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Abstract 

Characterizing the Nanoscale Layers of Tomorrow‟s Electronics: An Application of Fourier 

Analysis. CHRISTOPHER PAYNE (Princeton University, Princeton, NJ 08544) APURVA 

MEHTA (Stanford Synchrotron Radiation Lightsource (SSRL) Division of SLAC National 

Accelerator Laboratory, Menlo Park, CA 94025) MATTHEW BIBEE (Stanford University, 

Stanford, California, 94305) 

 

Thin film applications are of great interest to the semiconductor industry due to the important 

role they play in cutting edge technology such as thin film solar cells. X-Ray Reflectivity (XRR) 

characterizes thin films in a non-destructive and efficient manner yet complications exist in 

extracting these characteristics from raw XRR data. This study developed and tested two 

different algorithms to extract quantity of layers and thickness information on the nanometer 

scale from XRR data. It was concluded that an algorithm involving a local averaging technique 

revealed this information clearly in Fourier space.  
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I. Introduction 

 The next generation of electronic devices will power an increasingly technology 

dependent world, requiring industry to be able to manufacture semiconductor chips that are both 

smaller and composed of new materials. The semiconductor industry has rapidly grown over the 

past three decades as they have pushed the limits of fabrication technology into the nanometer 

resolution range. This exponential decrease in device size was hypothesized by Gordon Moore in 

1965
i
 and has led to increasingly cheaper devices with more processing power per area than their 

more expensive predecessors. Additionally, nearly all semiconductors are now made of silicon, 

however the use of new semiconductor materials could yield electronics that are more efficient 

and can operate under greater extremes.  

 

 To unlock these favorable attributes of these next generation semiconductors, we need to 

be able to characterize and analyze materials with a resolution of a few nanometers. Many 

different techniques have been developed to perform this analysis, yet the one we will focus on is 

called X-Ray Reflectivity (XRR).  This technique quantifies parameters of materials by revealing 

the number of layers of which the material is composed of and each layer‟s corresponding 

thickness, density, and roughness value.
ii
 These parameters are discussed in more detail in the 

theory section, but for now, it is sufficient to understand that XRR allows the user to know the 

physical structure of a material on the nanometer scale. It should also be noted that unlike other 

techniques, XRR does not destroy the sample nor does it require specially prepared samples such 

as Transmission Electron Microscopy
iii

 demands. 

 The specific focus of this project was to characterize the layers present on silicon carbide 

(SiC) wafers that GE is in the process of developing for future use in a wide range of 

applications that include wind turbines and hybrid-electric vehicles.
 iv

 It is important to keep in 
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mind though that the XRR analysis techniques discussed in this paper can be applied to a vast 

range of cutting edge semiconductor applications that involve nanometer scale layers such as 

thin film solar cells and power transistors. Having the capability to characterize these nanometer 

layers in the non-destructive manner XRR allows, is a crucial step on the path to developing the 

electronics of the future that the world urgently seeks. 

 
II. Materials and Methods 

i. Reflectivity Theory 

 When a multilayer system is illuminated by an x-ray beam of wavelength (λ), the 

reflected beam profile measured as a function of the incidence angle, theta (ϴ), contains 

information about the layer stratigraphy, density and roughness.  Figure 1 shows a simple case of 

one thin layer on an infinitely thick substrate.  The reflected beam in this case is a coherent 

summation of the beam reflected from the top surface and the beam reflected from the buried 

interface.  The intensity of the reflected beam is then a function of the path length difference 

between the beams reflected from these two interfaces. This path length difference is shown in 

red in Figure 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 1 XRR Experimental Setup 

Note the path length difference highlighted in red. This path length difference is a function of ϴ and Z as shown in 

Equation 1. 

