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Abstract

A vibrating wire system is being developed to �ducialize the quadrupoles between
undulator segments in the LCLS. This note provides a detailed analysis of the system.

1 Introduction1

The LCLS will have quadrupoles between the undulator segments to keep the electron
beam focused. If the quadrupoles are not centered on the beam axis, the beam will receive
transverse kicks, causing it to deviate from the undulator axis. Beam based alignment will
be used to move the quadrupoles onto a straight line, but an initial, conventional alignment
must place the quadrupole centers on a straight line to 100 �m2. In the �ducialization step
of the initial alignment, the position of the center of the quadrupole is measured relative
to tooling balls on the outside of the quadrupole. The alignment crews then use the
tooling balls to place the magnet in the tunnel. The required error on the location of the
quadrupole center relative to the tooling balls must be less than 25 �m3.

In this note, we analyze a system under construction for the quadrupole �ducialization.
The system uses the vibrating wire technique to position a wire onto the quadrupole mag-
netic axis. The wire position is then related to tooling balls using wire position detectors.
The tooling balls on the wire position detectors are �nally related to tooling balls on the
quadrupole to perform the �ducialization. The total 25 �m �ducialization error must be
divided between these three steps. The wire must be positioned onto the quadrupole mag-
netic axis to within 10 �m, the wire position must be measured relative to tooling balls on
the wire position detectors to within 15 �m, and tooling balls on the wire position detectors
must be related to tooling balls on the quadrupole to within 10 �m4. The techniques used
in these three steps will be discussed.

The note begins by discussing various quadrupole �ducialization techniques used in the
past and discusses why the vibrating wire technique is our method of choice. We then give
an overview of the measurement system showing how the vibrating wire is positioned onto

1Work supported in part by the DOE Contract DE-AC02-76SF00515. This work was performed in
support of the LCLS project at SLAC.

2LCLS parameter database http://www-ssrl.slac.stanford.edu/htbin/rdbweb/LCLS_params_DB_public.
3H. D. Nuhn et al., "General Undulator System Requirements", LCLS Physics Requirements Document

1.4-001.
4 ibid.

1

SLAC-TN-10-087

SLAC National Accelerator Laboratory, Menlo Park, CA 94025



the quadrupole axis, how the wire position detectors locate the wire relative to tooling balls
without touching the wire, and how the tooling ball positions are all measured. The novel
feature of this system is the vibrating wire which we discuss in depth. We analyze the wire
dynamics and calculate the expected sensitivity of the system. The note should be an aid
in debugging the system by providing calculations to compare measurements to.

2 Comparison Of Quadrupole Fiducialization Techniques

A number of techniques have been used in the past to �ducialize quadrupoles. The rotating
coil technique and several di¤erent stretched wire techniques are discussed here.

A very common quadrupole �ducialization technique uses a rotating coil. If the quadru-
pole center is not on the axis of rotation of the coil, a dipole component in the quadrupole
�eld is measured5. If either the quadrupole is moved onto the coil axis until the measured
dipole component is zero, or the measured dipole component is used in a calculation to
determine the center position relative to the coil, then the quadrupole tooling balls can be
related to the coil rotation axis to �ducialize the quadrupole. This technique has very high
sensitivity and quadrupole motions of a fraction of a micron can be resolved6. It is fairly
di¢ cult, however, to determine the axis of rotation of the coil to a few microns in a global
coordinate system. This axis information is required for LCLS �ducialization, however,
making the technique di¢ cult at best for our use.

Because of the di¢ culty in locating the axis of a rotating coil at the micron level, many
groups have used a single stretched wire for �ducialization which can be located at the
micron level. The HERA quadrupoles were �ducialized with a moving wire technique7 in
which a stretched wire was translated in the quadrupole and the voltage induced in the wire
was integrated to give the �ux change in the circuit. By performing precision motions of the
wire, the position of the magnetic center of the quadrupole was determined. The magnetic
center position was then related to tooling balls on the magnet for �ducialization. This
technique worked very well for the measurement of the HERA quadrupoles. The magnets
involved, however, were superconducting quadrupoles several meters long. In spite of the
size and �eld strength of the magnets, the measured signals in the single, slowly moving
wire were very small and special care had to be taken so that thermal emfs did not cause
many microns of error. Because the LCLS quadrupoles are much weaker than the HERA
quadrupoles, this technique appeared extremely challenging and we did not pursue it.

Another elegant way to �ducialize quadrupoles involves the pulsed wire technique8 ;9. A
small diameter Cu-Be wire is stretched through the quadrupole and a short pulse of current
is sent through the wire. If the wire is in a magnetic �eld, it will experience a force which
causes the wire to move. The magnet can be moved until the wire is stationary after

5A. K. Jain, "Basic Theory Of Magnets", Proc. CERN Accelerator School on Measurement and Align-
ment of Accelerator and Detector Magnets, Anacapri, April, 1997, CERN 98-05 (1998) 1-26.

6C. Rago et al., "High Reliability Prototype Quadrupole For The Next Linear Collider", SLAC-PUB-8990
(2002).

7H. Brueck et al., "Methods For Magnetic Measurement Of The Superconducting HERA Magnets",
Kerntech 56 (1991) 248-256.

8R. Warren, C. Elliot, "New System for Wiggler Fabrication and Testing", LA-UR 87-2981 (1987).
9C. Fortgang, "Taut Wire Alignment Of Multiple Permanent Magnet Quadrupoles", LA-UR-89-2696

(1989).
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the current pulse, and then the quadrupole is centered on the wire. The tooling balls on
the magnet are located relative to the wire to �ducialize the magnet. We set up such a
system in the SLAC magnetic measurements lab and we could very easily detect by eye on
an oscilloscope motion of as little as 5 �m of a prototype LCLS quadrupole. The method
was fairly insensitive, however, to pitch and yaw of the quadrupole. Without pitch and
yaw information, the measurement leads to a line through the quadrupole on which the
integrated transverse �eld is zero. This line is not unique, as an in�nite number of lines
have zero integrated transverse �eld. The next time the magnet is �ducialized, a di¤erent
line might be found. This is of no consequence to the electron beam, but it would be
bene�cial for alignment to get a unique, reproducible result.

