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Abstract

The LINAC Coherent Light Source (LCLS), an X-Ray free-electron laser(FEL) based on

the self amplified spontaneous emission principle, has recently come on-line. For many users

it is desirable to have an idea of the level of transverse coherence of the X-Ray beam pro-

duced. In this paper, we analyze the output of GENESIS simulations of electrons traveling

through the FEL. We first test the validity of an approach that ignores the details of how the

beam was produced, and instead, by assuming a Gaussian-Schell model of transverse coher-

ence, predicts the level of transverse coherence simply through looking at the beam radius

at several longitudinal slices. We then develop a Markov chain Monte Carlo approach to

calculating the degree of transverse coherence, which offers a ∼100-fold speedup compared

to the brute-force algorithm previously in use. We find the beam highly coherent. Using a

similar Markov chain Monte Carlo approach, we estimate the reasonability of assuming the

beam to have a Gaussian-Schell model of transverse coherence, with inconclusive results.
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I. INTRODUCTION

The LINAC Coherent Light Source (LCLS) has recently come on-line. The LCLS is a

free-electron laser (FEL) that works based on the self amplified spontaneous emission(SASE)

principle.1 The LCLS can create coherent X-Ray radiation, which will be able to be used

for imaging very small objects, such as single proteins. Since the radiation produced by the

LCLS is highly coherent, objects can be imaged through looking at the interference patterns

produced. This is often more powerful than simply looking at absorption patterns as in the

case, for example, with a conventional microscope.

The level of transverse coherence of the LCLS tells us a lot about its imaging capabili-

ties. Therefore, it is desirable to have an accurate idea of the level of transverse coherence

produced by the LCLS. Many diagnostics are being proposed and run to measure the prop-

erties of the beam produced. Traditionally, transverse coherence properties can be mea-

sured through setting up a double slit experiment and measuring the position and visibility

of fringes produced. However, the LCLS is producing X-Rays, with wavelengths of ∼1.5

Angstroms, roughly the size an atom, so transverse coherence properties can not be easily

measured through these standard techniques.

A. Transverse Coherence

Consider a flat surface of many light sources emitting monochromatic light of a wavelength

much smaller than the size of the surface. We want to find how the light emitted depends

on the level of coherence between the different light sources.

When the sources are in-phase and completely coherent, they will interfere to form a

fairly straight beam pointed orthogonal to the surface. This is because when an observer is

far away from the surface in the orthogonal direction, all of the sources are about the same

distance apart and are in-phase. Therefore all sources positively interfere to create a high

intensity orthogonal to the surface. However, if an observer is far away from the surface in a

non-orthogonal direction, the observer is at a different distance from each source, therefore,

most of the sources will destructively interfere. Therefore, the vast majority of the intensity

will be concentrated in a coherent beam orthogonal to the surface, which will only be slightly

divergent.

4



When the multiple sources are completely incoherent, the different sources have a random

phase relative to each other. Therefore, the light produced by each source will not interfere

with the light produced by other sources, as the random phase difference between sources

remains a random phase difference regardless of the phase factor from differing distances

between the sources and the observer. Therefore, light will emanate from our set of sources

equally in all directions. Note that this is just a fancy way of describing something very

intuitive-light produced by bulbs arranged on a surface will not spontaneously interfere to

create a coherent beam.

We see that a completely coherent set of in-phase sources on a plane produces a beam

that diverges very little. However, when the sources are made completely incoherent, they

produce no beam at all, instead radiating equally in all directions. Viewing a continuous

source as an infinite array of infinitesimally small point sources, we see that the level of

transverse coherence will determine how quickly the resultant beam will diverge. A highly

coherent source will produce a slightly divergent beam; a low-coherence source will produce a

much more divergent beam. Armed with this notion, we now get a little more mathematical.

