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ABSTRACT

Extracting bb̄ Higgs decay signals using multivariate techniques. W CLARKE SMITH
(George Washington University, Washington, DC 20052) TIMOTHY BARKLOW (ATLAS
group at SLAC National Accelerator Laboratory, Menlo Park, CA 94025)

For low-mass Higgs boson production at ATLAS at
√
s = 7 TeV, the hard subprocess

gg → h0 → bb̄ dominates but is in turn drowned out by background. We seek to exploit
the intrinsic few-MeV mass width of the Higgs boson to observe it above the background
in bb̄-dijet mass plots. The mass resolution of existing mass-reconstruction algorithms is
insufficient for this purpose due to jet combinatorics, that is, the algorithms cannot identify
every jet that results from bb̄ Higgs decay. We combine these algorithms using the neural net
(NN) and boosted regression tree (BDT) multivariate methods in attempt to improve the
mass resolution. Events involving gg → h0 → bb̄ are generated using Monte Carlo methods
with Pythia and then the Toolkit for Multivariate Analysis (TMVA) is used to train and
test NNs and BDTs. For a 120 GeV Standard Model Higgs boson, the mh0-reconstruction
width is reduced from 8.6 to 6.5 GeV. Most importantly, however, the methods used here
allow for more advanced mh0-reconstructions to be created in the future using multivariate
methods.
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INTRODUCTION

When formulating the Standard Model of particle physics (SM), theorists initially had

trouble explaining the origin of mass for bosons and fermions. In general, they reasoned

that a symmetric system could not evolve into an asymmetric state. As a consequence,

though, neither W± nor Z0 bosons would be massive. Since W± and Z0 are massive,

they hypothesized the existence of a so-called Higgs mechanism that allows for spontaneous

symmetry breaking, thereby giving such force-carrying bosons mass.

A Toroidal LHC ApparatuS (ATLAS), one of the six experiments at the Large Hadron

Collider (LHC), is currently attempting to confirm the empirical existence of the Higgs

mechanism by observing its scalar remnant: h0, the Higgs boson1. Teams within ATLAS

are attempting to do this by detecting the particles that characteristically result when these

bosons decay. Higgs bosons can be created in proton-proton collisions, or ‘events,’ at ∼ 7

TeV in the center-of-mass frame. The most promising Higgs decay modes to detect are

WW (∗)2, ZZ(∗), τ+τ−, and γγ [1]. However, for the low Higgs masses (115 / mh / 140

GeV) that this project is interested in, the Higgs boson decays into bb̄ approximately 66%

of the time3 via the hard subprocess gg → h→ bb̄. We call signal events those that include

this process (Figure 1) and background events those that include a different bb̄-producing

hard subprocess, such as gg → bb̄ (Figure 2). Unfortunately, almost every bb̄-dijet detected

results from a background event.

In order to successfully detect the Higgs boson, we seek to exploit its intrinsic narrow

mass width of several MeV [2]. Theoretically, this will manifest itself as a sharp, narrow spike

at mh in the bb̄-dijet mass (mbb̄) plot, allowing for the Higgs boson to be easily observed.

However, reconstructing mbb̄ from event information proves difficult due to the so-called ‘jet

1There may be multiple Higgs bosons; we reduce to the singular case. Also, hereafter we denote the Higgs
boson h instead of the more accurate h0 (the symbol for a scalar, light Higgs boson).

2The superscript (∗) denotes a virtual particle.
3Calculated for a 120 GeV SM Higgs boson using Pythia Monte Carlo generated events.
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Figure 1: Feynman diagram of gg → h → bb̄ (Higgs boson production from gluon
fusion via a virtual t-quark loop followed by bb̄ Higgs decay), the hard subprocess in
signal events.
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Figure 2: Feynman diagram of gg → bb̄ (production of bb̄ from t-channel gluon fusion
via the exchange of a virtual b-quark), an example of a hard subprocess in background
events.

combinatorics problem,’ that is, our inability to identify jets accurately. Although the bb̄-

dijets can be efficiently distinguished (b-tagged) [3], the b- and b̄-quarks constantly radiate

and reabsorb gluons before hadronizing and some gluons will be radiated but not reabsorbed.

