
Parallelizing AT with MatlabMPI

Evan Y. Li

Office of Science, Science Undergraduate Laboratory Internship (SULI)

Brown University

SLAC National Accelerator Laboratory

Menlo Park, CA

August 20, 2010

Prepared in partial fulfillment of the requirements of the Office of Science, Department

of Energy’s Science Undergraduate Laboratory Internship under the direction of Xiaobiao

Huang at the Stanford Synchrotron Radiation Lightsource (SSRL).

Participant:

Signature

Research Advisor:

Signature

SLAC-TN-11-009

Work supported in part by US Department of Energy contract DE-AC02-76SF00515.



TABLE OF CONTENTS

Abstract ii

Introduction 1

Dynamic Aperture Determination 2

Discussing ringpass 3

Parallelization Strategy 4

Installing and Running 5

Results and Discussion 7

Conclusions and Future Work 8

Acknowledgments 9

References 10

i



ABSTRACT

Parallelizing AT with MatlabMPI. EVAN Y. LI (Brown University, Providence, RI 02912)

XIAOBIAO HUANG (Stanford Synchrotron Radiation Lightsource (SSRL), Menlo Park,

CA)

The Accelerator Toolbox (AT) is a high-level collection of tools and scripts specifically

oriented toward solving problems dealing with computational accelerator physics. It is inte-

grated into the MATLAB environment, which provides an accessible, intuitive interface for

accelerator physicists, allowing researchers to focus the majority of their efforts on simula-

tions and calculations, rather than programming and debugging difficulties. Efforts toward

parallelization of AT have been put in place to upgrade its performance to modern standards

of computing. We utilized the packages MatlabMPI and pMatlab, which were developed by

MIT Lincoln Laboratory, to set up a message-passing environment that could be called within

MATLAB, which set up the necessary pre-requisites for multithread processing capabilities.

On local quad-core CPUs, we were able to demonstrate processor efficiencies of roughly 95%

and speed increases of nearly 380%.

ii



INTRODUCTION

As the field of accelerator physics continues to grow, so too does the need for faster, more

efficient methods of beam simulation in computationally intensive tracking functions. The

Accelerator Toolbox (AT) for MATLAB, which has been in development at the Stanford

Synchrotron Radiation Lightsource (SSRL), has grown increasingly popular throughout the

scientific community in recent years. This is due to its ability to combine the efficacy of

modern-day, industry-standard tracking algorithms with the flexibility, intuitiveness, and

efficiency of the MATLAB working environment, making it the modeling code of choice in

SLAC projects such as the SPEAR3 Synchrotron Light Source [1].

Though it functions as a powerful tool, AT’s methods and implementations for particle

simulation still show room for further development. A number of the most difficult tasks

in storage ring simulation, particularly processes such as lattice design optimization and

dynamic aperture tracking, require highly computation-intensive algorithms. With plans to

upgrade the performance of the SPEAR3 storage ring, SSRL now requires even more powerful

calculations to be implemented for optimization processes. This drastically increases the

amount of time and processing power needed to produce satisfactorily accurate models of

particle beam motion. While AT’s current methods are presently capable of performing

these tasks, code can take a sizable amount of time to run to completion, detracting from

the efficiency that AT strives to provide for its users.

Our goal is to upgrade AT’s functionality with the efficiency standards of modern com-

puting. We have worked to implement design changes to our computing models by transi-

tioning the passmethods from their original serial-code construction to a generalized parallel-

computing structure, allowing these functions to take advantage of both the symmetric multi-

processing capabilities of most modern-day computers and the overwhelming computational

power of supercomputing clusters present in large-scale research facilities. It should be noted

1



that parallel computing has proven to be one of the most straightforward and promising ap-

proaches toward hastening the computing speed in accelerator physics, as the main source

of bottlenecks in AT’s performance stems from heavily reiterative calls of particle tracking

functions which are largely independent of each other. In addition, tests in computational

accelerator physics have demonstrated promising values for processor efficiencies [2], allow-

ing us to reduce computing times by hundreds of factors with the use of a large computer

cluster.