B. Mathematical Formulation

Many of the statistical properties of light can be described by the mutual coherence

function.23

Γ(r1, r2, τ) = 〈E(r1, t)E
∗(r2, t + τ)〉

Where r1 and r2 are positions, and E(r, t) is the complex-valued electric field at position

r and time t.

We can also consider the coherency between two points limited to a single frequency

basis, which is called the cross-spectral density function.

W (r1, r2, ω) =

∫ ∞

−∞
Γ(r1, r2, τ)e−iωτδτ

We also care about the mutual intensity function

J(r1, r2) = Γ(r1, r2, 0)
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When we are dealing with light that is close to monochromatic, we can assume that all

of the light is close to the frequency ω0, and we make the assumption:

J(r1, r2) ∝ W (r1, r2, ω0)

C. The Gaussian-Schell model

The Gaussian-Schell model is a model of transverse coherence of a beam moving along

the z-axis. At z = 0, the source point of the beam,

W (r1, r2, z = 0, ω = ω0) = A2exp[−(r2
1 + r2

2)

4σ2
S

]exp[−(r1 − r2)2

2σ2
G

]

A is the amplitude

r2, r2 are two-dimensional vectors representing transverse positions

σS is equal to the beam radius at the source, σG is equal to the transverse coherence length

at the source

We are making a quasi-monocromatic approximation, J ∝ W (ω0) so we can say:

J(r1, r2, z = 0) ∝ exp[−(r2
1 + r2

2)

4σ2
S

]exp[−(r1 − r2)2

2σ2
G

]

We can see that the intensity at the source, I ∝ J(r, r, z = 0) ∝ exp[−r2

2σS
], so at the

source, there is a beam of Gaussian intensity, where σS is the beam radius.

The correlation coefficient between the field at any two points is

J(r1, r2)

(
√

J(r1, r1)J(r2, r2))
= exp[−(r1 − r2)2

2σG
]

We can see that the correlation coefficient decays as a Gaussian with the distance between

r1 and r2, where σG is the transverse coherence length

Now we want to see what the properties of the beam are away from the source point. At

points away from the source, z > 0, the beam propagates as:

J(r1, r2, z) ∝ 1

∆(z)2
exp[− (r2

1 + r2
2)

4σ2
S[∆(z)]2

]exp[− (r1 − r2)2

2σ2
G[∆(z)]2

]exp[−ik(r2
1 − r2

2)

2R(z)
]

where ∆(z) is the expansion coefficient

∆(z) =
√

1 + (z/kσSδ)2
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,
1

δ2
=

1

(2σS)2
+

1

σ2
G

R(z) = z[1 + (
kσSδ

z
)2]

where k is the wavenumber of the frequency ω0.

The first exponential term is related to the beam radius, as it is the only term that

doesn’t go to 1 as r1 → r2. The second term is related to the transverse coherence length,

whose magnitude scales as a Gaussian of the distance between r1 and r2. The third term is

a phase difference due to the slightly different lengths of r1 and r2 from the source. We can

see that the both beam radius and the transverse coherence length increase proportionally

to the expansion coefficient, ∆(z).

The degree of transverse coherence is:

ζ(z) =

∫
|J12|2δr1δr2)

(
∫

J11δr1)2

J(r1, r2, z) = 〈E(r1, z)E∗(r2, z)〉

Where J12 = J(r1, r2, z), and J11 = J(r1, r1, z)

For the GSM, evaluating the degree of transverse coherence analytically shows that it

depends on the ratio between the beam radius and the transverse coherence length, and is

independent of z

ζGSM =
σ2

G

σ2
G + (2σS)2

The appeal of assuming a GSM is that we can predict all coherence properties through

simply measuring the beam radius for several values of z (Possible experimentally or through

a computer simulation) without ever considering the details of how the beam was actually

produced. Then, through knowing the expansion coefficient, we can calculate all transverse

coherence properties of the beam produced. The question is, of course, whether the actual

beam properties are close enough to the GSM to make this approximation reasonable. An-

other issue when assuming a GSM for an FEL is where to assume the beam source to be;

unlike in a conventional source, the radiation from a FEL originates at all points within the

undulators.
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II. NUMERICAL METHODS

A. Curve Fitting

1. Finding the beam radius

One way we can find the beam radius is by finding the root-mean-square of the beam

intensity.