Those gluons are called final state radiation (FSR) and they are precisely those whose jets

are difficult to identify. To solve this problem, there have been many mass-reconstruction
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algorithms developed to isolate such FSR-jets, but their inability leads to a reconstructed mbb̄

plot with a dull, essentially nonexistent bump at mh. Realizing that the plot of background

events vs. bb̄-dijet masses experiences gradual decay over tens of GeV and so should the

analogous reconstructed background mbb̄ plots, we restrict ourselves to the case of signal

events, where mbb̄ = mh. In other words, reconstructing mbb̄ from signal events alone is

sufficient to extract the mh spike from the background mbb̄ plot. Hence, the goal of this

project is to specifically construct an improved mh-reconstruction algorithm4.

Motivated by the quantity and unknown degree of interdependency of the observables

measured by ATLAS, we use several types of multivariate analysis5 (MVA) to search for

patterns in Monte Carlo (MC) generated pp collisions in attempt to reconstruct mbb̄ more

effectively. One MVA method that we use is the neural network (NN), a composition of

many linear and nonlinear functions which maps sets of input values into models of the

target values [4]. For our purposes, the target is mh,true.

This approach is not altogether new; others have used various MVA techniques to enhance

Higgs decay signals in many of the modes. For example, Hakl et al. [5] used NNs6 and

Takahashi [1] used another type of MVA, boosted decision trees, to improve the signal-to-

background ratio for bb̄ and WW (∗) Higgs decays, respectively. In fact, boosted decision trees

have shown impressive results in comparison to NNs — in a b-tagging performance evaluation,

boosted decision trees demonstrated an efficiency improvement of 35% [6]. Instead of using

a classification NN or boosted decision trees to distinguish signal events from background

events like Hakl et al. and Takahashi, we use a variety of regression NNs and boosted

regression trees to reconstruct mh.

4Note that “mass-reconstruction algorithm” is taken to mean “mbb̄-reconstruction algorithm.”
5Multivariate analysis is merely drawing inferences from data sets with multiple statistical variables.
6Hakl et al. used NNs with switching units optimized via a genetic algorithm.
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MATERIALS AND METHODS

All regression MVA methods search for patterns in statistical variables in an attempt to

better model the target, in this case, the true Higgs mass. If the method is not supplied any

information aside from the variables, it will be entirely unable to model the target and it

will not be able to produce an output; it needs to be “taught.” We systematically feed the

method variables as well as targets. It then develops a mechanism for predicting the target

(computing outputs). This is called training.

Event generation with Pythia

For the data from which to select the variables and targets, we generate signal pp collisions

using MC methods with Pythia. The Pythia program is a powerful particle physics event

generator that includes a collection of methods for modeling the evolution of few-body hard

processes to complex multihadronic final states. In Pythia event generation, the user is

allowed to select the physical models used, the hard subprocesses involved, and, if applicable,

the Higgs mass [7]. We use SM physics, the process gg → h → bb̄, and mh = 90, 100, 110,

120, 130, 140, and 150 GeV to generate 105 (signal) events at each mh. Pythia’s main

weakness is that it does not include next-to-leading-order perturbative calculations and thus

is insensitive to events with a low total transverse momenta pT , that is, the momentum

perpendicular to the beam axis. The high total pT of gg → h→ bb̄ makes Pythia ideal for

our low mass Higgs decays [7]. We do not use data taken by ATLAS. The reasons for this are

twofold: we avoid complications caused by experimental uncertainties and we have absolute

control over the type of event that is generated. For instance, we can choose whether to

generate a bb̄ or ZZ(∗) Higgs decay, an event with mh = 90 GeV or mh = 150 GeV, or

an event with one FSR-jet or five. Moreover, the only detector simulation is an angular

cut is applied to remove all hadrons that escape the detector geometry; even neutrinos are
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generated.

Event processing with ROOT

For each hadron detected by ATLAS, the azimuthal angle φ, the pseudorapidity η =

− ln tan ( θ
2
), and pT are measured, providing us with its geometric and energetic image7.

Additionally, we form the observable
∑
i

pT,i for particles i in a given event to gauge the total

transverse momentum.

