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The theory of rigid body kinematics is used to de-
rive equations that govern the control and measure-
ment of the position and orientation of undulator
girders. The equations form the basis of the girder
matlab software on the LCLS control system. The
equations are linear for small motion and easily in-
verted as desired. For reference, some relevant girder
geometrical data is also given.

1 Rigid Body Motion

An ideal, perfectly rigid body, is one that can be
moved and rotated in space but does not deform in
any way. “Kinematics” refers the study of the mo-
tion of such bodies. It deals with the issues of what
motions are possible, how to describe them, and the
effects of constraints on the motion. It is an old dis-
cipline and not much in vogue any more. Only one
surviving ‘theorem’ is relevant to this paper, Chasle’s
theorem [1], and it is hardly a theorem. It states that
you can completely describe any motion of any rigid
body by a single pure translation and a single pure
rotation. That means all you can know about the mo-
tion can be boiled down to answering the questions,
how did it translate, and how did it rotate.

The theorem is generally true for three dimensional
objects with three translational degrees of freedom
and three rotational degrees of freedom — six de-
grees of freedom overall. It turns out that in the case
of the undulator girders, it is simpler to derive the
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Figure 1: Two dimensional representation of rigid
body motion.

overall 3D motion by first analyzing the 2D trans-
verse motion of the girder in two planes of different
longitudinal coordinate z. So we will only develop
equations for 2D motion. Such motion involves three
degrees of freedom, two spatial and one rotational,
and is illustrated in Figure 1.

Figure 1 shows a planar body in two possible posi-
tions: 1 and 2. The net motion of an arbitrary point
P fixed in the body can be described by the differ-
ence of vectors from the origin of a fixed coordinate
system to the point P : R2 −R1. If you know where
P is in position 1, and you also know R2 −R1, you
can calculate its location in the position 2. To ap-
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ply Chasle’s theorem we express R2 −R1 in terms
of another translation vector T and a rotation about
and arbitrarily chosen point fixed in the body. In the
figure, r1 and r2 represent vectors from this origin
to P , and the vector T represents the translation of
the origin. Clearly, for a rigid body, r1 and r2 must
have the same length, but they may have different
directions if the body has rotated. By inspection we
have

R2 −R1 = T + r2 − r1, (1)

and we know that r2 can be obtained by a rotation
of r1.

To simplify the discussion, we will only calculate
differential motion such that all body rotation angles
are much less than 1. Because the interesting motions
of the girders are very small compared to the girder
size, all changes in rotational angles involved are also
very small compared to 1, and differential motion is
an appropriate description. If higher accuracy is de-
sired, then the differential motion can be integrated
as a series of small steps.

If the dθ is defined as the differential rotation angle,
and ez is a unit vector in the z direction, then

r2 − r1 = dθez × r1.

If we apply this to equation 1 we have

dR = R2 −R1 = dT + dθez × r1. (2)

We are essentially done with the theory. Equa-
tion 2 expresses the differential change of position of
any point in the body as a single translation vector
dT and a single differential rotation angle dθ (the
same for all points in the body) and the rotation of
a relative position vector r1. A 3-D version of this
equation would have in place of dθ a rotation vector
of three angles, but otherwise would look about the
same.

The trick now is to apply the theory.

2 Girder Motion—2D

Using the above theory, simple as it is, we can cal-
culate the position of the girder from either, (1) the

readings of potentiometers that measure linear dis-
placement at arbitrary points on the girder, or (2)
the shaft rotation angles of the five cams that sup-
port the girder. Inversely, this theory allows us to
start with an assumed girder position and then cal-
culate cam shaft angles required to obtain it and what
the potentiometer readings should be.

To simplify the discussion we will first show how
this works first for linear potentiometers and then
study case of cam motion, both in 2-D. Finally, we
shall see that by using a simple extrapolation, a 2-D
analysis is all we really need to completely describe
the complete 3-D girder motion.

2.1 Linear Potentiometers

Imagine a plane figure, such as the one in Figure 2,
in contact at three points with the ends of the sliding
shafts of three linear potentiometers. The locations
of the points of contact and the angles of contact with
the edge of the figure are arbitrary. The bodies of the
linear potentiometers are considered fixed in space so
that If the body moves, there will be a change shaft
lengths. For a 2-D body there are only three degrees
of freedom, translations in x and y coordinates, and
roll. So three linear potentiometers are necessary to
determine the motion.

Now refer to Figure 3 showing a close-up of a single
linear potentiometer in contact with a body in both
the moved and initial positions. The unit vector u is
defined as perpendicular to the surface of the body
at the initial contact point P1 and is directed into
the body. We assume that the linear potentiometer
is pointed in this same direction for simplicity. Since
only differential motion is assumed, there is no sig-
nificant change in the direction of the unit vector u.
The increase in the length of the potentiometer shaft,
LP , is then just the dot product of the displacement
of point P1 and the unit vector u. From equation 2
applied to point P1 we can write down the differential
change in the position of the initial contact point and
relate it to the change in the potentiometer reading,

R2 −R1 = dT + dθez × rP1 (3)
LP = u1 · (R2 −R1) (4)
LP = u1 · (dT + dθez × rP1), (5)
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Figure 2: Three linear potentiometers at arbitrary
positions can be used for measuring motions of a 2-D
body.