A technique used at SLAC for the SLC �nal focus quadrupoles involved a vibrating
wire10. The wire was mechanically vibrated with audio speakers. The magnet was moved
until the voltage induced in the wire at the frequency of wire vibration went to zero. The
quadrupole was then centered on the wire. This technique was very sensitive to magnet
motion. It was di¢ cult, however, to determine a line representing the axis of the moving
wire. The technique led to a line for which the transverse �eld integral was zero, but the
line was not unique and could be pitched and yawed relative to the quadrupole as discussed
above.

Our method of choice for the LCLS quadrupoles is another vibrating wire technique11 ;12.
In concept, it is similar to the pulsed wire technique. Instead of a large current pulse in
the wire, however, an AC current is used. The alternating current frequency is set to the
natural frequency of vibration of the wire. When the magnet is centered on the wire, the
transverse magnetic �eld along the wire is zero and the wire does not experience a force and
does not move. When the quadrupole is moved, however, the current in the magnetic �eld
produces an alternating force at the natural frequency of vibration of the wire. Since the
wire vibrates at its resonant frequency, the technique is extremely sensitive. In addition,
the pitch and yaw of the magnet can be determined, as will be shown, resulting in a unique
�ducialization. In this note, the vibrating wire technique is described in detail.

The note continues with an overview of the measurement system. Practical aspects such
as how the wire is located are discussed. Then the equations of motion for the stretched
wire with an alternating applied force are derived and solved. E¤ects such as gravity and
vibration damping are included. A model vibrating wire system is discussed and values of
parameters such as wire diameter and length are inserted into the general equations so that
estimates of the performance of the system can be made.

3 Overview of the Quadrupole Fiducialization System

The components of the vibrating wire quadrupole �ducialization system are shown in �gure
1. A wire is tensioned between �xed end points and through the quadrupole being �ducial-
ized. The quadrupole is on a mover which positions the magnetic axis of the quadrupole

10G. Fischer et al., "Precision Fiducialization of Transport Components", SLAC-PUB-5764 (1992).
11A. Temnykh, "Vibrating Wire Field-Measuring Technique", NIM A399 (1997) 185-194.
12A. Temnykh, "The Use of Vibrating Wire Technique for Precise Positioning of CESR Phase III Super-

Conducting Quadrupoles at Room Temperature", Proceedings of the 2001 Particle Accelerator Conference,
Chicago, pp. 3469-3471.
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onto the wire using a number of instruments, as described below. Wire position detectors
on both sides of the quadrupole locate the wire relative to tooling balls on the detector
housings without touching the wire. The entire system is in a coordinate measuring ma-
chine which relates the positions of the tooling balls on the wire position detectors to tooling
balls on the quadrupole. We now discuss each step of the �ducialization along with the
associated system components.

Figure 1: Overview of the vibrating wire system.

3.1 Step 1: Move the Quadrupole Magnetic Axis onto the Wire

The �rst step in the quadrupole �ducialization is to move the magnetic axis of the quadru-
pole onto the wire. As noted above, this alignment is determined by when the wire has
no force on it and ceases vibrating. The vibrations are driven by alternating current in a
magnetic �eld. In order to maximize the sensitivity of the system, the alternating current
frequency is set to the resonant frequency of vibration of the wire. Since the wire is excited
at resonance, even small o¤sets of the quadrupole from center cause large vibrations of the
wire, which are easily detected.

As shown in �gure 1, a signal generator is connected to the wire. The wire current is
given by the output voltage divided by the wire resistance. No current ampli�er is needed,
due to the high sensitivity of the system. Wire vibration detectors, which are described
below, output a signal proportional to the wire position. This signal is sent to a lock-in
ampli�er which measures the magnitude and phase of the signal. The lock-in reference
comes from the signal generator. The frequency of the signal generator is adjusted until
the wire vibration signal is maximum and 90� out of phase with the wire current, which
determines the resonance condition. The quadrupole is on a mover and the quadrupole
position is adjusted until the signal measured by the lock-in ampli�er goes to zero. This
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process is repeated for magnet motions in x, y, pitch, and yaw. At his point the quadrupole
is aligned to the wire and the �rst step of the �ducialization is complete.

The wire vibration detector assembly consists of two orthogonal detectors, one for ver-
tical wire motion and one for horizontal wire motion. Each detector assembly consists of
a laser shining onto a slit, with a photodiode behind the slit as illustrated in �gure 2. The

Figure 2: Wire vibration detector. As the wire moves across the part of the laser beam
hitting the detector, the signal decreases. The signal is near zero when the wire covers
the slit. It rises again as the slit is uncovered. The DC operating point of the detector is
located where the signal is halfway through its range.

slit is much narrower than the wire. When the wire enters the part of the laser beam going
through the slit, it casts a shadow and the signal from the photodiode decreases. This is
illustrated in the �gure. The signal goes from its full value to nearly zero as the wire moves
a distance corresponding to the width of the slit. In practice, there are di¤raction e¤ects
and a sensitivity reduction e¤ect when the slit is not exactly parallel to the wire, but we
ignore these e¤ects when describing the basic operation of the detector.