Using a given mass-reconstruction algorithm, first the detected hadrons are partitioned

into their respective jets. This partitioning is somewhat trivial — there is not much varia-

tion between algorithms. For each jet, η, φ, and pT are computed from the ηi, φi, and pT,i

measured for each hadron i within that jet. Second, the bb̄-dijets and FSR-jets all resulting

from bb̄ production are isolated. This is done with cuts in the ηφ plane, where the metric

∆R =
√

(∆η)2 + (∆φ)2 can be constructed, providing a notion of distance between compo-

nents of the event. Each mass-reconstruction algorithm uses a value of ∆R to classify all

jets within a certain vicinity of the tagged bb̄-dijets as FSR-jets from the b- and b̄-quarks.

From this jet selection, mbb̄, pT,bb̄, and ηbb̄ are calculated. Finally, the algorithms compute

∆Rbb̄, the “distance” between b- and b̄-jets, from the algorithmically determined bb̄-dijet

information.

It then seems reasonable that some algorithms would be better for certain types of events

than others, depending primarily on their method of selecting those jets that result from

bb̄ production. For example, some mass-reconstruction algorithms may be very good at

determining mbb̄ in events with a large fraction of jets being emitted due to initial state

radiation8 (ISR), while others may be better suited for events with little ISR activity.

We use ROOT, the leading data analysis framework for particle physics, to process the

raw output of the Pythia signal event generation. For every Pythia MC generated event,

7Here, θ is the angle with respect to the beam axis.
8Initial state radiation is those gluons that radiate but do not get reabsorbed prior to the pp collision.
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mh, pT,h, and ηh are reconstructed using 25 of the most effective mass-reconstruction al-

gorithms. Furthermore, these 25 algorithms are divided into five families. The algorithm

families have slightly different methods for partitioning hadrons into jets while algorithms

within a family have distinct ∆R values for identifying those FSR-jets that result from bb̄

production. So, for the same events, ηb, ηb̄, pT,b, pT,b̄, and ∆Rbb̄ are reconstructed using the

five algorithm families. Note that no φ information is reconstructed; this is due to the fact

that the pp collisions are azimuthally symmetric. Together, these collections of outputted

event information are the input values for the MVA methods. We call these input types

variables ; they are listed in Table 1. Obviously, not all 101 variables will be used for every

MVA technique.

Input Variables Quantity per Event Description∑
i

pT,i 1 Total event transverse momentum

ηb, ηb̄ 5 each Reconstructed b, b̄-jet pseudorapidities
pT,b, pT,b̄ 5 each Reconstructed b, b̄-jet transverse momenta

ηh 25 Reconstructed Higgs pseudorapidity
pT,h 25 Reconstructed Higgs transverse momentum

mh,reconstruction 25 Reconstructed Higgs mass
∆Rbb̄ 5 Reconstructed “distance” between b, b̄-jets

Table 1: A comprehensive list of MVA input variables.

Finally, in ROOT we declare one further characteristic of the generated events: the true

Higgs mass as specified in Pythia. This mh,true is not a variable but the target of the MVA

regression; it is only used in training and for performance evaluation.

MVA training and testing

At this point, we have ∼ 7 × 105 Pythia generated signal events each with one of

seven Higgs masses as well as values for 101 different variables. The goal is then to construct

mappings from the 101 variables onto the set of seven Higgs masses by invoking multiple MVA
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methods, which have been shown to be superior to uni- and bivariate techniques for most

purposes [1]. While each mass-reconstruction algorithm is insufficient on its own, feeding the

outputs of 25 different algorithms into an advanced MVA technique vastly improves the mh

regression. Due to the ease of implementation and the customizability of its MVA methods,

we use the Toolkit for Multivariate Analysis (TMVA) to construct such mappings. TMVA is

included in the ROOT package and offers thirteen MVA techniques for classification (directly

separating signal from background events), eight of which can also be used for regression

(creating a regression function that models the target). We restrict ourselves to the two most

promising of the eight methods suitable for our regression task: neural nets and boosted

regression trees.

Previous NN analyses of this kind used the ROOT class TMultiLayerPerceptron which

allows for any number of intermediate functions as well as one of six different learning

methods to be used [2]. The advantages of using TMVA are the facility of using boosted

regression trees, an increased number of adjustable method-specific parameters, and most

importantly, the ability to repeat analyses quickly using different parameters, variables, MVA

methods, and data sets [8].

