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Abstract

This note describes the operation of a computer program which was written to
automate LCLS undulator tuning. The algorithms used to compute the shim sizes and
locations are discussed.

1 Introduction1

Automation of the LCLS undulator tuning o¤ers many advantages to the project. Automa-
tion can make a substantial reduction in the amount of time the tuning takes. Undulator
tuning is fairly complex and automation can make the �nal tuning less dependent on the
skill of the operator. Also, algorithms are �xed and can be scrutinized and reviewed,
as opposed to an individual doing the tuning by hand. This note presents algorithms
implemented in a computer program written for LCLS undulator tuning.

The LCLS undulators must meet the following speci�cations2. The maximum trajectory
walko¤ must be less than 5 �m over 10 m. The �rst �eld integral must be below 40� 10�6
Tm. The second �eld integral must be below 50�10�6 Tm2. The phase error between the
electron motion and the radiation �eld must be less than 10 degrees in an undulator. The
K parameter must have the value of 3:5000� 0:0005. The phase matching from the break
regions into the undulator must be accurate to better than 10 degrees. A phase change of
113� 2� must take place over a distance of 3:656 m centered on the undulator. Achieving
these requirements is the goal of the tuning process.

Most of the tuning is done with Hall probe measurements. The �eld integrals are
checked using long coil measurements. An analysis program written in Matlab takes the
Hall probe measurements and computes the trajectories, phase errors, K value, etc. The
analysis program and its calculation techniques were described in a previous note3. In this
note, a second Matlab program containing tuning algorithms is described. The algorithms
to determine the required number and placement of the shims are discussed in detail.

1Work supported in part by the DOE Contract DE-AC02-76SF00515. This work was performed in
support of the LCLS project at SLAC.

2H. D. Nuhn et al., "General Undulator System Requirements", LCLS Physics Requirements Document
1.4-001.

3Z. Wolf, "Introduction to LCLS Undulator Tuning", LCLS-TN-04-07, June, 2004.
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2 Trajectory Tuning

This section describes the algorithm to straighten the x and y trajectories. The speci�cation
requires that the trajectory must remain straight to 5 �m over 10 m. Our tuning goal is to
make the RMS trajectory walko¤ less than 2 �m in a 3:4 m long undulator section. Implicit
is the assumption that the trajectory is not changing rapidly causing large phase errors.
The �eld integral speci�cations, which refer to the trajectory exit position and slope, will
automatically be satis�ed by the algorithm.

The following subsections describe how the trajectory is �rst �t by a collection of line
segments. The slope changes at the beginning of each segment required to make the
segments form a straight line at the zero position are calculated. Each slope change
corresponds to a shim which is applied to the undulator. The shims are then combined to
reduce their number. The shim dimensions which give a certain slope change are determined
empirically and input to the program. The pole at which the shim is applied must be chosen
carefully and the selection process is presented in detail. Knowing the slope changes, the
required integrated �eld strength of each shim is calculated. The integrated �eld strengths
let us add the shim �elds to the measured �elds in order to predict the e¤ect of the shims.
The �eld integrals are ideally made zero by this procedure. Long coil measurements will
be used to remove small errors.

2.1 Segmented Trajectory

The x and y trajectories of an electron beam of given energy are calculated from the
undulator magnetic �eld measurements. An example of an x trajectory is shown in �gure
1. The heavy line shows the trajectory averaged over one undulator period, which we call
the average trajectory. Trajectory shims must be added to change the slope at certain
places in order to make the average trajectory straight.

Figure 1: Calculated x trajectory from the measured �elds.
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The trajectory shimming algorithm begins by �tting a set of line segments to the average
trajectory. Both x and y trajectories are treated in the same manner. The line segments
are equally spaced along the undulator and joined to form the "segmented trajectory". An
example of a segmented trajectory with 20 segments is shown in �gure 2.

Figure 2: Line segments are �t to the trajectory and joined, making the segmented trajec-
tory.

The segmented trajectory o¤ers several advantages. The linear �ts provide noise �l-
tering. The segments turn the problem into a discrete problem instead of a continuous
problem. The behavior of the segments is thoroughly understood. A set of shims can
be calculated which make the segmented trajectory mathematically perfect. This known
solution acts as a starting point for practical solutions which reduce the number of shims.

2.2 Required Segment Slope Changes

The segmented trajectory is formed by equally dividing the measured trajectory into N
segments along z, the undulator axis. A line is �t to each segment. The slope of the i�th
line mi is determined from the �t. The change in trajectory position in the i�th segment is

�xi = mi�zi (1)

The trajectory starts at zero. The changes �xi are added together to get the trajectory
position at the end of the n�th segment

xn =

nX
i=1

�xi (2)

Or,

xn =
nX
i=1

mi�zi (3)
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Suppose we add a shim at the beginning of the j�th segment. The shim causes a slope
change �mj to the j�th segment and all succeeding segments. Conversely, after shimming,
the slope of the j�th segment is the original slope plus the sum of the slope changes of the
j�th segment and all the previous segments. Let Mi be the slope after shimming,

Mi = mi +
iX
j=1

�mj (4)

Let Xn be the trajectory position after shimming,

Xn =

nX
i=1

Mi�zi (5)

Inserting the shimmed slope, we get

Xn =
nX
i=1

(mi +
iX
j=1

�mj)�zi (6)

Using equation 3 for the original trajectory position xn, we �nd

Xn = xn +
nX
i=1

iX
j=1

�mj�zi (7)

The goal of shimming is to determine the �mj such that Xn = 0 for all n. Setting
Xn = 0, we get

nX
i=1

iX
j=1

�mj�zi = �xn (8)

We rewrite the sum on the left as (note the index changes)

nX
j=1

nX
i=j

�zi�mj = �xn (9)

We form the matrix

Znj =

nX
i=j

�zi (10)

With the convention that Znj = 0 for j > n, equation 9 can be written as

NX
j=1

Znj�mj = �xn (11)

where N is the number of segments, and n = 1 : : : N . This has the form of a matrix
equation

Z�m = �x (12)
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We solve for �m by multiplying by the inverse of the Z matrix

�m = �Z�1 x (13)

This equation is our result. It tells us the trajectory slope change required from the shim
of each segment in order to make the segmented trajectory a perfect line at zero.