Beam Width2 =
1

2

∫
J(r, r)r2

Power2

The factor of 1
2 is because we are integrating over a two-dimensional vector.

Another way we can find the beam radius is through fitting. Since both the simulated

beam intensity profile and a Gaussian beam intensity profile are functions over the same

space, we can treat them as vectors, and try to minimize the angle between them.

cos(θ) =
IMeasured · IGaussian

|IMeasured||IGaussian|
This is equivalent to maximizing the quantity,

(IMeasured · IGaussian)2

|IMeasured|2|IGaussian|2

2. Fitting beam radius to the GSM

If we know the location of the beam source, then all we need to know is δ and σS to

know all of the properties of the beam. Therefore, we assume a source point, which is

a somewhat unsafe assumption, as the radiation produced comes from the total length of

the undulators. Having assumed a source point, we assume σS to be the beam radius at

the source point. We can then simply fit δ with a least-squares fit. This approach has the

advantage in that it can be done simply through looking at the beam radius at various points

without ever considering the details of how the beam was produced. The same approach

was used to model the properties of FLASH(Free electron LASer at Hamburg), a FEL at

DESY operating under the SASE principle.4
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B. Calculating the Degree of Transverse Coherence

Using data produced by the GENESIS code5, which performs simulations of electrons

traveling through the undulators, we can measure the electric field at all points in time at

every position along the z-axis. Since in a simulation, unlike in experiment, we can observe

everything, we can make calculations we could not otherwise make.

One quantity of interest is the degree of transverse coherence, which is

ζ(z) =

∫ ∫
|J12|2δr1δr2

(
∫

J11δr1)2

where J12 = J(r1, r2, z), J11 = J(r1, r1, z).

Note that J11 is equal to the intensity at r1; Therefore,
∫

J11δr1 ∝ Beam Power. We can

replace the term in the denominator with the total power squared, giving us:

ζ =

∫ ∫
|J12|2δr1δr2

Power2

ζ is difficult to calculate explicitly, as the integration area is very large. To do this, we

need to integrate over all pairs of points (r1, r2) along the axis. For example, if your electric

field is 100 cells wide, then you have 10,000 values of r. Therefore, you have to calculate

10, 0002 = 100 million quantities for J12(One for each pair (r1, r2)): Note-You can get it

down to 50 million using the Hermitian propertiy of the J matrix, as J(r1, r2) = J(r2, r1)∗,

but it’s still a fairly unwieldy calculation.

Fortunately, we can make the degree of transverse coherence susceptible to Markov chain

Monte Carlo techniques by rewriting the degree of transverse coherence as:

ζ(z) =

∫ |J12|2

Power2 =

∫ |J12|2

J11J22

J11J22

Power2 =

∫
f(r1, r2)P (r1, r2)

Where P (r1, r2) = J11J22

Power2
and

f(r1, r2) = |J12|2
J11J22

We can treat P (r1, r2) as a probability, as
∫

(P (r1, r2)) =
R

J11
R

J22

Power2
= Power2

Power2
= 1. There-

fore, we can estimate it by sampling f(r1, r2) with probability P (r1, r2), which we can do

through using a random weighted walk through the state space. In this case, a state α

represents a pair of transverse points (r1, r2).
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We use a weighted random walk through the state space. Each state α has a certain prob-

ability distribution of states α′ it can transition to during each iteration. The pseudocode

for the algorithm is straightforward and is shown below:

State α

State α′ = randomNeighboringState(α)

if

(
rand() <

Probability(α′)

Probability(α)

)

α ← α′

Sample f(α)

where rand() returns a random number from zero to 1.