Even with the imperfections noted above, this arrangement leads to a very sensitive wire
vibration detector. For example, in the ideal case of a 10 �m wide slit and an output of 1
V from the detector with no wire shadow, the signal changes by approximately 0:1 V/�m
as the wire edge moves past the slit. In practice, the slit can not be perfectly aligned to the
wire and sensitivities of 0:01 V/�m are more common. This is still a large signal, allowing
wire motions below 1 �m to be easily detected. The static operating point is where the
wire covers half the slit. Then, when the wire vibrates, the output is a sinusoidal signal
corresponding to the wire vibration.

3.2 Step 2: Locate the Wire Relative to Tooling Balls Without Touching
the Wire

The second step in the quadrupole �ducialization is to locate the wire position relative to
tooling balls, which e¤ectively locates the magnetic axis relative to the tooling balls. This
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is done with wire position detectors, which are very similar to the wire vibration detectors.
Note that the coordinate measuring machine can not locate the wire directly because it
locates objects by touching them, and touching the wire will move it. The wire position
detectors optically locate the wire relative to tooling balls, which the coordinate measuring
machine can touch.

The wire position detector consists of a laser, slit, and photodiode in a housing with
tooling balls on it. The assembly, illustrated in �gure 3, is mounted on a stage with a

Figure 3: A wire position detector measures the distance from a tooling ball to the wire
without touching the wire.

linear scale on it. The position of the wire as measured on the scale is obtained from both
edges of the wire. To measure the wire position, the detector assembly is moved until the
shadow of the wire causes the signal to decrease to a threshold voltage Vt, then the scale
reading is recorded, x1. The detector assembly is then moved across the diameter of the
wire and when the signal again reaches Vt, the scale is recorded again, x2. The position of
the center of the wire is calculated as x = 1

2 (x1 + x2).
The exact location of the slit and photodiode relative to the scale can not be directly

measured. The scale reading, as described so far, is not an absolute measure of the wire
position. Di¤erences in the scale readings, however, would be an accurate measure of the
distance between two wires. Suppose we set the zero position of the scale at the center of
the �rst wire. Then the scale reading is the position of the wire being measured relative to
the �rst wire. It is helpful to keep this picture in mind when discussing the x = 0 position
on the scale and the distance from a tooling ball to the x = 0 position. To use the detector,
we must know the distance from a tooling ball to the x = 0 position, and then add the scale
reading to get the distance from a tooling ball to the wire. The distance from a tooling
ball to the x = 0 position is found with a calibration.

The calibration of the wire position detector is performed as follows. The detector is
put into a special �xture which positions one ball in a vee and the other on a �at as shown
in �gure 4. A wire is built into the �xture at a �xed position xw relative to the vee. The
ball labeled R, for reference, is placed into the vee. The detector is used to measure the
wire position xa on the scale. The position of the wire relative to ball R in the vee is
xw = x0+xa. The detector is now �ipped so that ball R is on the �at and the other ball is
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Figure 4: Schematic of the calibration procedure for the wire position detector.

in the vee. The two balls are a distance L apart, as measured using a coordinate measuring
machine. The wire position is again determined on the scale, this time it is xb. Relative
to the ball in the vee, the wire is at xw = L� x0 � xb. Since the wire position relative to
the vee is �xed, xw is the same in both cases, so

x0 + xa = L� x0 � xb (1)

Solving for x0, we get

x0 =
L

2
� xa + xb

2
(2)

Once x0 is known from the calibration �xture, the wire position detector can be used to
locate an arbitrary wire relative to the reference ball using xw = x0+x, where x is the scale
reading of the center of the wire. Note that the wire position must be given in both the x
and y directions on both sides of the quadrupole, resulting in four detectors. All detectors
operate the same way.

Similar wire position detectors have previously been built and used for measurements.
The position detectors were repeatable to 1:5 �m13. Based on this experience, we believe
we can locate the wire position relative to the tooling balls on the detector housing to within
a few microns. In order to verify this, a special �xture will be built which contains a short
wire whose position is reliably given by the ends of the wire. A coordinate measuring

13Z. Wolf et al., "Alignment Tools Used To Locate A Wire And A Laser Beam In The Visa Undulator
Project", Proceedings of the 6�th International Workshop on Accelerator Alignment-IWAA99 (1999).
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machine will locate the dowel pins positioning the ends of the wire and we will compare to
the value obtained from the wire position detector.

3.3 Step 3: Locate All Tooling Balls

The positions of the tooling balls on the wire position detectors and on the quadrupole are
measured with a coordinate measuring machine. These machines are highly specialized
and are designed for such measurements. We leave these measurements to the experts, but
machine speci�cations show that the tooling ball locations will be measured to better than
10 �m14.

One might wonder whether other devices, such as laser trackers could be used for this
measurement. A cursory look at laser tracker speci�cations shows that they are not as
accurate as coordinate measuring machines. Their typical position measurement accuracy
is greater than 25 �m15, which is outside our accuracy speci�cation. Other choices for high
accuracy measurements do not come to mind.

4 Equations of Motion for the Wire

4.1 Di¤erential Equation, Vertical Wire Motion

The equations of motion describing simple vibrating wires are derived in a number of text-
books16, however, the analysis of our speci�c problem including damping and gravity is
not common. We derive the equations of motion for the vibrating wire and solve them
in this note for completeness and consistency of notation so that the equations describing
quadrupole �ducialization will be clear. We �rst consider the vertical motion of the wire
and then discuss the horizontal motion.