Figure 3 demonstrates the algorithm. The upper line in the top plot shows the segmented

Figure 3: One shim per segment is calculated to make the segmented trajectory �at. The
required slope changes are shown.

linear �t to the original trajectory. Using the algorithm described in this section, a shim
with the calculated slope change was added to each segment resulting in the bottom line
at zero. The corrected trajectory is a perfect line along the beam axis. The calculated
shim slope changes are shown in the bottom of the �gure. After shimming, the corrected
trajectory would be along the beam axis with small deviations due to the residuals of the
linear �ts and due to errors from placing the shims at the beginning of the segments instead
of at the exact problem locations. Both of these trajectory deviation sources are reduced
by using a large number of segments.

2.3 Combine Shims

The method of shimming the segmented trajectory gives a mathematically perfect shimmed
segmented trajectory. There are certain trade-o¤s, however. The more segments that are
used, the closer a shim is placed to the actual problem in the undulator, giving smaller
resulting errors. Also, the residuals to the linear �ts are smaller. The disadvantage is that
a large number of shims are required. As a compromise, we use the segmented trajectory
in order to determine an ideal set of shims, and then we combine shims in order to reduce
their number to a manageable level. We do not wish to remove a shim because then the
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resulting trajectory would have a net slope at all points after the removed shim. Rather,
we move a shim to its neighboring segment and combine shims if the e¤ect is small enough.

Moving a shim to a neighboring segment is the same as putting a negative cancelling
shim in the segment and a positive shim of the same size in the neighbor. These two shims
of equal and opposite strength result in a translation of the trajectory, but with no net slope
change. We start at the �rst segment. If moving the shim to the second segment causes
a translation below a threshold value, we move it and combine the shims into the second
segment. Then we consider moving the new second segment shim to the third segment. If
the resulting translation is below the threshold, we perform the move. If the translation is
above the threshold, we leave the shim and move on to the next segment. This process is
continued through all the segments.

The procedure of moving and combining shims if the resulting trajectory translation is
small enough can lead to signi�cant trajectory excursions if the small translations accumu-
late. To deal with this possibility, another threshold is applied to the above procedure.
Once the trajectory translations accumulate to the threshold value, the shim is left in place
instead of moved.

At this point, a second pass is applied. After the shims are combined, the new trajectory
can be made to go to zero at all the �nal shim locations after the �rst shim by adjusting the
shims slightly. Consider a shim after combining shims. Its strength is adjusted so that the
trajectory at the next combined shim location goes to zero. The shim at the next location
is adjusted to cancel the slope change from the �rst shim. This process is repeated down
the undulator. This procedure helps keep the trajectory excursions small.

If we take the shims of �gure 3 and apply this algorithm with a threshold of 12 �m
for the allowed translation and 1 �m for the allowed translation accumulation, then we
get the new set of shims shown in the bottom of �gure 4. The top of �gure 4 shows the

Figure 4: Shims are combined leaving an imperfect but acceptable trajectory. The combi-
nations result in a great reduction in the number of shims.
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resulting segmented trajectory. It is no longer ideal, but it is within the speci�cations. The
number of shims has gone from 20 to 5, making the application of the shims much more
manageable. The trajectory translation threshold and the trajectory shift accumulation
threshold are parameters that will have to be tuned. Preliminary studies show that a
value of 12 �m for the trajectory translation threshold and 1 �m for the trajectory shift
accumulation threshold give a large reduction in the number of shims with an acceptable
resulting trajectory if 20 segments are used.

2.4 Shim Dimensions

The trajectory is made straight and the �eld integrals are reduced to acceptable values by
making slope changes along the trajectory. The slope is changed by adjusting the magnetic
�eld of a pole in the undulator. This is done by applying steel rods, called shims, near
the appropriate poles. The trajectory shims are shown in the top left in �gure 54. The

Figure 5: Trajectory shims are shown in the upper left. Phase shims are shown in the
lower right.

shims weaken the �eld of a pole by shunting �ux out of the gap. The strength of the
shim is determined by the distance from the undulator pole to the rod. The slope change
as a function of distance is determined experimentally by many measurements at di¤erent
distances. The data is �t and the �t parameters are input to the program. Once the
desired slope change is known, the distance between the shim and the pole is calculated
from the �t. Fit results using both one rod and two rods are illustrated in �gure 65.

4R. Dejus (Editor), "LCLS Prototype Undulator Report", ANL/APS/TB-48, January, 2004.
5Y. Levashov, private communication.
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Figure 6: The distance between the shim and a pole is calculated using a �t to measured
distance vs slope change data.

2.5 Shim Placement

It is helpful to think of the shim as adding a superposed �eld in the opposite direction to
the pole �eld. It is easy to see how this superposed �eld changes the slope of the trajectory.
If a pole bends the beam to the right, an added shim will bend the beam to the left, and
visa versa. This makes placing the shim on the proper pole important.

Shims for the x trajectory must be placed on both the upper and lower poles to cancel
any horizontal �elds. This is illustrated in �gure 7.

Figure 7: The x trajectory shims are placed on both the upper and lower poles to cancell
the horizontal �eld.

The algorithm to place a shim for the x trajectory is as follows. The nearest pole
location to the beginning of a segment is found. If the required integrated �eld strength of
the shim has the opposite sign as the sign of the �eld from the poles, the shim stays at this
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pole location. If the required integrated strength of the shim has the same sign as the pole
�eld, the shim is moved to the next set of poles and placed on both the upper and lower
poles.

For the y trajectory, a horizontal �eld is desirable. If one shim is placed at an upper
south pole, for example, the other shim is placed on the next lower south pole. In this
way, a net horizontal �eld is generated to kick the beam vertically, but no net vertical �eld
is generated which would kick the beam horizontally. This is illustrated in �gure 8.

Figure 8: Shims for the y trajectory are placed on succeeding sets of poles.

The algorithm to place a shim for the y trajectory is slightly more complicated than
for the x trajectory. A shim placed on a north pole causes a horizontal �eld in the �x
direction, as shown in �gure 8. This de�ects the electron beam in the +y direction. A
shim placed on a south pole causes a horizontal �eld in the +x direction. This de�ects
the beam in the �y direction. For a segment that needs a shim de�ecting the beam in the
vertical direction, the pole pair nearest the the start of the segment is found. If the beam
requires a slope change in the +y direction, a shim is placed on the north pole of the pair
and the north pole of the following pair. If the beam requires a slope change in the �y
direction, a shim is placed on the south pole of the pair and the south pole of the following
pair. The algorithm uses the measured �eld direction to determine whether to place the
shim on an upper or lower pole. If the �eld direction is +y, the pole pair has a north on
the bottom and a south on top. If the �eld direction is �y, the pole pair has a north on
the top and a south on bottom.