Figure 3: Motion of initial contact point P1 and the
linear potentiometer displacement, LP.

where rP1 is a vector from some yet-to-be-chosen ori-
gin fixed in the girder.

Equation 5 is a generic equation that connects a
linear poteniometer reading with the overall transla-
tion and rotation of the body. If we write down three
such equations for the three linear potentiometers in
Figure 2, with readings: LP1, LP2, and LP3; then
we have in total,

LP1 = u1 · (dT + dθez × rP1) (6)
LP2 = u2 · (dT + dθez × rP2) (7)
LP3 = u3 · (dT + dθez × rP3). (8)

Once the origin is chosen, r’s and u’s can be deter-
mined from the geometry of the body. Equations 6-8
show that for a given 2-D vector dT and rotation
angle dθ, the increases to the lengths of the linear
potentiometers can be calculated.

By inverting equations 6-8 we can go from linear
potentiometer readings to body translations and ro-
tations. Generally the equations, which are linear,
will be invertible unless there is a particularly poor
choice for the locations and angles of the linear po-
tentiometers, e.g., two are co-linear.

Any arbitrary point fixed in the body can be cho-
sen for the coordinate system origin which determines
the r’s and u’s, but it is usually convenient to pick
one in which the positions of the contact points can
be easily be evaluated. In the case of the Undulator
system, a convenient choice is the point on the the-
oretical beamline when the girder is at the ‘Home’
position and at the z midpoint of the undulator seg-
ment. The ‘Home’ position is defined as the midpoint
of the range of motion of the girder.

2.2 Cams

Now turn to Figure 4 which depicts three roller bear-
ings, mounted eccentrically on fixed rotatings shafts,
making contact with a 2-D body at three points. The
bearings have the property that there is free relative
motion between the body and the bearing at the con-
tact point in the tangential direction, but no motion
allowed in the perpendicular direction. Because of
the eccentricity, when a shaft rotation angle changes

3



Figure 4: Three roller bearings, depicted as circles,
can be used for controlling motions of a 2-D body.

(shown as small arrows), the center of the correspond-
ing bearing moves and in turn causes the body to
move. Since there are three degrees of freedom, there
is a unique position of the body for each set of three
shaft angles (cam angles), provided the body stays
in contact with the roller bearings. If any one of
the roller bearings was not making contact with the
body, the body would be free to move and its position
would be indeterminate.

If we look closely at the contact point of one cam,
as shown in Figure 5, we can see that the cam angle
φ controls the distance from the fixed shaft axis to
the flat spot on the edge of the body. The eccentric-
ity vector, ε is the vector from the axis of the shaft,
which is fixed, to the axis of the cam bearing, which
is moving.

When the cam shaft angle φ defined such φ = 0
corresponds to ε being perpendicular to u, the unit
surface vector at the initial contact point, then the re-
lationship between motion of the initial contact point,
R2 −R1, and the cam shaft angle is:

u · (R2 −R1) = u · ε = |ε| sinφ.

Note that u and the vector of body motion R2 −R1

are not generally co-linear.
As before R2 −R1 = dT + dθez × rP1. Applying

Figure 5: A flat spot on the Body in contact with a
cam roller bearing is shown at two angles of the cam
bearing axis, ‘home’ and φ.

these relations to all three cams, labeled 1,2,3, yields

u1 · (dT + dθez × rP1) = |ε1| sinφ1 (9)
u2 · (dT + dθez × rP2) = |ε2| sinφ2 (10)
u3 · (dT + dθez × rP3) = |ε3| sinφ3 (11)

These equations can be used in different ways, de-
pending on what is known and what is to be cal-
culated. For example, if you know the cam an-
gles φ1, φ2, φ3, the locations of the contact points
rP1, rP2, rP3, and the roll and translation of the
body, then you can calculate the magnitude of the
eccentricity vectors. Similarly, if you know the mag-
nitude of the eccentricity vectors, cam angles and the
locations of the contact points, then you can calcu-
late the translation and roll of the body. In the most
common cases, the locations of the contact points are
known from the design geometry, and the magnitude
of the eccentricity vectors are known from measure-
ments on the cam shafts prior to assembly. Some of
the basic geometry of the cams and girders is given in
Figure 7 with respect to the girder coordinate system.