Consider a section of wire of length dz as shown in �gure 5. The slope of the wire is
(@y=@z)jz on the left side of the segment and (@y=@z)jz+dz on the right side of the segment.
The tension force on the wire is T acting in the z direction and is the same at both ends
of the segment because the segment is assumed to not accelerate in the z direction. In
the vertical y direction, the force on the segment is �T (@y=@z)jz from the wire to the left,
and T (@y=@z)jz+dz from the wire to the right. The mass per unit length of the wire is ml,
the acceleration due to gravity is g, and the force per unit length from the current in the
wire interacting with a magnetic �eld is Fl. As the wire moves, it experiences resistive
forces such as air resistance. We model all such velocity dependent forces per unit length
as ��l@y=@t acting in the direction opposite to the velocity. The acceleration of the wire
segment is @2y=@t2. Writing Newton�s law for the wire segment in the y-z plane gives

T

�
@y

@z

�����
z+dz

� T
�
@y

@z

�����
z

�ml dz g + Fl dz � �l
@y

@t
dz = ml dz

@2y

@t2
(3)

Dividing through by dz and rearranging terms we �nd

ml
@2y

@t2
+ �l

@y

@t
� T @

2y

@z2
= �ml g + Fl (4)

14See, for instance, Prismo 10 speci�cations, Carl Zeiss Industrial Metrology, Oberkochen, Germany.
15See, for instance, the LT800 from Leica Geosystems, Unterentfelden, Switzerland.
16See, for instance, P. Wallace, Mathematical Analysis of Physical Problems, Dover, 1984.
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Figure 5: Segment of the wire showing the tension T acting at the ends, and the force per
unit length F and gravity acting in the y direction.

The force per unit length Fl in the y direction from a current I(t) in the z direction and
a magnetic �eld Bx(z) in the x direction is Fl = I(t)Bx(z). Thus, the equation we wish to
solve is

ml
@2y

@t2
+ �l

@y

@t
� T @

2y

@z2
= �ml g + I(t)Bx(z) (5)

To solve this equation, we must also specify the boundary conditions. (The initial
conditions are not important for our present solution since we are interested in the steady
state.) We �x one end of the wire at z = 0 and the other end at z = L for a wire of
length L. The boundary conditions are then y(z = 0; t) = 0 and y(z = L; t) = 0. Given
these boundary conditions, we solve the di¤erential equation for y(z; t) by �rst �nding the
homogeneous solution and then �nding the particular solutions for the two driving terms
on the right hand side.

4.2 Homogeneous Solution

The homogeneous solution to the di¤erential equation is found by setting the driving terms
to zero. The di¤erential equation for the homogeneous solution yh(z; t) is

ml
@2yh
@t2

+ �l
@yh
@t

� T @
2yh
@z2

= 0 (6)

with boundary conditions yh(z = 0; t) = 0 and yh(z = L; t) = 0. We use separation of
variables to write yh(z; t) = Yz(z)Yt(t). Dividing by the tension and rearranging terms, we
�nd

1

Yt

�
ml

T

d2Yt
dt2

+
�l
T

dYt
dt

�
=
1

Yz

d2Yz
dz2

(7)

Since both sides are functions of di¤erent variables, they must be constant. We set both
sides equal to �k2.

The equation for Yz becomes

d2Yz
dz2

+ k2Yz = 0 (8)
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with Yz(0) = 0 and Yz(L) = 0: The solution is

Yz(z) = A
0
n sin

�n�z
L

�
; (n = 1; 2; 3; :::) (9)

for given n, with A
0
n an arbitrary constant.

The equation for Yt for given n is

ml

T

d2Yt
dt2

+
�l
T

dYt
dt

+
�n�
L

�2
Yt = 0 (10)

Let � = �l=ml and !2n = (T=ml) (n�=L)
2. With these substitutions, the equation becomes

d2Yt
dt2

+ �
dYt
dt

+ !2nYt = 0 (11)

Using trial solution Yt = est and solving for s, we �nd s = ��
2 �

q�
�
2

�2 � !2n. We take

�� !n, so s = ��
2 � i

q
!2n �

�
�
2

�2. The solution for Yt for given n is then
Yt(t) = A

00

ne
��
2
tei
q
!2n�(�2 )

2
t +B

00

ne
��
2
te�i

q
!2n�(�2 )

2
t (12)

with A
00
n and B

00
n arbitrary complex constants.

Combining terms, the homogeneous solution is given by

yh(z; t) = Re
1X
n=1

�
Ane

��
2
tei
q
!2n�(�2 )

2
t +Bne

��
2
te�i

q
!2n�(�2 )

2
t

�
sin
�n�z
L

�
(13)

with � = �l=ml, !2n = (T=ml) (n�=L)
2, An and Bn arbitrary complex constants, and Re

representing the real part of the expression.
The homogeneous solution can be used to measure the decay constant �. With no

current in the wire, the wire can be plucked and the time for the vibration to decay away
can be measured. If � is the decay time, � = 2=� . In addition, the vibration frequency

of the plucked wire can be measured. The lowest frequency of vibration is
q
!21 �

�
�
2

�2.
Knowing �, this allows us to determine !1. Since the wire tension, mass per unit length,
and length can be determined independently, measuring !1 provides a check on the behavior
of the system.

4.3 Particular Solution Due To Gravity

We now seek a solution to the di¤erential equation for the wire motion with only the �rst
driving term due to gravity

ml
@2yg
@t2

+ �l
@yg
@t

� T @
2yg
@z2

= �ml g (14)

Since the driving term is time independent, we seek a time independent solution yg(z) of
the equation

d2yg
dz2

=
ml g

T
(15)
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Integrating once, we get
dyg
dz

=
ml g

T
z + C1 (16)

where C1 is a constant. Integrating again, we get

yg =
ml g

2T
z2 + C1z + C2 (17)

where C2 is another constant.
Using the boundary condition that yg(0) = 0 and yg(L) = 0, we determine C1 and C2

and arrive at the solution
yg(z) =

ml g

2T
z(z � L) (18)

Note that yg is negative since 0 < z < L.
The sag of the wire is given by the minimum value of yg. This occurs when dyg=dz = 0,

which is at z = L=2. The negative of the value of yg at this point is de�ned to be the sag
s.

s =
mlgL

2

8T
(19)

The sag is related to the fundamental frequency of vibration !1

!21 =
�2T

mlL2
(20)

Writing s in terms of !1, we �nd the relation

s =
g�2

8!21
(21)

Using the relation !1 = 2�f1, we can rewrite this relation as

s =
g

32f21
(22)

Since the vibration frequency f1 can be accurately determined and the gravity constant g
is well known, equation 22 leads to an accurate determination of the sag, which in our case
of a short, light wire under high tension would otherwise be di¢ cult to measure directly.