It can be proven that, as long as, for all (α1, α2), the probability of α2 being proposed

as a transition from α1 is equal to the probability of the opposite, the correct probability

distribution is generated by this set of transition probabilities. Markov chain Monte Carlo

algorithms have the significant advantage over other Monte Carlo algorithms in that most

of the time is spent sampling from the most important parts of the summation. This makes

a Monte Carlo approach faster.

Initial states of the random walk are determined through rejection sampling, where we

propose states with uniform probability, and then only accept them with probability pro-

portional to P (α). This algorithm will return the correct distribution of α. Since for our

implementation, P (α) = P (r1)P (r2), values of r1 and r2 can be generated independently

from each other, speeding up the algorithm significantly.

C. Estimating the Similarity of the Emitted Radiation to the GSM

One way to see how well our model fits is to estimate the difference between J(α) and

G(α). In doing so, we neglect the phase term of the GSM, as it depends on the source point,

which we don’t exactly know. This might not be a safe assumption.

Since both J(α)(measured from simulation data) and G(α)(our GSM based on the cal-

culated beam radius and measured degree of transverse coherence) are functions over the

same space, we can treat them both as vectors and find the “angle” between the two.
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cos(θ) =
J · G

|J ||G|

cos(θ)2 =
(J · G)2

(J · J)(G · G)

J · G =

∫

α

J(α)G∗(α)

J · G =

∫

α

J(α)G∗(α)

J11(α)J22(α)
J11(α)J22(α) = Power2

∫

α

J(α)G∗(α)

J11(α)J22(α)

J11(α)J22(α)

Power2

= Power2

∫

α

fJG(α)P (α)

Where fJG(α) = J(α)G∗(α)
J11(α)J22(α) , and P (α) is still J11(α)J22(α)

Power2

We use the same scheme for J · J and G · G:

J · J = Power2
∫

α P (α)fJJ(α), where fJJ(α) = |J(α)|2
J11(α)J22(α)

G · G = Power2
∫

α P (α)fGG(α), where fGG(α) = |G(α)|2
J11(α)J22(α)

cos(θ)2 =
(J · G)2

(J · J)(G · G)
=

(Power2
∫

α P (α)fJG(α))2

Power2
∫

α P (α)fJJ(α)Power2
∫

α P (α)fGG(α)

=
(
∫

α P (α)fJG(α))2

∫
α P (α)fJJ(α)

∫
α P (α)fGG(α)

We estimate each of the three quantities(J · G, J · J and G · G) using the same Markov

chain. By doing this, we cause the uncertainties in each measurement to be correlated to

each other, significantly reducing the error.

1. Monte Carlo error estimation

We estimate J · G, J · J and G · G using the same set of statistically independent Markov

Chains. We have enough statistically independent branches (400) to provide a good estimate

of the distribution of measured ( J · G, J · J , G · G). Therefore, what we do is randomly

select N estimations out of our N Markov chains (Some being selected multiple times and

some not at all). This will give us an estimate of the distribution of calculations we were
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likely to make. Therefore, from doing this multiple times, we can find the error bar of our

calculation. This is a much more straightforward method than explicitly calculating all of

the standard deviations and correlations between the three quantities estimated.

D. Implementation

I implemented the algorithms in MATLAB. All random walks were executed in parallel

using MATLAB’s array functionality.

III. RESULTS AND DISCUSSION

A. Curve Fitting

Having 84 meters of undulators, we first naively assume the source of the GSM to be at

the end of the undulators, and fit the measured growth of the beam radius to that predicted

by the GSM. [Fig. 1 ]

This doesn’t work very well at all. The expansion coefficient of the GSM starts off with

a quadratic regime and then goes to a linear regime. However, the beam radius increases

fairly linearly, which causes a poor fit. We therefore assume the source to be located inside

the undulators at 64 meters, which is approximately where saturation is reached and the

beam power plateaus. [Fig. 2 ]. This gives us somewhat better results, but still leaves much

to be desired.