If we write out equation 9 explicitly with horizontal
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and vertical components of dT, (dTx and dTy), we
get,

dTxu1x + dTyu1y + dθu1 · ez × rP1 = |ε1 sinφ1|

Analogous equations can be written for cams 2 and
3. Taking all three equations together, a matrix ex-
pression can be constructed. We define the matrix
M3 (which refers to the 3-cam plane) as

M3 =

 u1x u1y u1 · ez × rP1

u2x u2y u2 · ez × rP2

u3x u3y u3 · ez × rP3

 . (12)

Then we can write

M3

 dTx

dTy

dθ

 =

 |ε1| sinφ1

|ε2| sinφ2

|ε3| sinφ3

 (13)

and

M−1
3

 |ε1| sinφ1

|ε2| sinφ2

|ε3| sinφ3

 =

 dTx

dTy

dθ

 . (14)

With this information, given the cam angles we can
solve for the motion of the girder in the 3-cam plane,
or inversely we can find the cam angles that will gen-
erate a given motion.

We shall see that the full motion of the girder can
be determined by additionally solving the motion in
the 2-cam plane. However there are only two degrees
of freedom in the 2-cam plane so we can not generally
solve for 2D transverse motion and roll. Since roll is
uniquely determined in the 3-cam plane, we will take
it as a known quantity when doing calculations in
the 2-cam plane. As in the 3-cam plane we define a
matrix connecting the cam angles with the motion:

M2 =
[
u4x u4y u4 · ez × rP4

u5x u5y u5 · ez × rP5

]
, (15)

so that

M2

 dTx

dTy

dθ

 =
[
|ε4| sinφ4

|ε5| sinφ5

]
. (16)

To invert this relationship and find the displacements
as a function of angles for a given dθ we note that,

u4xdTx + u4ydTy = dθ|ε4| sinφ4 − u4 · ez × rP4

u5xdTx + u5ydTy = dθ|ε5| sinφ5 − u5 · ez × rP5.

Identifying the 2× 2 matrix,

A =
[
u4x u4y

u5x u5y

]
, (17)

we have the desired inverse relationship for the 2-cam
plane.

A−1

[
|ε4| sinφ4 − dθu4 · ez × rP4

|ε5| sinφ5 − dθu5 · ez × rP5

]
=
[
dT
dTy

]
. (18)

3 Girder Motion—3D

So far we have only looked at kinematics of 2D ob-
jects. The girders are, of course, 3D objects. But be-
cause the undulator cams are arranged in two planes
whose z separation is much larger than the transverse
motion, the 3D motion can easily and accurately be
calculated from the 2D motion in each of the two
cam-planes.

To see how this is done, consider Figure 6 which
depicts a displaced line that should be thought of
as moving with the girder and intially co-linear with
the ideal beam centerline z axis. We will define the
‘girder axis’ as this line. The transverse coordinates
of the girder axis in the planes z = ZA and z =
ZB are given by the components of vectors TA and
TB. From the figure it is clear that the transverse
displacement of any point on the girder axis T(z) can
be obtained from TA, TB, and the z positions of the
point and the planes, via,

T(z) = (TB −TA)
z − zA

zB − zA
. (19)

So knowledge of the displacement of the girder axis
in any two planes is sufficient to determine the dis-
placement of the girder axis at any point. For ex-
ample, the motion of points of interest, such as the
quadrupole center or the BPM center, can calculated
using equation 19, where zA is the downstream cam-
plane coordinate, zB is the upstream cam-plane co-
ordinate, and z is the coordinate of the quadrupole
center or bpm center.
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T(z) = (TB - TA)  x (Z-ZA)/(ZB-ZA)

Figure 6: Any point on the girder axis can be calcu-
lated from the displacments of the axis at two planes
A and B as shown in this figure.

4 Conclusion

Equations 6-8 relate the linear potentiometer read-
ings to the motion of the girder. Equations 9-11 relate
the cam shaft angles to the motion of the girder. Both
sets are easily inverted to either obtain the girder mo-
tion from the angles or readings, or, to find the an-
gles and readings that would give a desired motion.
The motion of any point on the girder can be calcu-
lated by applying either sets of equations to the two
cam-planes and extrapolating in the z coordinate us-
ing equation 19. The formulation of the equations is
quite general and easily coded via matrix and vector
methods. They form the basis of the girder matlab
software on the LCLS control system.

Acknowledgements

This work benefited from discussions between the au-
thor and H-D. Nuhn, and J. Xu.

References

[1] H. Goldstein, Classical Mechanics, p163

6



x

y

x

y

Coordinate system x=y=0 at ideal beam center. z = 0 at segment midplane. (from D. Schafer special
markups 10/7/08)
Cam contact points       x             y            z
                Cam 1           -151.4   -384.2   -1170
                Cam 2            301.5   -388.7   -1170
                Cam 3            357.7   -397.1   -1170
                Cam 4           -207.0  -388.7     1170
                Cam 5            358.3   -397.1    1170
Quad    center                  0.0         0.0    1808                          
BPM center                       0.0         0.0    1939
BFW center                       0.0         0.0   -1795
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Figure 7: Configuration of cams and linear potentiometers.

7