4.4 Particular Solution Due To Wire Current And External Magnetic
Field

We next seek a solution to the di¤erential equation for the wire motion with the second
driving term due to the current in the wire interacting with the magnetic �eld of the magnet

ml
@2yB
@t2

+ �l
@yB
@t

� T @
2yB
@z2

= I(t)Bx(z) (23)

The current in the wire varies sinusoidally with time and we may represent it as I(t) = I0ei!t,
and then use the real part of yB to represent the solution to the equation. We look for
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a particular solution with the same time dependence, yB(z; t) = YB(z)ei!t. Inserting this
form for the solution into the di¤erential equation, we get

�!2mlYB + i!�lYB � T
d2YB
dz2

= I0Bx(z) (24)

The boundary conditions are YB(0) = 0 and YB(L) = 0.
To solve for YB(z), we expand both YB(z) and Bx(z) in Fourier sine series.

YB(z) =

1X
n=1

YBn sin
�n�z
L

�
(25)

Bx(z) =
1X
n=1

Bxn sin
�n�z
L

�
(26)

where

YBn =
2

L

Z
YB(z) sin

�n�z
L

�
dz (27)

Bxn =
2

L

Z
Bx(z) sin

�n�z
L

�
dz (28)

Equation 24 then becomes�
�!2ml + i!�l + T

�n�
L

�2�
YBn = I0Bxn (29)

Dividing through by ml and using the de�nitions � = �l=ml and !2n = (T=ml) (n�=L)
2, we

get �
�!2 + i!�+ !2n

�
YBn =

1

ml
I0Bxn (30)

This can be solved for YBn

YBn =
�I0Bxn

ml (!2 � !2n � i!�)
(31)

With YBn, we can write down the expression for YB(z)

YB(z) =

1X
n=1

�I0Bxn
ml (!2 � !2n � i!�)

sin
�n�z
L

�
(32)

Knowing YB(z), we can write the particular solution due to the driving term from the
magnetic �eld

yB(z; t) = Re
1X
n=1

�I0Bxn
ml (!2 � !2n � i!�)

sin
�n�z
L

�
ei!t (33)

Note that if the wire current frequency is chosen to be near a natural vibration frequency
of the wire, one term in the series will dominate and

yresB (z; t) ' I0Bxn
ml!n�

sin
�n�z
L

�
cos
�
!nt�

�

2

�
(34)

This motion of the wire is fundamental to the vibrating wire technique and will be discussed
further below.
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4.5 General Solution

The general solution to the di¤erential equation governing vertical wire motion is given by
the sum of the homogeneous solution and the two particular solutions

y(z; t) = yh(z; t) + yg(z) + yB(z; t) (35)

Writing this out, we get

y(z; t) = Re
1X
n=1

�
Ane

��
2
tei
q
!2n�(�2 )

2
t +Bne

��
2
te�i

q
!2n�(�2 )

2
t

�
sin
�n�z
L

�
+
ml g

2T
z(z � L) + Re

1X
n=1

�I0Bxn
ml (!2 � !2n � i!�)

sin
�n�z
L

�
ei!t (36)

In this expression � = �l=ml and !2n = (T=ml) (n�=L)
2. The coe¢ cients in the homoge-

neous solution are determined by the initial conditions.

4.6 Horizontal Wire Motion

Up to now, we have been considering the vertical vibrations of the wire. The horizontal
vibrations of the wire are treated in an almost identical manner. Only two changes need
to be made. First, we no longer need to worry about gravity, so the term involving g is not
present. Second, the horizontal force on the wire is caused by the vertical magnetic �eld.
The force per unit length Fl in the x direction from a current I(t) in the z direction and a
magnetic �eld By(z) in the y direction is Fl = �I(t)By(z). There is a sign change relative
to the vertical force. With these changes, we can immediately write down the equation
describing the horizontal motion of the wire

x(z; t) = Re

1X
n=1

�
�Ane

��
2
tei
q
!2n�(�2 )

2
t + �Bne

��
2
te�i

q
!2n�(�2 )

2
t

�
sin
�n�z
L

�
+Re

1X
n=1

I0Byn
ml (!2 � !2n � i!�)

sin
�n�z
L

�
ei!t (37)

4.7 Discussion

The general solution for the vertical wire motion consists of three terms, the homogeneous
solution and two particular solutions. In general, the homogeneous solution will decay
away exponentially and will not be used in the measurements. It can be used, however, to
measure � and !1, as noted above.

Once !1 is known, the wire sag can be calculated as in equation 22. The wire sag
is important because it determines whether or not we can use the ends of the wire to
determine the wire position for �ducialization. If the sag is too large, we must measure the
wire position near the quadrupole we are �ducializing.

The third term in the expression for y(z; t) is the primary one we will use for �ducializa-
tion. We will set the wire current frequency to a natural frequency !n, so I(t) = I0 cos(!nt).
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We use the wire current as a phase reference and adjust the frequency until the wire motion
is 90� out of phase using the signal from the wire position sensor and a lock-in ampli�er.
The steady state wire motion about the sagged wire position is then given by

yresB (z; t) ' I0Bxn
ml!n�

sin
�n�z
L

�
cos
�
!nt�

�

2

�
(38)

xresB (z; t) ' I0Byn
ml!n�

sin
�n�z
L

�
cos
�
!nt+

�

2

�
(39)

As the quadrupole is moved in y, for example, Bxn changes. When the quadrupole is
centered on the wire Bxn = 0 and the wire vibration in the vertical direction goes to zero.
This outlines the general technique. A full discussion will follow.