The first revisions we implemented were conducted using OpenMP specifications for

C/C++ compilers (OpenMP has emerged as the standardized model for shared memory

computing). By exploiting the multi-core processing capabilities of common workstations,

we were instantly able to observe runtime speed increases to nearly 400% of their original

values. Once we were able to successfully demonstrate the efficacy of parallel computing

on a local machine, we then worked to implement parallelization adhering to a distributed

memory model by using the MatlabMPI implementations of the standardized Message Pass-

ing Interface (MPI), which allowed us to run AT on multi-CPU setups and supercomputing

clusters. By introducing these modifications, we were able to demonstrate enormous up-

grades in AT’s computational abilities, and can potentially reduce processing times to less

than 1% of those associated with the previous implementations.

DYNAMIC APERTURE DETERMINATION

The dynamic aperture is a property of accelerator structures which describes certain bound-

ary conditions, inside of which a particle can continue to exhibit a stable orbit as it passes

repeatedly through the electromagnetic fields of the apparatus. Conversely, particles located

outside of the dynamic aperture will tend to exhibit chaotic orbits, causing their transverse

displacements from the axis of the beam to amplify, resulting in collisions with the physical

2



aperture of the machine. This chaotic behavior is a highly problematic experimental factor,

as it results in low injection efficiency, beam loss, and increased radiation hazards. To ensure

a successful design, the dynamic aperture must be calculated repeatedly and the beam optics

adjusted many times to maximize the stability of the beam.

In the particle accelerator design process, tasks of calculating the dynamic aperture and

finding the optimal lattice design have proven to be some of the most computationally inten-

sive problems that accelerator physicists face, with optimization algorithms demonstrating

runtimes on the order of several hours, days, or even weeks. Currently, there is promising evi-

dence to suggest that these are the algorithms that will benefit most from implementations of

parallel computing. Our project will focus on ringpass, which defines the function that AT

uses to carry out this computing procedure and thus will be the focus of our parallelization

efforts.

DISCUSSING RINGPASS

AT models accelerator particle motion by representing the electromagnetic properties of the

fields in the lattice as passmethod functions, M, which act upon the vector representation of

the particle to produce the evolved trajectory vector:

~X(n) = MnMn−1 · · ·M2M1
~X0

Calls to ringpass will evolve the particle trajectories as the script is run. Each function

call receives three input arguments, which correspond to the following variables: the particle

accelerator’s lattice of beam optics, the particle beam’s initial coordinates, and the number

of turns for which the beam should be tracked. Instances of ringpass often involve millions

of reiterative calls to the AT library functions and passmethods. Although intensive and

seemingly inefficient, these are calculations that must be executed due to the chaotic, non-

3



linear behavior of high-order magnets. This behavior results in beam motion that cannot

be analytically described, thus calling for heavily taxing numerical calculations to obtain an

accurate visualization of the beam’s behavior.

PARALLELIZATION STRATEGY

Parallel computation has become an increasingly universal method for performing large-scale

computations in an efficient manner. The parallel model allows jobs to be broken down into

discrete sets of instructions, which can be executed simultaneously on multiple processors,

allowing for dramatic increases in performance quality. Our methods focused primarily on

the various approaches for making AT compatible with parallel processing.

As parallel computing has grown increasingly popular, a number of methods have emerged

as the standardized systems for the varying forms of parallel computation (Figures 1, 2). Our

first goal was to introduce OpenMP directives and routines to the existing AT source code,

allowing the toolbox to be used on systems following a Uniform Memory Access (UMA)

model. This is a straightforward procedure which requires only minor alterations to the

code as the passmethods are written in C, for which OpenMP has a direct implementation

that is compatible with MATLAB’s MEX compiling function [3].

The shared memory model can be further improved upon by expanding and adhering

the structure to a general distributed memory model. However, the transition toward a

distributed memory model is less straightforward. While MathWorks has developed packages

for cluster parallelization, standard versions of MATLAB do not currently support methods

for message-passing between CPUs. We solve this issue by invoking MatlabMPI and pMatlab

[4], which can be used by MATLAB as implementations of the Message Passing Interface

(MPI), a library that has emerged as the universal standard for message-passing programs.

pMatlab operates by adhering to a Single Instruction, Multiple Data (SIMD) computing

4



structure by using distributed array datatypes, which partition data amongst CPUs to be

processed separately in accordance with a single, defined set of instructions.