2.6 Magnetic Fields From The Shims

Once the slope change required from each shim is known, the integrated �eld strength can
be calculated. This will allow us to model the e¤ect of the shims. The Lorentz force law
for a particle of charge q travelling in the z direction with speed vz through a shim with
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�elds Bx and By is

m
d2x

dt2
= �qvzBy (14)

m
d2y

dt2
= qvzBx (15)

The time and z position are related by z = vzt. Making z the independent variable instead
of t gives d

dt = vz
d
dz , yielding

d2x

dz2
= � q

mvz
By (16)

d2y

dz2
=

q

mvz
Bx (17)

Integrating through the shim and using �mx =
dx
dz

��
after shim

� dx
dz

��
before shim

and a similar
expression for �my, we �nd

�mx = � q

mvz

Z
By dz (18)

�my =
q

mvz

Z
Bx dz (19)

Knowing the required slope change of the shim, the integrated �eld strength of the shim is
easily calculated Z

By dz = �mvz
q

�mx (20)Z
Bx dz =

mvz
q

�my (21)

2.7 Predicted Trajectory After Shimming

Once we know the integrated �eld strength of the shims, we can model their e¤ect. We
distribute a shim �eld over a pole of length �u=2 such that the integrated strength is
preserved. We then add the shim �eld to the measured �elds. The resulting shimmed
trajectory can be predicted by sending the shimmed �eld through the analysis software.
The result is shown in �gure 9. It looks similar to the shimmed segmented trajectory. It
results in a trajectory within the speci�cations.

2.8 Undulator Field Integrals

As noted in the introduction, the �eld integrals have tight speci�cations. The �eld integrals
are related to the exit slope and position of the beam. The exit slope is given by

x0 = � q

mvz
I1 (22)

where q is the electron charge (negative),  is the electron Lorentz factor, m is the electron
mass, vz is the electron velocity in the forward direction (this can be set to c, the speed of
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Figure 9: The required shim �elds are added to the measured �elds and the resulting
trajectory is calculated giving the predicted shimmed trajectory.

light, with small error). I1 is the �rst �eld integral which is speci�ed. Using I1 = 40�10�6
Tm and  = 26693, we �nd x0max = 8:80� 10�7at the undulator exit.

The second �eld integral I2 determines the position at which the beam exits the undu-
lator relative to the entrance position. The formula is

x = � q

mvz
I2 (23)

Using the LCLS parameters and I2 = 50 � 10�6 Tm2, the maximum position shift is
xmax = 1:10� 10�6 m.

The algorithm of using the segmented trajectories given above guarantees that the last
segment has zero slope and zero o¤set. It is built into the procedure. To correct for small
residual errors, a small shim will be added at the entrance of the undulator and at the
exit to adjust the �eld integrals within speci�cations. A long coil will make an accurate
measurement of I1 and I2. The shim at the undulator entrance is used to adjust the exit
position, or I2. The shim at the exit will adjust the exit slope, or I1. The gap between the
shim and the pole required to make a given �eld integral change will be determined from
�ts to experimental data, as discussed above.

3 Phase Tuning Overview

This section gives an overview of phase tuning. It begins with a general discussion of
slippage and phase in which these quantities are de�ned and their method of calculation is
presented. This leads to a de�nition of phase errors and a description of their calculation.
Once all terms are de�ned, an overview of the steps for phase tuning is presented. Later
sections will discuss these steps in detail.
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3.1 Slippage, Phase, Phase Errors

Consider a radiation wave in the undulator along with the electrons. An electron can
not keep up with the radiation, which is travelling at the speed of light. Also, the large,
alternating undulator magnetic �eld By causes the x trajectory to oscillate. This oscillation
adds path length to the trajectory. The added path length, coupled with the fact that the
electron is travelling slower than the speed of light, causes the electron to lag behind the
radiation wave. The distance between a point on the radiation wave and the electron is
called slippage. In spite of the slippage, the electron motion must keep a proper phase
relationship with the radiation if the electron is to add to the radiation �eld in such a way
as to maximize the intensity. The relative motion between the radiation wave and the
electron will have important implications for the performance of the undulator.

The slippage at the magnetic �eld peaks can be used to calculate the radiation wave-
length. Consider an electron at the positive peak of its trajectory corresponding to the
peak �eld of an undulator period as shown in the top of �gure 10. The electron adds

Figure 10: The upper �gure shows an electron at position "A" adding photon "a" to the
radiation wave. The lower �gure shows the situation after the electron has moved one
undulator period to position "B". The electron adds photon "b", which is behind "a"
because "a" is moving forward faster than the electron.

radiation to the radiation wave. After the electron has moved one undulator period, it
adds more radiation as shown in the lower part of the �gure. Suppose this radiation is
added in such a way as to maximize the intensity of the radiation wave. The new radiation
can not add to the radiation from the previous positive peak because of the forward speed
di¤erence between the radiation and the electron. Rather, it adds to the radiation wave
one wavelength back. The slippage changes by one radiation wavelength in one undulator
period.
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The radiation in the undulator moves with the speed of light c in the z direction and
the electron moves with speed vz. In time dt, the slippage, S, changes by

dS = (c� vz)dt (24)

We now wish to change variables. Instead of using time, we use the z position of a point
on the radiation wave as our independent variable. With this change of variables, we have
dz = cdt. Then,

dS = (1� vz
c
)dz (25)

With z giving the position of a point on the radiation wave, the position of the electron is
z minus the slippage distance. The velocity in the forward direction is given by

vz ' c(1�
1

2

1

2
� 1
2
x02 � 1

2
y02) (26)

The slippage di¤erential can now be written as

dS = (
1

2

1

2
+
1

2
x02 +

1

2
y02)dz (27)

Integrating from initial position z0 to z, we �nd the change in slippage

�S =

Z z

z0

(
1

2

1

2
+
1

2
x02 +

1

2
y02)dz1 (28)

If we de�ne the initial position to have zero slippage, S(z0) = 0, we can de�ne the slippage
as

S(z) =

Z z

z0

(
1

2

1

2
+
1

2
x02 +

1

2
y02)dz1 (29)

The �rst term arises because the electron is moving slower than the speed of light. The
second and third terms come from the extra path length of the trajectory when the electron
is moving transverse to the undulator. Outside the undulator, where x0 = y

