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ABSTRACT

Investigating the Magnetorotational Instability with Dedalus, an Open-Source Hydrody-

namics Code. KEATON J. BURNS (University of California Berkeley, Berkeley, CA 94720)

JEFFREY S. OISHI (Kavli Institute for Particle Astrophysics and Cosmology, Menlo Park,

CA 94025)

The magnetorotational instability is a fluid instability that causes the onset of turbulence

in discs with poloidal magnetic fields. It is believed to be an important mechanism in the

physics of accretion discs, namely in its ability to transport angular momentum outward. A

similar instability arising in systems with a helical magnetic field may be easier to produce

in laboratory experiments using liquid sodium, but the applicability of this phenomenon

to astrophysical discs is unclear. To explore and compare the properties of these standard

and helical magnetorotational instabilities (MRI and HRMI, respectively), magnetohydrody-

namic (MHD) capabilities were added to Dedalus, an open-source hydrodynamics simulator.

Dedalus is a Python-based pseudospectral code that uses external libraries and paralleliza-

tion with the goal of achieving speeds competitive with codes implemented in lower-level

languages. This paper will outline the MHD equations as implemented in Dedalus, the steps

taken to improve the performance of the code, and the status of MRI investigations using

Dedalus.
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INTRODUCTION

Astrophysical accretion discs are discs of material orbiting around a star or black hole.

For decades, an outstanding theoretical problem in the physics of accretion discs was the

identification of an efficient mechanism for transporting angular momentum outward, since

viscous transport was unable to account for the observed rates of infalling material [1]. In

1991, Balbus and Hawley discovered a linear instability that occurs in discs with a poloidal

magnetic field [2]. This magnetorotational instability (MRI) is generally accepted as the

mechanism responsible for angular momentum transport and turbulence in accretion discs.

Laboratory experiments seeking to produce and study the MRI face a key difficulty: the

toroidal field perturbations required by the MRI must be produced by induction if an entirely

poloidal external magnetic field is applied. However, liquid metal flows with sufficiently high

magnetic Reynolds numbers (Rm) to produce these induction effects tend to have extremely

high hydrodynamic Reynolds numbers (Re) (Rm
Re
≈ 10−5 for these materials), and hence

tend to be turbulent even without contributions from the MRI [3]. One solution to this issue

is to apply a helical magnetic field in the laboratory, exciting a helical magnetorotational

instability (HMRI). Simulations of the MRI and HMRI into their non-linear phases may

provide information pertaining to the applicability of experimental HRMI results to the

processes occurring in astrophysical discs.

METHODOLOGY: DEDALUS DEVELOPMENT

Dedalus is an open-source hydrodynamics code, written in Python 2.7. It is a pseudospectral

code, meaning it uses fast Fourier transforms (FFTs) to compute spatial derivatives. It

was designed to be flexible and easy to use, with the FFTs handled by external libraries

and/or parallelization to abate the performance penalties of using a high-level language.

The code makes extensive use of object-oriented programming, facilitating the modular
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implementation of different domain representations and physics. Dedalus is currently hosted

on a public Bitbucket repository1.

MHD Equations

Incompressible MHD is primarily governed by four equations2 3: the Navier-Stokes equation

with the Lorentz force and viscosity, the induction equation with magnetic diffusivity, the

mass continuity equation, and Gauss’s law for magnetism:

∂tu + u · ∇u = −∇p
ρ0

+
FL

ρ0

+ ν∇2u, (1)

∂tB = ∇× (u×B) + η∇2B, (2)

∂tρ+∇ · (ρu) = 0
incomp.−−−−→ ∇ · u = 0, (3)

∇ ·B = 0. (4)

Expanding the Lorentz force as

FL =
(∇×B)×B

4π
=

B · ∇B

4π
− ∇B

2

8π
, (5)

Eq. (1) becomes

∂tu + u · ∇u = −∇Ptot
ρ0

+
B · ∇B

4πρ0

+ ν∇2u, (6)

Ptot = p+
B2

8π
. (7)

1http://bitbucket.org/jsoishi/dedalus
2All presented here in Gaussian units, and with ∂t indicating ∂