Once we set up the distributed computing environment for MATLAB, we were able to

combine our implementations of OpenMP and MPI by using the message-passing functions

to distribute data to a cluster of multi-core machines. This allows us to utilize the shared

memory computing interface for managing local task distribution for each of the individual

CPUs, while functioning in a global distributed memory interface. To perform all of these

tasks, we set up the MATLAB environment and AT toolbox on all of the machines in the

cluster and utilize the MPI routines on the host machine to distribute partitions of the

particle beam vector representation amongst each of the worker machines. At the end of

the computing procedures, information from each CPU will be consolidated and processed,

allowing us to receive outputs from beam tracking functions in a fraction of the original

serial-code’s runtime.

INSTALLING AND RUNNING

Configuring pMatlab and MatlabMPI

Our parallelized implementation of ringpass uses the packages MatlabMPI and pMatlab

from MIT Lincoln Laboratory. It can be installed using the following instructions:

• The user must extract the pMatlab library to a directory which is visible to all CPUs

in the communicator

• Each MATLAB startup.m file on individual nodes should be modified to run the scripts

contained in the pMatlab/startup.m file

• PC users should also append addpath .\MatMPI to the startup file.

5



This should allow MATLAB to run pMatlab scripts from the home process. To address

further difficulties, it would be helpful to consult the pMatlab/MatlabMPI documentation,

located at http://www.ll.mit.edu/mission/isr/pmatlab/pmatlab.html

MatlabMPI sets up the necessary I/O communication processes to run MATLAB scripts

on multiple computers, while pMatlab implements higher level functions to automate tasks

such as data distribution and memory management. It is imperative that it is set up properly

on the system before proceeding. They can be tested using the examples located in the

pMatlab/examples and pMatlab/MatlabMPI/examples directory.

Testing parringpass

We provide the functions prpTest, prpTestLaunch, and samplePlot to simulate a test run

of AT’s parallel capabilities. To run these files, the user should navigate the MATLAB

working directory to the /examples folder and run the prpTestLaunch script. If the script

completes, the samplePlot script can be run as well to obtain a picture of the phase space

plots of each tracked particle (Figure 3).

Running parringpass

The MATLAB script, parringpass, is designed to function as a parallelized version of AT’s

ringpass function. It should not be directly called from the command line, but rather from

within the parringpasslaunch function, which specifies the settings corresponding to the

communication directories and the number of threads/processors. For help setting up com-

munications, consult both the pMatlab documentation and the MatlabMPI documentation,

located within the pMatlab/MatlabMPI path.

Before the launch script is run, parringpass itself has a number of parameters that

should be specified from within the function. This is due to the process by which pMatlab

carries out its calculations. Parameter arguments cannot be directly passed into the func-

6



tions; they must be directly instantiated from within the script. The parringpass code

provides example formats for declaring these variables, which should be changed according

to the desired calculations:

% ARGUMENTS

SPEAR3; % Script which instantiates the corresponding version of the SPEAR3

lattice.

numberParticles = 1024; % Specifies the number of particles to track

Rin = zeros(6,numberParticles); % Instantiates an array of zeros representing

the initial coordinates

NT = 1024; % Integer specifying number of passes through ring

pMatlab uses distributed array computing to run its parallel processes. For this reason,

arrays must be instantiated using the zeros(), ones(), or rand() functions, which are

overloaded by the pMatlab libraries to be compatible with distributed matrix computing.

RESULTS AND DISCUSSION

Though parringpass has yet to be tested on a multi-CPU cluster due to configuration issues,

we were able to demonstrate enormous performance upgrades by taking advantage of parallel

capabilities on a multi-core system and running it in a simulated multi-CPU environment

with access to four discrete nodes. The resultant computation runtimes are demonstrated

(Figure 4), as well as the processor performance graphs recorded using the Windows Task

Manager (Figure 5).