B. Analyzing Transverse Coherence Properties

The Markov chain Monte Carlo approach works about 100 times faster than the brute

force algorithm, and converges to within a reasonable error bar within 45 seconds. This is

much better than the hour and a half runtime that the brute-force algorithm takes[Fig. 4 ],

and will be a very useful for analyzing future simulations.

Analyzing the degree of transverse coherence[Fig. 5 ], we can see that the degree of

transverse coherence peaks at approximately 70 meters, which is about the same point

where the beam power plateaus. Transverse coherence peaks at almost 90%, which is very
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good. We can either estimate the beam radius as the (root mean square) rms of intensity, or

by fitting the intensity profile to a Gaussian. We compare the agreement between these two

approaches. [Fig. 6 ] We see that we get a somewhat better agreement when we find the

beam radius through fitting rather than through a rms calculation. Finding a value of the

beam radius through fitting gives a somewhat smaller value [Fig. 7 ]. This is because the

intensity profile is mostly Gaussian, but has a non-Gaussian “Halo”, which “contaminates”

the rms calculation of the beam radius. Knowing the beam radius (both found through rms

and fitting) and the degree of transverse coherence, we can propose a GSM and see how well

the mutual intensity function J fits the predictions of the GSM. We ignore the phase factor

of the GSM, as it depends on the location of the source. [Fig. 8 ].

This is somewhat close, but certainly not close enough to consider the GSM to be the

end-all model for transverse coherence of the LCLS. To see how much better the agreement

might be if we were to have picked the right source point which produced the right phase

factor, we test the agreement between the magnitude of the GSM and the magnitude of

the mutual intensity function [Fig. 9 ]. This provides an upper-bound on any possible

agreement, as different phase factors between the two can only make the agreement worse.

The agreement in this case is extremely good at some points, which suggests that the GSM

might still be the correct model of transverse coherence if we chose a reasonable source point.

IV. CONCLUSION

I have devised and written a Markov Chain Monte Approach which will quickly ana-

lyze the transverse coherence, performing ∼100 times faster than the brute force algorithm

previously in use. I have found the GENESIS simulation code to predict a very high level

of transverse coherence for the LCLS, which is encouraging. One interesting result I have

found is that the transverse coherence declines significantly after saturation, which suggests

that users who want a high degree of coherence might be better off using the LCLS without

the full length of the undulators, sacrificing some intensity in exchange for greater coher-

ence. A comparison of the emitted radiation and beam divergence to that predicted by the

GSM is somewhat inconclusive. Certainly one problem of the GSM model of transverse

coherence is that it requires a single source point, which is not the case for an FEL. The

LCLS has only recently come online, and the prediction of it’s properties is ongoing work.
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My work will provide a useful tool for predicting the degree of transverse coherence, and

I have made my code easily extensible to predict the accuracy of any proposed models of

transverse coherence.
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TABLE I: Parameters of the Electrons Entering the Undulators

Slice Emittance : 0.4 µm

Peak Current: 3 kA

Slice Energy Spread: 0.01%

V. FIGURES

A. Fitting for Simulated FEL Having 84 Meters of Undulators
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FIG. 1: Curve fit of beam radius to GSM assuming a point source at 84 meters(end of the last

undulator).
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FIG. 2: Curve fit of beam radius to GSM assuming a point source at 64 meters(around the

saturation point).

B. Analysis of Fields for FEL with 100 meters of undulators
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FIG. 3: Beam power, note that saturation occurs at about 64 meters.
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FIG. 4: The Markov chain Monte Carlo algorithm quickly converges to the correct value.
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FIG. 5: Degree of transverse coherence as a function of z.
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FIG. 6: Agreement of measured intensity with Gaussian model.
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FIG. 7: Beam radius, both found by rms calculation and fitting.
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FIG. 8: Projection of mutual intensity function onto phase-less GSM model.
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FIG. 9: Projection of magnitude of mutual intensity function onto GSM model, neglecting phase

differences.
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