, it is possible to transform a set of equations of the form 
 

y1 = f1(x1, x2,..., xm )  
y2 = f2(x1, x2,..., xm )  
… 
ym = fm (x1, x2,..., xm ) , 

 
where   

r 
f = ( f1, f2,..., fm )T , into a matrix equation of the form  

r 
y = F(

r 
x ,r)

r 
x .  The transformation is 

accomplished via the introduction of a parameter, r, in this special way:  
 
 

           
⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

:............
...
...
...

:
3

2

1

3
3

2

3

1

3

3

2

2

2

1

2

3

1

2

1

1

1

3

2

1

x

x

x

x
tf

x
rf
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x
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with rmt )1(1 −−= , where m is the number of equations.  Because of its simple form, this matrix 
equation can be easily inverted.   After some algebraic manipulations, the resulting inverse 
matrix equation is given by the “Good Old” algebraic identity: 
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where α =
1+ r

1+ mr
 and β =

r
1+ mr

.   The form of this matrix equation suggests a simple recipe to 

find the solution for a given set of yk
desired 's for k =1,2,...,m—Look for the values of 

(x1, x2,..., xm )  such that when they are put into the inverse matrix and multiplied by the vector, 

  
r 
y desired = (y1

desired ,y21
desired ,...,ym

desired )T , the computed xk 's values for k =1,2,...,m are the same as the 
given values, i.e., 
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which can be simplified to become 
 

         xk
yk

desired

fk

+ s yk
desired

fk

−
1
m

y j
desired

f jj=1

m

∑
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
⇒ xk  for k m= 1 2, ,..., , 

 

where s =
r

1− mr
.  It is this observation that has led to the iterative formula in OASIS (section 

C.5).   
 
 
Making OASIS Algorithm Adaptive 
 
The aforementioned matrix formalism offers one unique feature for the iterative algorithm in 
OASIS. It is easy to vary the value of s adaptively along a solution path by considering r as an 
additional variable, xm +1 = r , and by adding another constraint equation to the given set of m 
equations such as 
  

  ym +1 =1+ fobj (x1,x2,...,xm ) .  
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an algorithm for varying the value of r at each iterative step has been developed.   Note that the 
added function in the constraint (m+1) equation is defined such that the desired value of ym+1 is 
equal to 1, i.e., ym +1

desired =1 when fobj (x1,x2,...,xm ) → 0. 
 
In this variable r option, it can be shown (after some algebra) that the value of r from one step to 
the next is given by  
 

   rnext = r gm +1 − (m + 1)rg0

1 − (m + 1)r
. 

where  

 gk =
yk

desired

fk

 

 g0 = 1
m +1 gk

k=1

m +1

∑ . 

 
The corresponding iterative value of each component of  

r 
x  is given by 

 

xk
next = xk

gk − (m + 1)rg0

1 − (K + 1)r
 

 
for k =1,2,...,m.  It has been found that when the sequence of rnext  values converges, the 
corresponding sequence of sstep  values also converges. For the constraint function fm +1 shown 
above, at the end point, send → 0 .  Under this condition, the changes in the working variables at 
each iteration are given by 
 
   Δxk

end (o, p) = xk
end − xk = xk (gk −1) → 0.  

 
This condition implies that gk →1, or  
 
   yk → yk

desired  for mk ,...,2,1= . 
 
Because of the simplicity of the iterative algorithm, the benefit is clear—the iterative process can 
be easily integrated into many of the existing modeling codes.  Furthermore, since the OASIS 
technique is not limited to the number of equations and can be implemented in parallel with 
parallel processors, the technique lends itself naturally to parallelization.  Another useful feature 
of the iterative algorithm is that it is equally applicable to finding the global-minimum solution 
for a set of complex functions as it does for a set of real functions.        
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