 

 

z 
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The path length difference that modifies the phase of the reflected wave can be approximated as  

                             (1) 

This extra distance corresponds to a phase difference at the point that the reflected beams 

interfere at the detector, dependent on the   of the incident beam: 

                             
         

 
     (2) 

The beams reflected from the two interfaces interfere constructively if this phase difference is a 

multiple of 2π and destructively if the phase difference is an odd multiple of π. This simple 

illustration, therefore, suggests that the intensity of the reflected beam is a function of the 

incidence angle (ϴ) and is modulated to contain information about the layer thickness.     

Under a more rigorous derivation, but still under the kinematic approximation, the 

reflected beam intensity is: 

             
 

      
     

  
  

 

     (3)
v
 

with      being the electronic density a distance z (see Figure 1) into the sample and S defined 

as: 

   
        

 
     (4)

 vi
 

Equation 3 can be rewritten in the following manner: 

             
 

     
     

  
 

     

  
       (5) 

 As the reflected beam intensity is a function of the electron density gradient into the 

sample, it contains information about not only the thickness of the individual layers, but also the 

interfacial roughness and density difference between adjacent layers
vii

. Figure 2 represents an 

ideal situation in which     of a particular layer is uniform and      instantaneously changes at 

a layer interface. 
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As Figure 2 depicts, the non-zero values of dρ(z)/dz correspond to layer boundaries expressed in 

terms of z, thus we must arrange Equation 5 to get dρ(z)/dz in terms of intensity.  The 1/S
4
 term 

in Equation 5 is a fall-off term which attenuates the intensity value over even a small S domain 

and is valid if the interfaces have no roughness. Experimentally we found this fall-off term 

ranges from 1/S
4
 to approximately 1/S

6
 for real multilayer samples, thus we developed an 

algorithm to calculate this fall-off term on a case by case basis so that it could be removed from 

the data. The algorithms that were tested are referred to as dN and 2N in the Results and 

Discussion section.  With this fall-off term removed by using this algorithm, Equation 5 now has 

the form: 

                              
     

  
 

     

  
       (6) 

The final step is to take the inverse Fourier Transform which will yield the self-convolution of 

dρ(z)/dz: 

                                 
     

  
 

     

  
      (7) 

Shortly, using some simulations, we will explore how the layer characteristics are encoded in 

Equation 7. 

 The main challenge in converting the original equation, Equation 3, into Equation 7, is to 

accurately calculate the fall-off term so that it can be removed. The following sections describe 

two algorithms for calculating the fall-off term. Subsequently, we will test the range of validity 

 

Figure 2 Relating density gradients to the sample’s layers. 
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of Equation 7, and explore how the various characteristics of the layers and layer stratigraphy are 

encoded in the formulation suggested by Equation 7. 

 

ii.  Fall-Off and Conversion Algorithm Development Outline 

  

 In order to find a solution to the problem outlined previously, I used MATLAB to create 

two algorithms that applied two different methods to remove the fall-off term from the intensity 

data. Independent of which method was used, the result was then transformed into Fourier space 

where sample characteristics such as number of layers present and layer thicknesses were 

compared with the information available in Fourier space. As will be discussed later, additional 

characteristics such as roughness or density of the layers are thought to be contained within the 

Fourier space, but were not fully explored in my study. 

 To optimize the fall-off subtraction algorithm and to test the range of validity of Equation 

7, I used a MATLAB program called Multig, developed by Anneli Munkholm and Sean M. 

Brennan. I inputted sample characteristics such as the number of layers present and their 

corresponding thicknesses into the program and it outputted a simulated intensity versus ϴ curve. 

I then applied my algorithm to the simulated data to test whether the algorithm could return the 

sample characteristics I had simulated. I used this simple process to develop and tune my 

algorithm until the algorithm yielded the correct characteristics.  

 Below, the entire process of simulating raw intensity versus ϴ data and then transforming 

it into the accessible form of Equation 7 is outlined in five steps. Note that the two different fall-

off removal methods, dN and 2N, are introduced in Step 3, Fall-off Removal.  
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Step 1, Simulate intensity versus ϴ data using Multig 

In this example, a 2 nm layer of aluminum (Al) between a 20 nm layer of silicon oxide (SiO2) 

is simulated on a SiC substrate (Figure 4). The Multig program then outputs a simulated intensity 

versus ϴ profile (Figure 3). 