5 Quadrupole Fiducialization

5.1 Quadrupole Vertical Position

To determine the vertical position of the axis of the quadrupole, the wire is excited at the
second harmonic of the natural frequency of vibration of the wire. The wire will vibrate
as shown in �gure 6. We use n = 2 so that the system is insensitive to constant �elds, like
the Earth�s �eld, which have Bx2 = 0, and so do not a¤ect the measurement. This helps
eliminate o¤sets in the measurements. For n = 2, the quadrupole is placed at one peak of

Figure 6: Wire vibrating at the second harmonic.

the vibration at z = L=4 and the detector is placed at z = 7L=8. The detector location
is chosen to be at a peak of vibration of the fourth harmonic. This improves the pitch
measurement as shown below, but does not signi�cantly degrade the position measurement.

The wire vibration is described by equation 38 with n = 2 since we are driving the wire
at the second harmonic.

yresB (z; t) ' I0Bx2
ml!2�

sin

�
2�z

L

�
cos
�
!2t�

�

2

�
The coe¢ cient Bx2 in the sine expansion of the magnetic �eld along the wire is given by

Bx2 =
2

L

Z L

0
Bx(z) sin

�
2�z

L

�
dz (40)
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We assume that the quadrupole has constant o¤set from the wire and so has a constant
�eld Bx along its length. The quadrupole of length LQ is centered at z = L=4. Bx2 is
then given by

Bx2 =
2

L

Z L=4+LQ=2

L=4�LQ=2
Bx sin

�
2�z

L

�
dz (41)

where Bx depends on the y position of the quadrupole, but not z. Performing the integral,
we get

Bx2 = �
2

L
Bx

L

2�
cos

�
2�z

L

�����L=4+LQ=2
L=4�LQ=2

(42)

Expanding, we get

Bx2 =
2Bx
�
sin

�
�LQ
L

�
(43)

For LQ � L, we approximate sin(�LQL ) by �LQ
L to get

Bx2 =
2BxLQ
L

(44)

If we de�ne the gradient of the quadrupole to be G and the vertical position of the magnet
relative to the wire to be y, then the wire is at position �y relative to the quadrupole center
and Bx is given by

Bx = �Gy (45)

Bx2 can then be expressed as

Bx2 = �
2GLQ y

L
(46)

From equation 38, the wire vibration at z as a function of t is then

yresB (z; t) ' � I02GLQ
ml!2�L

y sin

�
2�z

L

�
cos
�
!2t�

�

2

�
(47)

The detector is at z = 7L=8. The vibration of the wire at the detector is given by

yresB

�
z =

7L

8
; t

�
' I0

p
2GLQ

ml!2�L
y cos

�
!2t�

�

2

�
(48)

The amplitude of the wire vibration at the detector varies linearly with the y position of
the quadrupole and is given by

Adet =

 p
2I0GLQ
ml!2�L

!
jyj (49)

The phase of the vibration of the wire at the detector is

�det = �sign(y)
��
2

�
(50)

For y > 0, �det = ��=2. For y < 0, �det = +�=2. Of course, this assumes a convention
that Bx > 0 for y < 0 and Bx < 0 for y > 0, where y is the quadrupole position. The
phase change is very sharp at the quadrupole center.
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Figure 7: Amplitude and phase of the wire vibration at the detector vs the y position of
the quadrupole.

Plotting the amplitude and phase of the wire vibration at the detector gives the result
shown in �gure 7. The center of the quadrupole is aligned with the wire when the amplitude
of the vibration goes to zero and the phase changes by 180�. The slope of the lines in the
amplitude vs y graph are given by equation 49.

5.2 Quadrupole Pitch

Quadrupole pitch is illustrated in �gure 8. Pitch is a vertical angle between the quadrupole
axis and the wire axis in which the y coordinate of the magnetic axis changes with z. We
use the fourth harmonic to measure pitch. The quadrupole center is still at at z = L=4,
as for the vertical position measurement, but it is now centered on a node of the vibration.
The detector at z = 7L=8 is now at a peak of the vibration.

Figure 8: Quadrupole pitch is measured with the fourth harmonic frequency.

The wire vibration is described by equation 38 with n = 4 since we are using the fourth
harmonic

yresB (z; t) ' I0Bx4
ml!4�

sin

�
4�z

L

�
cos
�
!4t�

�

2

�
(51)

The coe¢ cient Bx4 in the sine expansion of the magnetic �eld along the wire is given by

Bx4 =
2

L

Z L

0
Bx(z) sin

�
4�z

L

�
dz (52)
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The axis of the quadrupole is given by the line yaxis = �(z � L=4), where � is the small
pitch angle. The �eld Bx at the wire is given by the gradient times the y position of the
wire relative to the axis, which is �yaxis. So Bx(z) is given by

Bx(z) = �G�
�
z � L

4

�
(53)

Inserting Bx(z) into equation 52 including the extent of the quadrupole along z, we get

Bx4 =
2

L

Z L=4+LQ=2

L=4�LQ=2
�G�

�
z � L

4

�
sin

�
4�z

L

�
dz (54)

Performing the integral, we get

Bx4 = �
2G�

L

"
�
�
z � L

4

��
L

4�

�
cos

�
4�z

L

�
+

�
L

4�

�2
sin

�
4�z

L

�#L=4+LQ=2
L=4�LQ=2

(55)

After the limits are put in, the expression for Bx4 becomes

Bx4 = �2G�
L

"
�
�
LQ
2

��
L

4�

�
cos

�
� +

2�LQ
L

�
+

�
L

4�

�2
sin

�
� +

2�LQ
L

�

+

�
�LQ
2

��
L

4�

�
cos

�
� � 2�LQ

L

�
�
�
L

4�

�2
sin

�
� � 2�LQ

L

�#
(56)