0
= 0, the

slippage varies linearly with z as S(z) = 1
2
1
2
z + const. Inside the undulator, the slope

terms contribute and the slippage varies more rapidly. This is illustrated in �gure 11.
If we �t a line to the slippage vs z curve in the undulator, the average slope is propor-

tional to the wavelength the undulator is radiating at. The average slope is one radiation
wavelength per undulator period, as noted above. The residuals from the �tted line in-
dicate errors, or lack of synchronization. The slippage residuals at the poles are shown
in �gure 12. Let S(zn) be the slippage at pole n. Then, when we do the linear �t to the
slippage at the poles, we have

S(zn) = S(z0) +
�r
�u
(zn � z0) + Sresid(zn) (30)

where the slope of the �tted line, �r=�u, has been inserted.
We de�ne phase by dividing the slippage by �r and multiplying by 2�. Let P be the

phase,

P (z) =
2�

�r
S(z) (31)

13



Figure 11: The slippage change is small outside the undulator and large in the undulator
where the slope terms contribute.

Figure 12: Residuals from a linear �t to the slippage in the undulator.
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The phase at pole n is given by

P (zn) =
2�

�r
S(z0) +

2�

�u
(zn � z0) +

2�

�r
Sresid(zn) (32)

If the residuals are zero, the phase changes by 2� when z changes by �u. Deviations from
this case are called phase errors. We de�ne the phase error to be

Perr(zn) =
2�

�r
Sresid(zn) (33)

A plot of phase errors using degrees instead of radians is shown in �gure 13.

Figure 13: Plot of phase errors at the undulator poles.

Note that the phase is calculated using the �r determined for the undulator, not the
ideal �r. Phase errors measure how consistently the undulator radiates at �r. It is an
entirely separate matter to set �r to the proper value.

3.2 Phase Tuning Basic Steps

The basic steps for phase tuning are illustrated in �gure 14. The di¤erent steps are labelled
a through i. The slippage for each step is along the vertical axis. The z position along
the undulator is along the horizontal axis. The outermost set of vertical lines show the
cell boundary. A cell includes the undulator and an equal drift distance at the entrance
and exit. The phase change through the cell is speci�ed as a tuning requirement. The
middle set of vertical lines marks the end of the undulator. The innermost set of vertical
lines marks the interior of the undulator, the region away from the ends where the �elds
are periodic and uniform. The tuning steps shown in each part of the �gure will now be
described.
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Figure 14: Illustration of the steps in phase tuning.
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a) The ideal slippage through the cell is shown as a dotted line. This is repeated in all
the other drawings. The ideal slippage is the goal that the tuning tries to achieve.

b) The actual slippage through the cell is shown as a solid line. All di¤erences between
the solid line and the dotted line need to be corrected.

c) A linear �t is made to the slippage in the interior of the undulator. The �tted line
is the heavy line in the drawing. The slope is used to calculate the radiation wavelength.
Deviations from the �tted line are the slippage residuals.

d) Phase Error Tuning In this step, the phase errors are tuned to zero. There is
a technical issue, however, which must be discussed. In the LCLS undulators, there is
no way to rapidly increase the slippage, only to rapidly decrease it. This means that the
slippage residuals at the undulator entrance can gradually be made small, but a region of
several centimeters with large slippage errors will remain. This is unacceptable and could
cause large phase matching problems. Instead of making the slippage residuals zero, we
make the residuals all through the undulator equal to the residuals at the entrance. After
tuning, the slippage vs z curve in the undulator is a straight line parallel to the �tted line.

e) If the undulator was re-measured and the slippage inside the undulator was �t again,
the heavy line would result. The slope of the �tted line remains the same as in step d), it
is only shifted. The slippage is nice and uniform with z, but the slope is not equal to the
ideal slope.

f) K Value Tuning In this step we change the �eld uniformly in the undulator to
adjust the slope of the line to the ideal value. This is known as K value tuning, and will
be discussed in a future section.

g) At this point the phase errors and K value have been tuned. The drawing shows
the resulting slippage vs z curve. The slippage, however, does not have the ideal value in
the undulator.

h) Phase Match At Entrance A phase matching shim is added to the undulator
entrance region to make the slippage equal to the ideal value all through the undulator.
This shim adds a constant o¤set to the slippage at all points after the shim. Everything is
correct except in the exit region.

i) Phase Match At Exit A phase matching shim is added to the undulator exit region.
This ensures the phase is correct at the exit cell boundary.

4 Phase Error Tuning

This section gives a description of step d) above, phase error tuning. An overview of the
process is as follows. The algorithm to correct phase errors uses straight line �ts to the
phase errors, making the "segmented phase error". Two types of shims, phase shims and
gap shims, are used to adjust the segments to minimize the phase errors. The physical
dimensions of the phase shims are determined empirically. The gap change required of a
gap shim, however, is calculated analytically. The magnetic e¤ects of the phase and gap
shims are calculated from the required phase changes. The magnetic e¤ects are added to
the measured �elds to predict the phase errors after shimming. We now discuss these steps
in detail.
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4.1 Segmented Phase Error

The phase error shim analysis is done in a manner similar to that used for the trajectory
shims. The phase error is �t with a number of line segments. The line segments are joined
to smooth the curve. To join the segments, the point is found halfway between the end of
one segment and the beginning of the next. These midpoints are then joined to form the
segmented phase error. Figure 15 shows a typical phase error curve and its segmented �t.

Figure 15: The phase error is �t with line segments giving the segmented phase error.

4.2 Phase Error Shims

In the shimming process, we use two types of shims to make the phase errors as small as
possible. The �rst type of shim, phase shims, are strips of steel that shunt �ux out of
the gap and weaken two poles. By weakening two poles equally, no net transverse force is
applied to the beam, so the trajectory does not get a net slope. The resulting trajectory
in the weakened poles is straighter, however, allowing the electrons to catch up a little to
the radiation. The slippage decreases, resulting in a decrease in phase over the two poles.
Phase shims were shown in the lower right of �gure 5. Their operation is shown in �gure
16.

In the segmented phase error, a phase shim at the beginning of a segment causes a
negative translation of that segment and all succeeding segments. The slopes of all segments
remain the same. The e¤ect of a phase shim on a segment is illustrated in �gure 17. Phase
shims are easy to apply making them the shim of choice when it is appropriate to use them.