 
 
 
 
 
 
 
 
 
 
 
 
 

Step 2, Restrict the ϴ Domain 

 X-rays do not penetrate the sample until ϴ exceeds a critical angle. The kinematic 

approximation is known to be inaccurate near the critical angle, therefore, data points below a 

certain ϴ threshold are removed from the intensity versus ϴ data set to be operated on. 

Additionally, the reflectivity curve for higher ϴ values becomes progressively noisy, 

accordingly, data points above a certain threshold are removed as well. Techniques for selecting 

favorable threshold values, referred to as theta_low_clip and theta_high_clip, respectively, are 

discussed later.  Additionally, the log10 of the intensity data is taken to make it easier to operate 

on the data over approximately eight orders of magnitude. 

Step 3, Fall-off Removal 

Apply the dN Method 

 The main idea behind this method is to take an averaged derivative of the intensity versus 

ϴ signal as described by Poust and Goorsky in Enhanced Fourier Transforms for X-Ray 

 

 

Figure 4 Simulated sample inputted into Multig, no roughness 

in either layer. 
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Figure 3 Resulting log(Intensity) versus ϴ simulated curve at 12keV 
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Scattering Applications, which will minimize the original fall-off component present in the 

resulting dataset
viii

. The discrete version of this, as we are dealing with a finite dataset is 

described as: 

  
       

 

 
 

               

            

 
        (8) ix 

Expressed in words, the algorithm takes the j
th 

intensity & ϴ data point and replaces it with the 

„local‟ average derivative of the intensity. The „local‟ area is defined by the dataset ranging from 

      through      and is centered on the j
th

data point. By applying this process, the fall-off term 

is removed leaving a dataset in the form of Equation 6. As recommended by Poust and Goorsky, 

N is selected so that it is high enough to average out noise fluctuations but kept substantially less 

than the period of any possible thickness signals. As a result of taking the derivative, the dataset 

now trails the original dataset by a quarter of a period of the high frequency oscillations present 

in the original dataset. 

Or, alternatively apply the 2N Method 

 The central idea behind this method is to construct a smooth and monotonic curve that 

removes the fall-off term from the original dataset while keeping all of its original frequency 

content. This is done by taking the local average of the intensity versus ϴ data and recording it as 

the fall-off value at that point. As alluded to in Enhanced Fourier Transforms for X-Ray 

Scattering Applicationx: 

  
              

 

    
      

   
          (9) 

The method is called „2N‟ as the local average includes the j
th 

point plus the N data points 

between      and    plus the N points between   and     . Effective selection of N will be 

discussed in detail later. 
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 After quantifying the fall-off value at each point, we now subtract it from the 

corresponding original intensity values to remove the fall-off. 

  
         

                
                  (10) 

The last step in the 2N method is to take the anti-log of all the intensity values that have had the 

fall-off removed from them,   
     . 

 Regardless of whether the dN or 2N method is used, the fall-off has now been subtracted 

from the data, resulting in a dataset in the form of Equation 6, shown graphically in Figure 5.  

 

Step 4, Convert ϴ into S  

The ϴ values are converted to S according to Equation 11: 

  
                  

 
     (11) 

 

 

 

 

Figure 5 Graphical view of dataset after fall-off has been removed using dN (Top green graph) and 2N(Bottom blue graph) 

Note, the dN result includes negative values, as it is the derivative of the log of the intensity. On the other hand, the 2N result is entirely 

positive because it is the antilog of the log of intensity minus the fall-off term: 

                           
 with     defined in Equation 10 
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Note that this has an extra coefficient of 2π compared to Equation 4 and that           is 

subtracted off because there is no interference for ϴ below           as there is no x-ray 

penetration of the sample. This equation favorably converts the ϴ axis [degrees] into S [m
-1

]. For 

the more advanced reader, this transforms ϴ into a value related to momentum space.  