This equation simpli�es to

Bx4 = �
2G�

L

"
2
LQL

8�
cos

�
2�
LQ
L

�
� 2

�
L

4�

�2
sin

�
2�
LQ
L

�#
(57)

For LQ � L, we approximate sin(2�LQL ) by 2�LQ
L � 1

6

�
2�LQ
L

�3
and cos(2�LQL ) by 1 �

1
2

�
2�LQ
L

�2
to get

Bx4 = �
2G�

L

"
LQL

4�

 
1� 1

2

�
2�LQ
L

�2!
� 2

�
L

4�

�2 2�LQ
L

� 1
6

�
2�LQ
L

�3!#
(58)

This simpli�es to

Bx4 = �
2G�

L

 
�
�L3Q
2L

+
�L3Q
6L

!
(59)

which further simpli�es to the result:

Bx4 =
2�

3
GLQ

�
LQ
L

�2
� (60)
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Inserting this expression for Bx4 into equation 51, the wire vibration at z as a function of
t is given by

yresB (z; t) ' I0
ml!4�

2�

3
GLQ

�
LQ
L

�2
� sin

�
4�z

L

�
cos
�
!4t�

�

2

�
(61)

The detector is at z = 7L=8. The vibration of the wire at the detector is given by

yresB

�
z =

7L

8
; t

�
' � I0

ml!4�

2�

3
GLQ

�
LQ
L

�2
� cos

�
!4t�

�

2

�
(62)

The amplitude of the wire vibration at the detector varies linearly with the pitch angle �
of the quadrupole and is given by

Adet =

 
I0

ml!4�

2�

3
GLQ

�
LQ
L

�2!
j�j (63)

The phase of the vibration of the wire at the detector is

�det = sign(�)
��
2

�
(64)

For � > 0, �det = �=2, and for � < 0, �det = ��=2.

5.3 Quadrupole Horizontal Position

The horizontal position of the quadrupole a¤ects the horizontal vibration of the wire in an
analogous manner to the vertical position, but with the phase change which was mentioned
previously. Using the second harmonic for the measurement, we get the following relation

xresB

�
z =

7L

8
; t

�
' I0

p
2GLQ

ml!2�L
x cos

�
!2t+

�

2

�
(65)

The amplitude of the wire vibration at the detector varies linearly with the x position of
the quadrupole and is given by

Adet =

 p
2I0GLQ
ml!2�L

!
jxj (66)

The phase of the vibration of the wire at the detector is

�det = sign(x)
��
2

�
(67)

For x > 0, �det = +�=2. For x < 0, �det = ��=2. This assumed a convention that By > 0
for x < 0 and By < 0 for x > 0, where x is the quadrupole position relative to the wire.
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5.4 Quadrupole Yaw

Yaw is the angle of the quadrupole center line relative to the wire in the x direction. It is
similar to the pitch angle in the y direction. Adapting the pitch angle equations and again
using the fourth harmonic for the measurement, we get

yresB

�
z =

7L

8
; t

�
' � I0

ml!4�

2�

3
GLQ

�
LQ
L

�2
� cos

�
!4t+

�

2

�
(68)

where � is the yaw angle. The amplitude of the wire vibration at the detector varies linearly
with the yaw angle � of the quadrupole and is given by

Adet =

 
I0

ml!4�

2�

3
GLQ

�
LQ
L

�2!
j�j (69)

The phase of the vibration of the wire at the detector is

�det = �sign (�)
��
2

�
(70)

For � > 0, �det = ��=2. For � < 0, �det = +�=2.

5.5 Quadrupole Roll And z

The vibrating wire technique is not suitable for roll or axial center position measurements.
The axial or z position is typically not speci�ed with a tight tolerance. Conventional
mechanical measurements are adequate for this coordinate.

The LCLS quadrupoles have a roll angle tolerance of 10 mrad17. This is a very loose
tolerance and easy to achieve with mechanical measurements of the magnet poles on the
coordinate measuring machine during the �ducialization process.

5.6 E¤ect Of Positioning Errors

In the preceding analysis we assumed that the magnet position and vibration detector
position had the speci�ed values without error. We now consider whether the results
change appreciably if there is a positioning error.

It is plausible from the above discussion that small errors in the detector position will
have a small e¤ect on the pitch and yaw measurements since the detector is placed at a peak
in the vibration amplitude. The x and y position sensitivities will change slightly with a
small position error, but the location of the magnet center on the wire will not change.

Similarly, small errors in the magnet position along the wire will not a¤ect the horizontal
or vertical position sensitivity because if we move the magnet along the wire by �z, then
Bx2 in equation 41 becomes

Bx2 =
2

L

Z L=4+�z+LQ=2

L=4+�z�LQ=2
Bx sin

�
2�z

L

�
dz (71)

17LCLS parameter database http://www-ssrl.slac.stanford.edu/htbin/rdbweb/LCLS_params_DB_public.
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It turns out that Bx2 is independent of �z to �rst order. The results given above remain
unchanged to �rst order.

The pitch and yaw measurement assumed the quadrupole to be longitudinally centered
on a node of the wire vibration. In this case, one wonders about the e¤ect of an error �zM
in the magnet position or an error �zR in the point the magnet is rotated about. The
e¤ect is determined by calculating Bx4 including the errors

Bx4 =
2

L

Z L=4+�zM+LQ=2

L=4+�zM�LQ=2
�G�

�
z � L

4
��zR

�
sin

�
4�z

L

�
dz (72)

After a lengthy calculation, one �nds

Bx4 =
2�

3
GLQ

�
LQ
L

�2
�

"
1 + 12

�
�zM
LQ

�2
� 12

�
�zR
LQ

��
�zM
LQ

�
+ : : :

#
(73)

This agrees with our previous result, but with corrections to the sensitivity which are small
as long as the position errors �zM and �zR are small compared to the magnet length. We
take this to be the case and conclude that our previous result remains adequate in spite
of small positioning errors. Note that even though the sensitivity has a small change, the
�nal position of the magnet at � = 0, � = 0 does not change.