From the test runs utilizing a quad-core processor in a simulated distributed memory en-

vironment, we observe a speed factor increase of 3.7, correspond to an approximate efficiency

of 95% per processor, strikingly close to an ideal, linear speed increase for parallel comput-

ing applications. Studies in parallel computing and computational accelerator physics have

demonstrated similarly high efficiencies on high-performance supercomputing clusters, pre-

dicting processor efficiencies for parringpass of over 80% [2], even with communications set

up between hundreds of discrete nodes.

7



CONCLUSIONS AND FUTURE WORK

By exploiting the efficacy of modern-day parallel computing, we were able to demonstrate

incredibly efficient speed increments per processor in AT’s beam-tracking functions. Ex-

trapolating from prediction, we can expect to reduce week-long computation runtimes to

less than 15 minutes. This is a huge performance improvement and has enormous implica-

tions for the future computing power of the accelerator physics group at SSRL. However,

one of the downfalls of parringpass is its current lack of transparency; the pMatlab and

MatlabMPI packages must first be well-understood by the user before the system can be

configured to run the scripts. In addition, the instantiation of argument parameters requires

internal modification of the source code. Thus, parringpass, cannot be directly run from

the MATLAB command line, which detracts from its flexibility and user-friendliness. Fu-

ture work in AT’s parallelization will focus on development of external functions and scripts

that can be called from within MATLAB and configured on multiple nodes, while expending

minimal communication overhead with the integrated MATLAB library.

8



ACKNOWLEDGMENTS

I would first like to acknowledge the U.S. Department of Energy and the Accelerator Physics

Group at the Stanford Synchrotron Radiation Lightsource (SSRL), located at the SLAC

National Accelerator Laboratory for their roles in funding and hosting the program. I would

especially like to thank Xiaobiao Huang for his endless support since the project’s inception,

and all of his efforts in making this the best summer experience of my life. Special thanks

to Eric Shuphert, Shannon Ferguson, and Steve Rock for organizing the SULI program, as

well as all of the SULI interns, for making the internship such a rewarding nine weeks.

9



REFERENCES

1. Terebilo, A. ”Accelerator Toolbox for MATLAB.” SLAC-PUB-8732 (2001).

2. Pelegant: A Parallel Accelerator Simulation Code for Electron Generation and Track-

ing Y. Wang and M. Borland, AIP Conf. Proc. 877, 241 (2006), DOI:10.1063/1.2409141

3. Barney, Blaise. ”Introduction to Parallel Computing”. Lawrence Livermore National

Laboratory. 6/13/10 ¡https://computing.llnl.gov/tutorials/parallel comp/¿.

4. Kepner, Jeremy. ”MIT Lincoln Laboratory: MatlabMPI”. Massachusetts Institute of

Technology. 07/16/10 ¡http://www.ll.mit.edu/mission/isr/matlabmpi/matlabmpi.html¿.

5. Wille, Klaus. The Physics of Particle Accelerators. New York: Oxford University

Press, 2000.

10



FIGURES

Figure 1: Shared Memory (UMA) Schematic: The image above demonstrates setup of a
shared memory multiprocessing unit. All four processors run independently of one another,
but have access to a universally distributed memory source. This setup will allow AT to run
significantly faster even on low-cost workstations.

Figure 2: Distributed Memory (NUMA) Schematic: The image above demonstrates setup
of a distributed memory multiprocessing unit. In this system, multiple machines run inde-
pendently of one another with access only to a local memory source, but also implement
connections for communications and passing of messages. By utilizing this setup, we can
increase AT’s processing power to over 100 times its current performance capabilities. Note
that UMA systems may be embedded within a larger NUMA system.

11



Figure 3: Phase Space Plots: The above plots show Poincare maps of particle trajectories
as they are evolved through the SPEAR3 ring lattice. Each color corresponds to a discrete
particle with a different set of initial conditions.

Figure 4: Processor Runtimes: The above table demonstrates the decrease in processor times
in a simulated Distributed Memory environment as the code is run on additional threads.

Figure 5: Processor Activity Recordings: These figures show the recorded processor activity
on a quad-core processor in a simulated distributed-memory computing environment for one,
two, and four processors, respectively. As the number of threads increases, we can note clear
increases in processing activity and decreases in computing time.

12