 

Step 5, Fourier Space Analysis 

Lastly, we take the inverse Fourier transform of the extracted oscillation shown in Figure 5 in 

order to quantitatively know the number of layers and their corresponding thicknesses. In 

MATLAB, this is done using the built in fft() command and then discarding the results that 

correspond to negative frequencies – a mathematical byproduct of any application of fft(). The 

final result, expressed graphically, is the approximation of the convolution of the density 

gradient of the sample with itself as outlined in Equation 7. Figure 6 is the result from the 

simulation we started with: 

 

 

 

 

 

  

 

 

 

 

 

Figure 6 Fourier transform result 

Note peak 4 corresponding to the 2nm layer and peak 3 corresponding to the 20 nm layer. Peak 2 is simply the sum of these two layers, equaling about 22nm. 

Also, we see the usefulness of transforming theta[degrees] into S[m-1], which results in an axis expressed in units of meters after the Fourier transform. 
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III. Results 

 

 I will now discuss the results from testing the above algorithm against Multig simulations 

that included no roughness and roughness. This testing was designed to determine which of the 

dN or 2N method for Step 3, Fall-off Removal yielded structures closer to ones used for the 

simulation. Also, the parameters theta_low_clip, theta_high_clip, and N were varied to see how 

to select them to achieve a consistently accurate algorithm.  

 

i. dN Results With No Roughness Introduced 

 Using a simulation with no roughness present, such as the simulation of the 2nm of Al 

and 20 nm of SiO2 discussed earlier, dN successfully extracted the number of layers present in 

the model and their corresponding thickness. It should be noted that although the oscillations 

resulting from applying the dN method in Step 3, Fall-off Removal are 
 

 
 out of phase with the 

original high frequency oscillations, it does not alter the frequency of the oscillations and thus 

does not alter the result of Step 5, Fourier Space Analysis.  

 One evident shortcoming of the dN method is the existence of a low frequency residue 

evident in Figure 7:  

 

 

 

 

 

 

 

 

Figure 7 Fourier transform result using the dN method on simulated data equivalent to that in Figure 4. Test run at 12keV, with a 

theta_low_clip of .2 and an N value of 3. The original data spans 9 degrees of ϴ. 
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This gradual low frequency curve spans from approximately 0 to 10 nm and „drowns out‟ a peak 

that should be visible at 2nm in Figure 7. The existence of this 2nm layer is then only revealed 

through the difference in peaks at about 22 and 20 nm.  

 Another observation of the dN results in Fourier space is the relatively strong second 

harmonics signals present around approximately 45 nm in Figure 7. The presence of pronounced 

harmonics such as these indicates the dataset that is being Fourier transformed is not very 

sinusoidal in nature.  

 Lastly, the characteristics of a multilayer stack that are most readily evident from this 

method are the number and thickness of layers present. This capability has only been tested on 

one and two layer samples that are situated on a substrate.  

ii. dN Results on simulated roughness 

 Under actual experimental conditions, roughness is present on the layers of any real 

sample being tested since no semiconductor sample can be perfectly smooth. To simulate this, 

the same simulation above is analyzed, yet with 1.5 Å of roughness added to the SiO2 layer. 

Figure 8 show how the roughness affects the intensity versus ϴ signal and the corresponding 

application of the dN method, while Figure 9 specifically shows the Fourier transform result. 

 

 

 

 
 
 
 
 
 
 
 
 

 

Figure 8 The top graph is the intensity versus theta dataset for a simulated sample defined in Figure 4 – with 1.5 Å of roughness 

added to the SiO2 layer. The second graph is the result of applying the dN method in Step 3, Fall-off Removal. 

Note how the high frequency component is greatly attenuated, especially after 7 degrees of theta. In turn, this affects the derivative in this 

region too, introducing a pulse like signal. 
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As can be seen in Figure 8, the roughness greatly attenuates the high frequency oscillation for 

larger ϴ. Although the Fourier transform result in Figure 9 is very noisy, a sizable peak is now 

centered over approximately 2nm. Additionally, the peak with the largest amplitude is now over 

20nm, rather than the largest amplitude peak representing the summation of both layers (22nm).   