The second type of shim, gap shims, sit above and below the pole assemblies. They are
used to make local gap changes which either increase or decrease the �eld in the gap. The
operation of a gap shim is shown in �gure 18. The magnetic �eld change causes the path
length of the electron motion to change, resulting in a phase change.
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Figure 16: Phase shims shunt �ux out of the gap and weaken two poles.

Figure 17: Phase shims cause a rapid phase decrease moving the segment downward. Gap
shims change the slope of a segment.

Base Plate, Poles, and
Magnets

Gap Shims

Housing

Housing

Shim

Pole

Housing

Figure 18: Gap shims are used to increase or decrease the gap. The magnetic �eld in the
gap changes, which in turn changes the phase.
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Gap shims change the slope of a segment because the phase change keeps accumulating
along the segment. The slope change is illustrated in �gure 17. Gap shims can not suddenly
increase the phase of a segment, so if a segment starts with a negative phase, it can only
slowly be brought up to zero phase. When a gap shim is applied, the net phase change
in the segment is added to all succeeding segments. Practically, gap shims are di¢ cult to
apply. Bolts must be loosened and shims adjusted between the pole assemblies and the
housing before the bolts are tightened again. Gap adjustments at the few micron level are
required. The length over which this is done must be accurately determined. Gap shims
are used when no alternative exists.

It has been mentioned that we have no mechanism to rapidly increase phase. Gap
shims reduce the gap over many centimeters, increasing the phase slowly. Because of this,
we are not able to correct a negative phase error at the start of the undulator. Instead, we
tune the phase errors to the constant initial phase error. This is the same as calling the
initial phase error zero, as was done in �gure 15. The phase errors are then tuned to this
zero.

4.3 Phase Error Shim Selection Algorithm

The algorithm to determine the phase error shims maximizes the use of phase shims since
they are much easier to apply than gap shims. A �rst pass is made in which phase shims
are placed at the beginning of all segments where the mean phase error increases above a
threshold value, typically 2 degrees, compared to the previous segment. The strength of
the phase shim is chosen to bring the mean phase error to the same value as the previous
segment. After applying the phase shims, the segmented phase error of �gure 19 results.
The upper segments in the upper plot show the original phase error. The lower segments
in the upper plot show the phase error after the phase shims have been added. The lower
plot shows the �eld changes required from the phase shims.

The next step is to use gap shims to increase the phase and bring the phase errors to
zero. A gap shim is added whenever the phase error goes below a threshold value, typically
6 degrees. The gap shim acts over a large distance, on the order of 20 cm. It is applied so
the end of the gap shim is at the location where the phase error crosses the threshold value.
When the gap shims are applied, the phase errors of �gure 20 result. In this example, the
gap shims extend over two segments, so each gap shim is shown as two boxes next to each
other in the lower plot of the �gure.

4.4 Phase Error Shim Dimensions

The thickness of a steel phase shim is not calculated analytically in the computer program.
Rather di¤erent thicknesses of the shim material are placed on a magnet in the undulator
and the resulting phase change is measured. A �t is made to the phase change vs shim
thickness measurements. The computer program uses the �t to determine the proper shim
thickness for the given desired phase change.

The amount the gap should be increased or decreased in a gap shim can be calcu-
lated analytically. The equations are derived in the subsection titled "Gap Shim Magnetic
Strength". The computer program uses these equations to calculate the gap shim dimen-
sions.
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Figure 19: Phase shims are applied in all segments where the phase error increases above a
threshold value.

Figure 20: Gap shims are applied to bring the phase errors to zero.
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4.5 Phase Shim Magnetic Strength

The required phase change from a phase shim is calculated using the segmented phase error.
Knowing the required phase change, we can determine the required magnetic �eld change.
This allows us to model the e¤ect of the phase shims and predict the phase errors after
shimming. In these calculations, we approximate the undulator �eld by a pure sinusoidal
�eld.

For a pure sinusoidal �eld,

By = B0 cos(
2�z

�u
) (34)

The trajectory slope is given by

x0(z) = � q

mvz
(
�u
2�
)B0 sin(

2�z

�u
) (35)

We de�ne K for a sinusoidal �eld such that

x0 =
K


sin(

2�z

�u
) (36)

So, for a sinusoidal �eld,

K = � q

mvz
(
�u
2�
)B0 (37)

Using equation 36 to calculate the slippage and evaluating the slippage change between
poles, we get

�Sp =
1

2

1

2
(1 +

1

2
K2)�zp (38)

The slope of the slippage at the poles vs z curve in a sinusoidal �eld is

�Sp
�zp

=
1

2

1

2
(1 +

1

2
K2) (39)

The slope is equal to �r=�u, so,

�r =
1

2

1

2
(1 +

1

2
K2)�u (40)

If we change K over two poles using a phase shim, the resulting slippage change is

�Sp =
1

2

1

2
K �K �u (41)

The phase change is

�Pp =
2�

�r
�Sp (42)

Inserting the expression for �r and �Sp, we get

�Pp = 2�
K

(1 + 1
2K

2)
�K (43)
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Since K depends linearly on the �eld amplitude,

�K

K
=
�B0
B0

(44)

The phase change over the two poles in terms of the magnetic �eld change is given by

�Pp = 2�
K2

(1 + 1
2K

2)

�B0
B0

(45)

We now solve this expression for the required �eld change over the two poles which gives
the desired phase change. This is our result.

�B0
B0

= (
1

2�
)
(1 + 1

2K
2)

K2
�Pp (46)

As an example, in the LCLS the K value is 3:5. For a 10� phase change, the relative
�eld change from a phase shim must be �B0=B0 = 1:6� 10�2.

4.6 Gap Shim Magnetic Strength

Gap shims change the undulator gap in order to change the magnetic �eld strength over
their length. This changes the phase over the length of the gap shim. Both the required
magnetic �eld strength change and the required gap dimension change can be calculated
analytically.

The magnetic �eld strength change is calculated in a manner similar to the calculation
for phase shims. The slippage change over a gap shim of length Ls between poles is given
by

�Ss =
1

2

1

2
(1 +

1

2
K2)Ls (47)

When we change the K value, the slippage changes by

�Ss =
1

2

1

2
K �K Ls (48)

Over the segment, the phase changes by

�Ps = 2�
K

(1 + 1
2K

2)

Ls
�u
�K (49)

Using the linear relation between K and B0 and solving for the required �eld change in the
segment, we get

�B0
B0

= (
1

2�
)
(1 + 1

2K
2)

K2

�u
Ls
�Ps (50)

Note that �Ps=Ls is the desired phase error slope change in the segment from the gap shim.
This result lets us model the shimmed �eld after we know the desired phase changes from
the segmented phase error. Knowing the change in the �elds from the shims lets us predict
the phase errors after the gap shims are applied.
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Figure 21: The dashed line shows the path used in the calculation of Ampere�s law. The
solid arrows show B. The two dashed arrows show H in the permanent magnet blocks.