In a feedforward NN9, there is an input layer, a hidden layer(s), and an output layer

(Figure 3). The nodes are called inputs in the input layer, neurons in the hidden layers,

and outputs in the output layer. Each variable corresponds to an input and the targets

correspond to the outputs. Each neuron in the first hidden layer maps a linear combination

of the inputs through a specified nonlinear function σ. Neurons in subsequent hidden layers

repeat this process using neurons in the previous hidden layer. Additionally, there can be

“empty” neurons and inputs called biases which are merely weights independent of prior

layers added to increase the ability of the NN.

9Other types of NNs (those with feedback loops, etc.) are neglected because they are overkill for our
relatively standard regression task.
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Figure 3: Feedforward NN with three hidden layers with 6, 4, and 2 neurons, respec-
tively, as well as biases.

It may seem that having more neurons and hidden layers allows for a more complicated

and therefore capable NN to be formed. This is true up to a point — while additional neurons

and hidden layers enable the neural net to find more subtle relationships, it eventually reaches

a peak beyond which the neural net is being overtrained. In that region, neural nets find

patterns that are not necessarily representative of legitimate relationships, but are merely due

to the finite size of the event sample. Moreover, there is not good reason to use excess hidden

layers or neurons, for the Weierstrass approximation theorem dictates that any continuous

function can be approximated by a sufficient number of neurons in one hidden layer [9].

MVA for particle physics has been dominated by the use of NNs over the past decade. In

past several years, though, boosted decision and regression trees have emerged as a powerful

tool for MVA. First of all, a regression tree is an MVA method grown by splitting the

training sample of events into two parts for each value of each variable, depending on that
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value. Then, the variable and value that produces the optimal split (“best” division of the

training sample into high and low target value mh,true parts) is chosen as the first branching

of the regression tree. This process is repeated until the user-specified maximum number

of leaves is reached. Boosted regression trees (BDTs10), then, are merely an advanced form

of regression trees. Boosting is achieved by allowing the tree to predict the target mh,true

for each of the training events; those events which have their targets incorrectly predicted

are given additional weight depending on how poor the prediction was. The regression tree

is then regrown; this boosting process goes through a user-specified number of iterations,

eventually arriving at a final boosted regression tree (Figure 4). Typically a larger number

of maximum leaves and boosting iterations allows for a more robust network, but BDTs are

very susceptible to overtraining so these parameters need to be chosen carefully. In attempt

to minimize the effects of overtraining, once the BDT is grown and boosted, it is pruned by

removing statistically insignificant leaves.

Figure 4: The 99th iteration of a boosted regression tree used for mh regression.

10The acronym “BDT” is adopted for both boosted regression trees as well as boosted decision trees out
of convention.
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As mentioned before, event processing yields 101 variables with which to train the MVA

methods. In order to increase efficiency and reduce computing time, redundant and ineffec-

tive variables are removed. Redundant variables are those which are very highly correlated

with other variables used, meaning the underlying event information that they hold is very

similar. Ineffective variables are those which do not show a significant correlation with the

target. Clearly, redundant variables are useless while ineffective variables slow down and

hinder the training process.

Figure 5: Plots of ηb̄ vs. pT,b, ηb̄ vs. ηb, and ηb̄ vs. pT,b̄ showing redundancy in the
center plot.

A simple correlation-to-target ranking performed by TMVA allows us to reduce the num-

ber of variables from 101 to 40 relatively easily. The 25 reconstructed Higgs masses are the

most highly correlated with mh,true and so they are not removed. Then, the correlations

are similar from variable to variable, so
∑
i

pT,i as well as two of each ∆Rbb̄, ηb, ηb̄, pT,b,

pT,b̄, ηh, and pT,h are used for the initial training. Then, scatter plots of the variables vs.

one another (Figure 5) as well as two-dimensional histograms of regression output deviation

dreg := mh,reco −mh,true vs. the variables (Figure 6) are used to determine redundancy and

effectiveness, respectively. Clearly the efficacy of a variable depends on the MVA method

for which it is training. As such, we construct two sets of variables, a NN set and a BDT
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set, which are slightly different but contain ∼30 variables.

(a) The high efficacy of pT,b. (b) The low efficacy of ηb̄.

Figure 6: Regression output deviation dreg vs. variable plots used to determine variable
contribution to the MVA method.