The Fourier transform also contains many large “ringing” oscillations, which do not correspond 

to any real layer spacing. 

iii. 2N Results With No Roughness Introduced 

 Using a simulation with no roughness, such as the 2nm of Al and 20 nm of SiO2 

discussed earlier, the 2N method extracted the number of layers present in the model and their 

corresponding thickness. This success is illustrated in the Figure 10 Fourier transform: 

 

 

 

 

 

 

 

 

Observing Figure 10, we see three distinct peaks. The first, peak four, corresponds to a thickness 

of 2.01 nm while the third corresponds to 20.1 nm. Peak two is approximately the sum of these 

 

Figure 9 The Step 5, Fourier Space Analysis result of the data shown in Figure 8. 

Note the many different peaks that have been introduced by the addition of roughness, as compared to Figure 7 when no roughness was present 
 

 

 

Figure 10 The Fourier transform result from Step 5, Fourier Space Analysis using the 2N method on the dataset defined in Figure 4 

with N set to 18 and theta_low_clip equal to 0.18  . 

Note the existence of peak 4, indicating the 2nm layer. This peak is not visible in Figure 7, when the dN method is used. 
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two layers. We notice that the second harmonics are extremely small as indicated by peak 5, 

suggesting that dN method enhances the higher harmonic contents. One anomaly is noted for a 

peak that appears to correspond to 0 nm. The reason for its existence and its physical meaning is 

not understood.  We have only used the Fourier method so far to extract information about the 

number and thicknesses of layers.  It is likely that the height, width and the shape of the peaks in 

the Fourier space contain information about roughness and density of the layers, but we haven‟t 

explored those characteristics yet.    

iv. 2N Results on simulated roughness 

 Figure 11 shows the result of running the 2N algorithm on the same roughness simulation 

described previously in Figure 8 and 9 in the dN section 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 11 The top graph is the intensity versus theta dataset for a simulated sample defined in Figure 4 – with 1.5 Å of roughness added to the 

SiO2 layer. The second graph is the result of applying the 2N method in Step 3, Fall-off Removal. The bottom graph is the Fourier transform 

result from Step 5, Fourier Space Analysis using the 2N method. N is set to 18 and theta_low_clip equal to 0.3  . 

Note the introduction of noise from the roughness, especially in the low frequency regions.  
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Just as with the dN simulation, there is the introduction of additional oscillations that do not 

correspond to any real layer thickness, especially in the low frequency region, though they are 

not as pronounced as in the case of dN method. These roughness-driven additional oscillations 

are rounded peaks, while the thickness of the 2 nm layer is denoted by a pointy peak of greater 

amplitude, as shown in peak 4 in Figure 11. Also, the peak with the largest amplitude (peak 2) 

now corresponds to 20nm, rather than the largest amplitude peak representing the summation of 

both layers (peak 4). The same effect occurred using the dN method.  

v. Results of altering the theta_low_clip and theta_high_clip bounds on both algorithms 

 The most sensitive input parameter for both algorithms appears to be the lower ϴ bound 

used in Step 2, Restrict the ϴ Domain, a parameter defined as theta_low_clip. To highlight this 

fact, Table 1 illustrates the effect of altering the theta_low_clip used in applying the 2N method. 

For additional context, the location of the theta_low_clip is plotted in Figure 12. 

. 

 

 

 

 
 
 
 
 
 
 
Table 1 Results of changing the lower bounds of theta, theta_low_clip , when the 2N method is applied to the simulation 

detailed in Figure 4 but with 1.5 Å of roughness added to the SiO2 layer. N is held constant at 20 throughout.  The colored 

dots correspond to the points on the Step 3, Fall-off Removal graph in Figure 12 below. 