In order to tune the undulator, we must know how much to change the gap in order
to get the required �eld change. This calculation is done using Ampere�s law with the
magnetic circuit shown in �gure 21. The �elds in the undulator are assumed to vary
sinusoidally in z with minimal additional harmonic content. This means that the �elds
vary as the hyperbolic sine or cosine in y with minimal additional terms. Under these
conditions, the �elds in the undulator are given by

By(y; z) = B0 cosh(
2�y

�u
) sin(

2�z

�u
) (51)

Bz(y; z) = B0 sinh(
2�y

�u
) cos(

2�z

�u
) (52)

Applying Ampere�s law around the dashed line in �gure 21 gives

2

Z g=2

�g=2

B0
�0
cosh(

2�y

�u
)dy � 2HmLm = 0 (53)

In this expression, g is the total gap height of the undulator, B0 is the strength of the peak
vertical �eld on the midplane, Hm is the magnetic �eld intensity in the permanent magnet
blocks, and Lm is the length of the permanent magnet blocks. The poles are assumed to
have in�nite permeability. Note that H in the block is in the opposite direction of B, hence
the minus sign. Performing the integral, we get

2
B0
�0
sinh(

�g

�u
)(
�u
2�
)2� 2HmLm = 0 (54)

Simplifying this expression, we �nd that the �eld on the midplane is related to the gap
height by

B0 sinh(
�g

�u
) =

�

�u
�0HmLm (55)

We now let the gap change, but we assume that H in the magnetic material is a constant
source and does not change as we change the gap. As g goes to g + �g, the �eld on the
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midplane B0 goes to B0 +�B0. These changes are related by

�B0 sinh(
�g

�u
) +B0 cosh(

�g

�u
)
�

�u
�g = 0 (56)

Rewriting this expression gives

�B0
B0

= � coth(�g
�u
)
�

�u
�g (57)

We can now solve for the gap change required to give the desired phase change over a
segment. Using equations 50 and 57, we get

�g = � �u
� coth(�g�u )

(
1

2�
)
(1 + 1

2K
2)

K2

�u
Ls
�Ps (58)

The program uses this formula to compute the gap changes whenever a gap shim is required.

4.7 Predicted Phase Error After Shimming

The magnetic e¤ect of the phase error shims is calculated using the formulas given above.
If the resulting shim �elds are superimposed on the measured �elds, the predicted phase
errors after shimming can be calculated. When this is done, the results shown in �gure 22
are obtained. The predicted RMS phase error has gone from 11:3 degrees to 5:88 degrees.

Figure 22: The magnetic e¤ect of the phase error shims are calculated and superimposed
on the measured �eld. The phase errors are then calculated, resulting in this prediction of
the phase errors after shimming.

In this example, however, the trajectory was not straightened �rst. The phase error shims
are correcting for extra phase errors coming from the trajectory slope. In practice, the
trajectory is straightened before the phase error shimming begins. This will signi�cantly
reduce the RMS phase error further.
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5 K Value Tuning

After the tuning described so far, the trajectory in the undulator is straight and the phase
errors are small. We must now ensure that the undulator is radiating at the proper
wavelength. To adjust the wavelength, we adjust the slope of the slippage vs z curve
through the entire undulator. This is known as K value tuning.

In order to discuss K value tuning, we must revisit our de�nition of K. In the section
on phase tuning, we de�ned K for sinusoidal magnetic �elds in terms of the slope of the
beam trajectory. We now wish to extend the de�nition of K to apply to actual �elds, not
just pure sinusoidal �elds. To do this, we de�ne K in terms of the slope of the curve of
slippage at the poles vs position along the undulator. Let (�Sp=�zp)fit be the slope of
the line �tted to the slippage at the poles. We de�ne K such that�

�Sp
�zp

�
fit

=
1

2

1

2
(1 +

1

2
K2) (59)

This de�nition preserves the value of K for pure sinusoidal �elds. It applies, however, to
all other �elds. This K value is often called the e¤ective K, or Keff . We will continue to
denote it by K, remembering its de�nition.

It remains true that there is one radiation wavelength of slippage in one undulator
period, so the slope of the slippage curve is �r=�u. The radiation wavelength is given by

�r =
1

2

1

2
(1 +

1

2
K2)�u (60)

We want the undulator to radiate at the desired wavelength, so we must set K to the proper
value.

The slope of the slippage curve, or equivalently the K value, is changed by adjusting the
magnetic �eld through the entire undulator. A larger �eld causes larger transverse motion
of the beam, which increases slippage. The reverse is true for a lower �eld.

Changing the K value is relatively easy in the LCLS undulators. The poles are canted
so the undulator gap changes with x position. This is illustrated in �gure 23. The magnetic
�eld strength changes with x, which means that the K value changes with x. To set the
K value, K is measured as a function of x. A �t is made and the x position giving the
desired K value is determined. A �nal measurement at this x position is used to con�rm
the K value. The undulator is �ducialized so the beam location is at this x position.

Using the analysis of how the �eld changes with undulator gap given above, we can
estimate how the K value changes with x position in the undulator. The analysis assumes
a pure sinusoidal �eld, so its accuracy is greatest if the �eld has low harmonic content.

We start with equation 57 for the �eld change as a function of gap change.

�B0
B0

= � coth(�g
�u
)
�

�u
�g (61)

Since K and B0 are linearly related for a sinusoidal �eld, we have

�K

K
= � coth(�g

�u
)
�

�u
�g (62)
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Figure 23: The poles of the LCLS undulators are canted to produce a �eld which varies
with x.

This expression tells us the gap change required for a given K change. The gap change
is related to the x position change through the cant angle according to �g = dg

dx�x. The

total cant angle between LCLS undulator poles is 4:5 mrad, so
��� dgdx ��� = 4:5� 10�3. We now

incorporate the fact that the gap change is due to the canted poles,

�K

K
= � coth(�g

�u
)
�

�u

dg

dx
�x (63)

For the LCLS, g = 6:8 � 10�3 m, �u = 3:0 � 10�2 m, coth(�g�u ) = 1:634, and dg
dx =

�4:5� 10�3. Inserting these values, we �nd

�K

K
= (0:77

1

m
)�x (64)

For a K change of �KK = 1:5 � 10�4, a horizontal translation of �x = 1:95 � 10�4 m is
required.