Once the variables have been selected to maximize efficiency, the various parameters of the

NN and the BDT need to be optimized. There are three types of NN implemented in TMVA:

the Clermont-Ferrand NN, the ROOT NN (TMultiLayerPerceptron), and the multilayer

perceptron (MLP) NN. We use the MLP NN due to its improved speed and flexibility over

the other two types of neural net [8]. Five of the most important parameters for the MLP are

NCycles, HiddenLayers, NeuronType, NeuronInputType, and TrainingMethod. NCycles

is merely the number of training cycles the NN undergoes and HiddenLayers specifies the

number of hidden layers and how many neurons are in each of them. In general, we want

to have as many cycles, hidden layers, and neurons as possible in order to have a robust

and sensitive network while not overtraining it. The NeuronType is the NN’s nonlinear

function σ. The options include the sigmoid function 1/(1 + e−rv), the hyperbolic tangent

function (ev−e−v)/(ev +e−v), and the radial function e−v
2/2. We have found the best results

using the hyperbolic tangent function11. The option NeuronInputType specifies how the

linear combinations are taken within each neuron. They can be sums, sums of squares,

11“Best” is ambiguous; here, we refer to the MLP with the lowest dreg root mean square (RMS).
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or sums of absolutes; we use regular sums. Finally, the TrainingMethod can be either the

back-propagation (BP) method or the Broyden-Fletcher-Goldfarb-Shannon (BFGS) method.

BFGS requires less iterations to receive the same result as BP, but it costs a large amount of

computing power when the NN is complicated [8]. As such, we use BP with complex hidden

structures and BFGS with simple hidden structures.

For the BDT, some of the adjusted parameters are NTrees, BoostType, SeparationType,

nEventsMin, and PruneMethod. NTrees is merely the number of times the regression tree

is boosted and regrown while nEventsMin is the minimum number of events in any given

leaf node. Increasing the former and decreasing the latter heightens the BDT’s sensitivity

and capability so long as overtraining is avoided. For regression, the BoostType options

are narrowed to adaptive boost (AdaBoost.R2) and gradient boost (GradientBoost). The

difference between the two algorithms is the function they use to determine how poor the

BDT’s estimation of the target value is. Because neither AdaBoost.R2 nor GradientBoost is

particularly advantageous, we use two BDT implementations: one for each type of boosting.

Another important parameter is SeparationType, which determines how the training sample

is split at each node. There are five settings available, but we find the default Gini-Index to

produce the best results. Finally, for regression tasks, the PruneMethod can either be cost

complexity or nothing. We use the cost complexity method to recover from overtraining.

With selected variables and optimized parameters for MLP, BDT (AdaBoost.R2), and

BDT (GradientBoost) MVA methods, we feed the ∼7× 105 Pythia MC generated events

into TMVA. Half of these events are used for training and half for testing.

RESULTS

For each MVA method, we build a complicated nonlinear function from the set of se-

lected variables into the set of possible mh values through training. Then, that function’s
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performance is evaluated through testing, in which the remaining half of the events have

their variables mapped to reconstructed Higgs masses (mh,reco). From TMVA we ultimately

receive ∼ 3 × 105 pairs of mh,reco and mh,true data. These results can be depicted in three

ways.

First, the total MVA method RMS can be calculated by RMS =
√
〈dreg2〉. This RMS

can then be compared for multiple methods to determine which method has the overall

least difference between reconstructed and true Higgs mass. The RMS values for the MLP,

the BDT with AdaBoost.R2, and the BDT with GradientBoost methods are presented in

Table 2 along with some extra information. Note that half of the values in Table 2 are

“truncated,” meaning they were calculated from only those events whose dreg values lie

within two standard deviations of the mean, i.e., in the middle 95%. On the other hand,

the truncated RMS roughly represents the difference between mh,reco peak values and mh,true

values. Finally, while 〈dreg〉 is sensitive to sign, comparing the truncated and non-truncated

entries for a given method provides shape and location information about the dreg plot.

For instance, the magnitude and sign of the difference indicates the degree and sign of the

skewness of dreg. Additionally, the size of 〈dreg〉T reflects how centered about mh,true the

mh,reco plot is.