Total deviation is the percent that the 2nm result differs from the actual value plus the percent that the 20nm result differs from 

the actual value. 

 

 

theta_low_clip 

Used   [   ] 

2 nm Layer 

Result [nm] 

20 nm Layer 

Result [nm] 

Total Deviation 

[%] 

0 1.97 20.03 1.78 

0.22 2.02 19.86 1.78 

0.33 2.38 20.46 23.58 

0.38 2.05 19.89 3.72 

0.45 2.42 20.40 25.13 

0.75 2.50 20.42 27.50 
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To further analyze these findings, Figure 13 displays the Fourier transform of the three 

theta_low_clips that have the smallest deviations.  

 

 

 

 

Figure 13 Fourier transform graphs, the results of Step 5, Fourier Space Analysis on the dataset described in Table 1. All 

elements are held constant between the graphs, except for theta_low_clip values chosen because they deviated the least in 

Table 1. Note that although the theta_low_clip value of 0.38 thicknesses deviates the most, the false peaks in the transform 

are rounded, leaving the true peak at approximately 2nm pointed. The peaks in the other transforms are prominently 

pointed in nature, which could lead to multiple false readings of small layers   

 

Figure 12 A graph of the first part of the extracted oscillations resulting from the Step 3, Fall-off Removal with colored dots 

corresponding to Table 1. 

Note the large spike below theta equal to 0.2 and how the oscillations then settle into a regular pattern after a theta equal to about 0.8. 

Theta_low_clip = 0 

Total Deviation = 1.78%  

Theta_low_clip = 0.38 

Total Deviation = 3.72%  

 
 

Theta_low_clip = 0.22 

Total Deviation = 1.78%  
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Looking at the results of Table 1, Figure 12, and Figure 13 it is observed that choosing the 

theta_low_clip to be the second minima in the high frequency oscillation, 0.38   in the example 

case, yields the best combination of layer thickness and true layer detection accuracy. Choosing 

alternative theta_low_clips that are more accurate in terms of layer thickness appear to falsely 

detect other thin layers.  

 Additional tests found that using a theta_high_clip always lowered the accuracy of the 

algorithm when used against various simulations. Tests were not tried on actual data. 

v. Results of altering N value used for the 2N method 

 It was determined that the most sensible way to choose an appropriate N value was to 

observe the visual output of Step 3, Fall-off Removal, both the fall-off line created by the 2N 

method and the corresponding graphic with this fall-off line removed. As noted in Figure 14 and  

 

 

 

 

 

 

 

 

 

 Figure 14 An N value of 4 is used on the dataset defined in Figure 4. The green line in the top picture 

indicates the fall-off the 2N method is calculating. 

In this case, N is too small, thus the green fall-off calculation too closely matches the original function resulting 

in the „clipping‟ seen in the lower blue oscillation graph. 
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Figure 15, an appropriate N value allows the full oscillation to be extracted, rather than an 

oscillation with its peak clipped – such as Figure 14. 

 It is concluded that an N value equivalent to half the points in one period of the high 

frequency oscillation accurately maps the fall-off function present in the original data. 

Mathematically, this is intuitive because the 2N method will span a full period of an oscillation 

when it takes a local average.  

 
 

 

 

 

 

 

 

 

 

 

 

IV. Discussion & Conclusion 

 

 Separating the reflected beam intensity into a smooth, monotonic falloff term and an 

oscillatory terms, and then Fourier transforming the oscillatory terms is a quick and powerful 

way of extracting key characteristics of the layers from a sample containing multiple layers.     

Based on the simulation test results described in the Results section, it appears that 2N 

fall-off subtraction distorts the Fourier space data less than the dN method.  Therefore, it is 

recommended that the 2N algorithm be employed to assist in extracting information from the 

Figure 15 An N value of 6 is used on the dataset defined in Figure 4. The green line in the top picture 

indicates the fall-off the 2N method is calculating. 