6 Phase Matching

6.1 General Requirements

In a previous section we noted how the electron motion must stay in phase with the radiation
wave in the undulator to maximize output power. We considered small imperfections in
the undulator �eld causing phase errors which we must correct. There is a more global
problem, however. We need to adjust each of the individual undulator sections so that the
radiation produced in each section is in phase with the overall radiation wave.

The entire LCLS structure is broken into individual undulators with drift regions in
between. We associate a certain drift distance with an undulator in the center and call
the combination a cell. The phase change in a cell is required to be a multiple of 2�. The
phase change in any remaining drift distance outside a cell is also required to be a multiple
of 2�. In this way, the global phase relationship can be maintained.

We require the proper phase change from the beginning of the cell into the body of the
undulator. Consider �gure 24. It shows the x trajectory of an electron in an undulator with
an even number of poles, as in the LCLS. The cell boundaries are marked with dotted lines.

27



Reference poles, which determine the region of the center of the undulator, are marked with
arrows. The reference poles are the third pole in from each end in this example. Notice
that with the reference poles an equal distance in from the ends, there is an extra half
oscillation cycle between reference poles. The phase change between reference poles is an
integer times 2� plus � for the extra half cycle. We write this as �Pund_ctr = (2n + 1)�,
or �Pund_ctr = � modulo 2� . If the cell is required to have a phase change of an integer
times 2�, the phase change at the entrance and exit of the undulator must add to � modulo
2�. We divide this evenly between the ends. Thus we require the phase change from
the cell entrance to the �rst reference pole to be �Penter = ��

2 modulo 2�, and the phase
change from the second reference pole to the far cell boundary �Pexit = ��

2 modulo 2�.
The signs must be the same for entrance and exit.

Figure 24: Electron trajectory with the reference poles marked with arrows. The phase
from the cell boundary to the �rst reference pole, the phase between reference poles, and
the phase from the second reference pole to the far cell boundary must all be set to required
values.

Let �Penter be the phase change from the entrance cell boundary at zc1 to a given
reference pole at zr1.

�Penter =
2�

�r

Z zr1

zc1

(
1

2

1

2
+
1

2
x02)dz (65)

We determine �Penter from our measurements and perform adjustments until �Penter =
2�n� �

2 , where n is an integer.
Similarly, let �Pexit be the phase change from the second reference pole near the end

of the undulator at zr2 to the cell boundary at the exit at zc2.

�Pexit =
2�

�r

Z zc2

zr2

(
1

2

1

2
+
1

2
x02)dz (66)

We determine �Pexit from our measurements and perform adjustments until �Pexit =
2�n� �

2 . The sign of the
�
2 must be the same as in �Penter.

Using this scheme for all undulators, the electron motion will be in phase with the
radiation in the body of all the undulators. The cells independently preserve the phase
relationship.
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6.2 Phase Matching Shim Dimensions

The phase matching shim calculation is done in a manner similar to phase error shimming.
Phase shim dimensions are determined empirically by measuring the phase change as a
function of shim thickness. Once the desired phase change is known, the computer program
uses the experimental data to determine the proper shim thickness. If the phase needs to
be increased, either a preset phase shim can be removed, or the gap can be reduced.

6.3 Delta Function Model

In order to understand phase matching in more detail, it is very useful to make a model of
the undulator ends that lets us calculate the phases at the poles. A model with sinusoidal
�elds turns out to involve much algebra. A simpler model, which gives much insight into
the undulator ends, involves replacing the �eld from each pole by a delta function with the
same integrated �eld strength as the pole. This model will give a clear explanation of the
end pole strengths, namely in the ratio 1=4, 3=4, 1. It will also lead to simple expressions
for the phase change through the undulator and through the cell. The derived expressions
give fairly good agreement with the numerical calculations of the undulator �eld. The
model will explain why the total phase change in an LCLS cell is 113 � 360�, as given in
the speci�cation, and where the contributions to the phase come from.

Consider the e¤ect of an electron going through the �eld of a single pole. From equation
18, the slope of the trajectory will change. If the trajectory slope change is �x0 = m, we
replace the pole in our model by a very narrow pole with integrated �eld strength also
giving �x0 = m. This is illustrated in the upper part of �gure 25. Replacing all the
poles in the undulator by the very narrow poles gives the situation shown in the lower
part of �gure 25. The integrated �eld strength of each pole is represented by a vertical
line. The trajectory is a series of straight lines between the narrow poles. The poles
cause the slope of the trajectory to change. From the cell boundary to the undulator
magnet end, the trajectory has x0 = 0. From the start of the undulator to the �rst pole,
a distance of �u4 , the slope is also x

0 = 0. The �rst pole has one quarter strength and
gives the trajectory a slope of x0 = 1

4m. The amplitude of the trajectory at the second
pole is x = x0�z = m

4
�u
2 . The second pole is �3=4 strength and changes the slope by

�x0 = �3
4m. The slope after the second pole is x0 = 1

4m �
3
4m = �1

2m. The amplitude
at the third pole is x = xinit + x

0�z = m
4
�u
2 �

m
2
�u
2 = �m

4
�u
2 . This is the negative of

the amplitude at the second pole. The third pole is full strength and changes the slope
to x0 = �1

2m +m = 1
2m. At the fourth pole, the amplitude of the trajectory is back to

x = m
4
�u
2 . This pattern continues through the undulator. Notice how the 1=4, 3=4, 1 pole

ratios results in a trajectory with no net slope and no net o¤set. At the far end of the
undulator, this process is reversed as shown in �gure 25.

The undulator model with impulsive forces results in a trajectory consisting of straight
line segments. This makes it very easy to calculate the slippage in the cell. Each straight
line segment adds a slippage change given by equation 28, which for constant slope becomes
�S = (12

1
2
+ 1
2x
02)�z. The slippage changes for all the straight line sections of the model

can be calculated.
At the entrance, let Ld be the drift length from the cell boundary to the magnet end.
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Figure 25: The undulator �eld is replaced by impulsive forces. The upper part of the �gure
shows the e¤ect of a short pole giving the trajectory a slope change equal to that of a full
strength pole. The lower part of the �gure shows the model of the undulator �eld replaced
by the impulsive forces. The trajectory is shown and the trajectory slopes are given.