6 Sample Calculations

In order to get a feel for the performance of a vibrating wire system, we now insert typical
values in the formulas derived so far to determine the sensitivities to quadrupole position.
We must �rst choose the wire type and the system parameters. Sensitivities can then be
calculated.

The wire must be non-magnetic so that we don�t have steady state forces in the magnetic
�eld gradient of the quadrupole. The wire must also have high tensile strength so that
large tension can be applied to minimize sag. The diameter should be small so that the
sti¤ness of the wire is not a factor. On the other hand, the diameter must be large enough
so that it can be handled in a production environment. In our experience, 4 mil (100 �m)
diameter copper beryllium wire is the best choice. Properties of the wire are listed in table
118.

For the LCLS quadrupoles, we assume a typical length of the wire of 1:5 m. We take
the wire tension to be 80% of the maximum tension, or 9 N. Given the length of the wire,
its electrical resistance will be 14:2 
. If we use a signal generator with 10 V amplitude and
50 
 internal impedance, the current in the wire will have an amplitude of approximately
0:15 A. As a rough estimate, if we pluck the wire, we assume the vibrations will damp out
in 1 sec. This means � = 2 1/s. The LCLS quadrupoles have an integrated gradient of 3
T and a length of 0:05 m19. We summarize these parameters of the measurement system
in table 2.
18Little Falls Alloys, Paterson, New Jersey.
19LCLS parameter database http://www-ssrl.slac.stanford.edu/htbin/rdbweb/LCLS_params_DB_public.
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Property Value Units
Mass density 8:35� 103 kg/m3

Resistivity 7:68� 10�8 
m
Tensile strength 1:4� 109 N/m2

Diameter 1:016� 10�4 m
Area 8:11� 10�9 m2

Mass per unit length 6:77� 10�5 kg/m
Resistance per unit length 9:47 
=m
Tension (max) 11:4 [2:57] N [lbs]

Table 1: Properties of copper beryllium wire chosen for the measurement system.

Parameter Value Units
Wire length L 1:5 m
Wire tension T 9 N
Wire mass per unit length ml 6:77� 10�5 kg/m
Damping constant � 2 1=s
Gravitational constant g 9:81 m/s2

Wire current amplitude I0 0:15 A
Quadrupole integrated gradient GLQ 3 T
Quadrupole length LQ 0:05 m

Table 2: Parameters of a typical vibrating wire measurement system for LCLS quadrupoles.

6.1 Fundamental Frequency

The fundamental frequency of vibration of the undamped wire is given by

!1 =
�

L

r
T

ml
(74)

Inserting values, we �nd

!1 = 764 1/s

f1 = 122 Hz (75)

6.2 Wire Sag

The wire sag is given by
s =

g

32f21
(76)

Using the value for f1 and the gravitational constant, we �nd

s = 20:6 �m (77)

Note that the wire sag is larger than the �ducialization accuracy tolerance. Wire position
detectors near the quadrupole must be used.
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6.3 Quadrupole Position Sensitivity

The sensitivity of the system to both vertical and horizontal quadrupole motion is the same.
We de�ne the sensitivity Sxy as the amplitude of wire vibration at the detector per unit of
vertical or horizontal motion of the quadrupole.

Sxy =
Adet;y
jyj =

Adet;x
jxj =

p
2I0GLQ
ml!2�L

(78)

The frequency used is twice the fundamental frequency or !2 = 1528 1/s. Inserting the
appropriate values, we �nd

Sxy = 2:05 m/m (79)

This means that for every micron that we move the quadrupole, the amplitude of the wire
vibration increases by 2:05 microns. We estimated that the wire vibration detector would
give an output of 0:01 V per micron of wire motion. Thus, we can expect a signal of 0:021
V per micron of quadrupole motion. This is a large signal which the lock-in ampli�er can
easily measure.

6.4 Quadrupole Angle Sensitivity

The sensitivity of the system to quadrupole pitch and yaw is given by

S�� =
Adet;�
j�j =

Adet;�
j�j =

I0
ml!4�

2�

3
GLQ

�
LQ
L

�2
(80)

The frequency used for this measurement is four times the fundamental frequency, or !4 =
3056 1/s. Inserting the appropriate values, we �nd

S�� = 2:53� 10�3 m/rad (81)

This means that for every milliradian of pitch, the wire vibration amplitude increases by
2:53 microns. Using the vibration detector sensitivity of 0:01 V per micron of wire motion,
the signal we expect is 0:025 V per milliradian of pitch or yaw. Again, this is a large signal
which is easy to measure.

7 Conclusion

The vibrating wire technique provides extreme sensitivity for �ducializing the LCLS quadru
poles. It is expected that a quadrupole can be centered on the wire at the micron level.
Pitch and yaw angles can be reduced below the milliradian level, allowing repeatable �du-
cialization. Wire position detectors will be required on both sides of the quadrupole. The
wire position detectors are expected to locate the wire relative to tooling balls at the 2 �m
level. A coordinate measuring machine will locate all tooling balls to better than 10 �m.
We expect this system to more than achieve the 25 �m �ducialization accuracy requirement.

The system is being commissioned. Preliminary measurements are in agreement with
the equations presented in this note for both the sensitivities and the phases. Repeatability
of the �ducialization process must be determined. Tests should also be performed in which
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the quadrupole is �ipped, checking for unforeseen biases in the measurements. Studies of
wire position detector accuracy should be continued.
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