In this case, the green line accurately captures the fall-off with N chosen to be half the number of points in a 

period of the high frequency oscillation. 
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XRR data, particularly the number of layers present and their thicknesses. The key distinction 

that sets the 2N algorithm apart from the dN algorithm is its low frequency sensitivity, a 

characteristic that is critical to the mission of detecting thin layers on samples. The low 

frequency artifact that exists in the dN method, as manifested in Figure 7, is simply 

unacceptable.  

 As noted in the Results section, it is recommended a theta_low_clip corresponding to the 

second minima of the high frequency oscillation be used with the 2N method. This 

recommendation is done with caution, due to the sensitivity of this parameter and it‟s 

recommended that this parameter‟s affect on the output of the algorithm be studied additionally. 

No theta_high_clip should be used, however, it may be useful to remove a high theta region of 

experimental data that traditionally contains a high noise to signal ratio – this needs to be further 

explored. Experience has determined that using an N value equal to at least half the number of 

points in the high frequency period yields the cleanest extraction of the fall-off function.  

 It is concluded that using the 2N fall-off removal method combined with the Fourier 

analysis is a powerful technique that can reveal the presence of nanoscale layers and their 

corresponding thicknesses. This study did not focus on the intensity and the shape of the peaks in 

the Fourier space, but there is some preliminary evidence that they may hold information about 

layer densities and order. It is recommended that this be explored in more detail.  

 Even if no connection is established, the current capabilities of this technique are very 

useful in analyzing new semiconductor structures that often contain multiple layers of varying 

thicknesses. Just knowing the number of layers present and their thicknesses eliminates many 

important unknown variables, making modeling of additional characteristics such as layer order 

and density less labor intensive. This partial information is often sufficient enough to guide the 
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generation of appropriate stratigraphic models which can then be refined against the raw XRR 

data using conventional goodness-of-fit metrics, ultimately resulting in a reliable characterization 

of complex multilayer samples. 

V. Acknowledgments  

 

This work was supported by the SULI Program, U.S. Department of Energy, Office of Science. I 

would like to thank my mentor Apurva Mehta and Matthew Bibee, a graduate student at Stanford 

and a former SULI intern, for their assistance in addition to all the administrators of the SULI 

program for this wonderful and enriching experience. Finally, I would like to thank Yan Gao, of 

GE, for providing interesting samples for testing the effectiveness of the analysis approach taken 

here.  

 
 

VI. References  

                                                 
i  Moore, Gordon E. (1965). "Cramming more components onto integrated circuits" . Electronics 

Magazine. pp. 4. 
ii Toney, Michael and Brennan, Sean. “Measurements of carbon thin films using x-ray reflectivity”. 

Journal of Applied Physics 66 (4). 15 August 1989. 
iii Discussion with Apurva Mehta. August 4th, 2011.  
iv Fronheiser, Jody and Tilak, Vinayak. “Motivation for SiC Device Development and Relevance to 

NIST/GE Contract on SiC/SiO2 Interface Measurement Technologies”. March 27th, 2011. 
v O. Durand. “Characterization of multilayered materials for optoelectronic components by high-

resolution X-ray diffractometry and reflectometry: contribution of numerical treatments”. Thin Solid 

Films Volume 450, Issue 1, Proceedings of Symposium M on Optical and X-Ray Metrology for 

Advanced Device Materials Characterization, of the E-MRS 2003 Spring Conference. 22 February 2004. 

Pg. 51-59 
vi O. Durand. 
vii Toney, Michael and Brennan, Sean 
viii Poust, Benjamin and Goorsky, Mark. “Enhanced Fourier Transforms for X-Ray Scattering 

Applications”. Fourier Transforms – Approach to Scientific Principles. InTech. 2011 
ix Poust, Goorsky 
x Poust, Goorsky 
 

ftp://download.intel.com/museum/Moores_Law/Articles-Press_Releases/Gordon_Moore_1965_Article.pdf
http://en.wikipedia.org/wiki/Electronics_(magazine)
http://en.wikipedia.org/wiki/Electronics_(magazine)