The slippage in the drift region is �Sd = (12
1
2
)Ld.

In the region from the magnet end to the �rst pole, the slope is zero and the distance is
�u
4 . The slippage change in this region is �S01 = (

1
2
1
2
)�u4 .

From the �rst pole to the second pole the slope is m
4 and the distance is �u

2 , giving
�S12 = (

1
2
1
2
+ 1

2(
m
4 )
2)�u2 .

From the second pole to the third pole, the slope is �m
2 . The distance is �u

2 . The
slippage is �S23 = (12

1
2
+ 1

2(
m
2 )
2)�u2 . The slippage between the rest of the poles in the

body of the undulator has this same value. We summarize the results in table 1. The
slippage changes at the exit end behave in a similar manner.

A plot of the slippage vs z in this model in the body of the undulator would be a straight

Region Slippage Change
Entrance drift �Sd = (

1
2
1
2
)Ld

Magnet end to pole 1 �S01 = (
1
2
1
2
)�u4

Pole 1 to pole 2 �S12 = (
1
2
1
2
+ 1

2(
m
4 )
2)�u2

Pole 2 to pole 3 �S23 = (
1
2
1
2
+ 1

2(
m
2 )
2)�u2

Pole 3 to pole 4 �S34 = (
1
2
1
2
+ 1

2(
m
2 )
2)�u2

Pole n to pole n+1 �Sp = (
1
2
1
2
+ 1

2(
m
2 )
2)�u2

Table 1: Slippage change in each region.
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Region Slippage Change
Entrance drift �Sd = (

1
2
1
2
)Ld

Magnet end to pole 1 �S01 = (
1
2
1
2
)�u4

Pole 1 to pole 2 �S12 =
1
2
1
2
(1 + 1

8K
2)�u2

Pole 2 to pole 3 �S23 =
1
2
1
2
(1 + 1

2K
2)�u2

Pole 3 to pole 4 �S34 =
1
2
1
2
(1 + 1

2K
2)�u2

Center pole n to n+1 �Sctr =
1
2
1
2
(1 + 1

2K
2)�u2

Table 2: Slippage change in each region in terms of K.

line. The slope of the line is

�Sp
�zp

= (
1

2

1

2
+
1

2
(
m

2
)2) (67)

We know from the discussion of phase that the slope of the line is equal to �r=�u. So,

�r = (
1

2

1

2
+
1

2
(
m

2
)2)�u (68)

From the de�nition of K, we know that

�Sp
�zp

=
1

2

1

2
(1 +

1

2
K2) (69)

Equating terms, we �nd that

(
1

2

1

2
+
1

2
(
m

2
)2) =

1

2

1

2
(1 +

1

2
K2) (70)

and
(
1

2

1

2
+
1

2
(
m

4
)2) =

1

2

1

2
(1 +

1

8
K2) (71)

This allows us to rewrite the table as shown in table 2.
We can now calculate the phase change in each region. We multiply the slippage change

by 2�
�r
, or

�P =
2�

1
2
1
2
(1 + 1

2K
2)�u

�S (72)

Rewriting the table in terms of phase changes, we �nd the results in table 3. The phase
changes at the exit end of the magnet have this same pattern.

Numerical estimates of the phase at the poles are easily made. ForK = 3:5, we have the
phase changes given in table 4 expressed in degrees. In the table, �Pd is the phase change
of the drift region from the cell boundary to the undulator. The LCLS undulators have 226
poles with spacing 0:015 m. The distance Ld = ((3:656�226�0:015)=2) m = 0:113 m. The
phase at pole 2 is 180� + 86:8�. For proper phase matching, the phase on pole 2 should be
180�+90�. The impulse model predicts the phases at the poles very well. If the measured
phase at a designated pole is di¤erent than the ideal value, a shim is applied. The total
phase change in the cell is approximately �Pcell = 180� + 90� + 223� 180� + 90� + 180� =
113� 360�, as required.

31



Region Phase Change
Entrance drift �Pd = 2�

1
(1+ 1

2
K2)

Ld
�u

Magnet end to pole 1 �P01 = 2�
1

(1+ 1
2
K2)

1
4

Pole 1 to pole 2 �P12 = 2�
(1+ 1

8
K2)

(1+ 1
2
K2)

1
2

Pole 2 to pole 3 �P23 = �

Pole 3 to pole 4 �P34 = �

Center pole n to n+1 �Pctr = �

Table 3: Phase change in each region.

Region Phase Change
Entrance drift �Pd = 190:3

�

Magnet end to pole 1 �P01 = 12:6
�

Pole 1 to pole 2 �P12 = 63:9
�

Pole 2 to pole 3 �P23 = 180
�

Pole 3 to pole 4 �P34 = 180
�

Center pole n to n+1 �Pctr = 180
�

Table 4: Phase change in each region using LCLS parameters.

6.4 Phase Match Shimming

In order to do the phase match shimming, the analysis program calculates the phase at
each pole. A reference pole is chosen and the measured phase at several poles near the
reference pole (for averaging) is compared to the desired phase. The di¤erence is the phase
matching error which we must correct. The e¤ect of phase error shims and gap shims are
known. The program tells the operator the appropriate shim to apply to correct the phase
di¤erence.

7 Conclusion

It is highly desirable to automate the LCLS undulator tuning. Algorithms which automate
tuning were presented. The algorithms have been implemented in Matlab.

The x and y trajectories are tuned using the segmented trajectory by �nding the slope
changes which make the segmented trajectory straight. The required shim dimensions are
determined empirically and put into the program. First and second �eld integrals are made
zero by this procedure.

The phase errors are tuned by again using a segmented �t. Phase shim use is maximized.
Phase shims are applied in places where the phase error increases. The mean phase errors
in these regions are brought to a constant value. Gap shims are used to increase the phase
and bring the phase errors to zero. The phase change from a phase shim is determined
empirically and put into the program. The gap change for a given required phase change
is calculated analytically.

The K parameter is measured and the deviation from the desired value is determined.
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The gap change required to get the desired value is calculated analytically. The gap change
is obtained by moving horizontally in the canted poles. A detailed map of K vs x will be
used to �ducialize the undulator.

Phase matching is done with phase shims and gap shims. The phase change into the
undulator and the phase change of the cell must be corrected.
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