MVA Method RMS (MeV) 〈dreg〉 (MeV) RMST (MeV) 〈dreg〉T (MeV)
MLP 1.25× 104 47 9.73× 103 1.21× 103

BDT with AdaBoost.R2 1.38× 104 631 1.25× 104 1.29× 103

BDT with GradientBoost 1.24× 104 −1.49× 103 8.99× 103 −281

Table 2: A performance summary for all MVA methods utilized.

Second, we can plot dreg on its own and against mh,true (Figure 7). These plots tell us

whether the MVA method is under- or over-estimating the Higgs mass and for which mh,true.

Third and finally, for any one of 90, 100, 110, 120, 130, 140, or 150 GeV, we can plot both

the reconstructed Higgs mass (Figure 8).
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Figure 7: Plot of dreg vs. mh,true for a BDT with GradientBoost.

DISCUSSION AND CONCLUSIONS

In order to visualize the actual performance of our trained MVA methods, we compare

the reconstructed Higgs mass plot (Figure 8) to the Pythia MC generated mh,true plot,

the mh,reco resulting from a single mass-reconstruction algorithm, and the current best NN-

reconstructed Higgs mass plot all for events generated with an inputted mh,true of 120 GeV

(Figure 9). We take this state-of-the-art in mh reconstruction to be Barklow’s [2], which uses

the TMultiLayerPerceptron class in ROOT with multiple algorithmically reconstructed

Higgs masses as inputs. This allows us to witness the development of mh reconstruction

methods from single algorithms to coarse, ROOT-based neural nets to powerful BDTs.

First, we notice that the Pythia generated mh,true plot has a width of 12.3 MeV, re-

flecting the narrow intrinsic Higgs mass width. Second, the mh reconstruction using a single
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Figure 8: Plot of mh,reco for a BDT with AdaBoost.R2 using Pythia MC generated
signal events with a 120 GeV SM Higgs boson.

algorithm shows a peak at ∼120 GeV, but a mean of 113.7 GeV and a width of 23.4 GeV.

Third, the NN mh reconstruction plot has its peak and mean at 120 GeV but a width of

8.6 GeV. Finally, our mh reconstruction using a BDT with AdaBoost.R2 peaks around 120

GeV, has a mean of 120.7 GeV, and has a width of 6.5 GeV. We can therefore say that our

MVA methods yield competitive mh resolutions when compared to all previous approaches.

Although the bb̄ Higgs decay signal was by no means extracted and observed, this re-

construction attempt was a success. Not only were gains made in Higgs mass resolution,

but they were made as a proof-of-principle. Many elements of the development of the mh-

reconstruction method were crude and abbreviated — there is much room to improve our

method. We have merely shown that it may be possible to construct a very effective mh-

reconstruction algorithm using MVA methods.
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(a) Pythia generated mh,true plot with an in-
putted Higgs mass of 120 GeV.

(b) Single algorithm reconstructed mh from
Pythia generated signal events with a 120 GeV
Higgs boson.

(c) Previous state-of-the-art NN-reconstructed mh from
signal events with a 120 GeV SM Higgs boson generated
by ALPGEN (an MC particle physics generator best for
low-pT events).

Some of the improvements that can, and should, be made are in event generation, event

processing, and the training and testing of MVA methods. Immediately, we should generate

gg → h→ bb̄ events with more than seven distinct values for mh,true to reduce discretization

in the final mbb̄ plots. As more results from the LHC are released, we could also generate

events for additional Higgs decay modes as well as with beyond-the-SM physics. Another

relatively easy improvement would be to optimize the MVA-method-specific parameters as

well as select variables more gracefully. In both cases, the methods we use are crude and

insensitive — algorithms may be used, for example, for both of these purposes. Additionally,
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Hoecker et al. [8] are continually working to improve TMVA and include more advanced

MVA methods as well as combined MVA methods; these should be trained and tested as

soon as they are released.

Finally, the largest potential improvement will be made from upgrading our event process-

ing. Specifically, we will initially process events with a broader method of defining variables,

allowing them to be selected from a pool of ∼700. With this added information, the MVA

methods may be able to find even subtler patterns in the events, increasing their ability to

resolve the true Higgs mass. In conclusion, we are encouraged by our MLP and BDT results

— they show that MVA methods can be very useful for mh discrimination in ATLAS.
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