∂t .
3With u the velocity field, B the magnetic field, p the pressure, ρ the density, ν the kinematic viscosity,

and η the magnetic diffusivity.
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Using the identity ∇× (A×B) = A(∇ ·B)−B(∇ ·A) + (B · ∇)A− (A · ∇)B along with

the constraining equations (Eqs. (3) and (4)), Eq. (2) becomes

∂tB = B · ∇u− u · ∇B + η∇2B. (8)

Spectral Implementation

In a periodic domain, any sufficiently smooth field variable can be represented by its discrete

Fourier decomposition on the grid. That is, for some function f ,

f(x, t) =
1√
N

∑
k

f̂(k, t)eixiki , (9)

f̂(k, t) =
1√
N

∑
x

f(x, t)e−ixiki . (10)

Pseudospectral codes, such as Dedalus, use FFTs to evolve partial differential equations in

Fourier space, where they become systems of ordinary differential equations. This is because

the spatial derivatives in the governing equations become inexpensive multiplications under

the Fourier transform: ∇ FT−→ ik. The spectral implementation follows Maron and Goldreich

[4].

Taking the Fourier transforms of Eqs. (6), (8), (3), and (4) yields

∂tû = −û · ∇u− ikP̂tot
ρ0

+
B̂ · ∇B

4πρ0

− νk2û, (11)

∂tB̂ = B̂ · ∇u− û · ∇B− ηk2B, (12)

ik · û = 0, (13)

ik · B̂ = 0, (14)
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the Fourier space evolution and constraining equation pairs, respectively. Taking the scalar

product of ik with Eq. (11) leads to an expression for the total pressure:

P̂tot
ρ0

=
ik · û · ∇u

k2
− ik · B̂ · ∇B

4πρ0k2
. (15)

The nonlinear terms (û · ∇u, û · ∇B, B̂ · ∇u, and B̂ · ∇B) in Eqs. (11), (12), and (15)

are computed in real space. To eliminate aliasing effects, the 2/3 rule is utilized, zeroing any

mode with a k component greater than or equal to 2/3 of the Nyquist wavenumber in that

direction. This zeroing is done prior to every reverse Fourier transform, after every forward

Fourier transform, and at each temporal evolution.

Temporal Integration

The Fourier space ODEs, along with the initial conditions specified at the start of the simu-

lation, form an initial value problem that is integrated using explicit Runge-Kutta methods,

specifically the second-order midpoint method. For simulations with viscosity and/or mag-

netic diffusivity, an integrating factor is used to evaluate the normally linear steps used

to construct the Runge-Kutta stages. Consider Eq. (11) for a specified mode k, with the

non-viscous terms considered to be constant during an integration step:

∂tû(t) + νk2û(t) = RHS. (16)

This is an equation of the form y′(x) + P (x)y = Q(x), which has the exact solution

y(x) =

∫
Q(x)M(x)dx

M(x)
, (17)
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where M(x) = e
∫
P (x)dx is called the integrating factor. Hence the solution of Eq. (16) at

time t+ dt is found to be

û(t+ dt) =
[
û(t) +

RHS

νk2
(eνk

2dt − 1)
]
e−νk

2dt. (18)

Shearing Box

To study the effects of the MRI, local simulations are performed in which the computational

domain represents a small part of an astrophysical disc. The domain is taken to be a co-

rotating box, whose left edge is a distance r0 from the axis of rotation, and whose length

in each dimension is much less than this fiducial radius. In the co-rotating frame, the unit

vector ex is in the outward radial direction, and the unit vector ez is along the axis of

rotation. The box is rotating with an angular velocity Ω0 = Ω0ez = Ω(r0)ez.

The radial dependence of angular velocity in a Keplerian disc, Ω(r) =
√
GMr−3/2, gives

rise to a linear shear flow in this domain: with the domain moving at the angular velocity

of the left (inner) edge, the fluid in the box will shear in the x direction with a velocity of

−3
2
Ω0xey, as shown in Fig. 1. This shear motivates the construction of a domain representa-

tion and a corresponding physics implementation to handle MHD in a box with an arbitrary

local linear shear.

Consider an arbitrary power-law shearing profile, Ω(r) = CrS (which arises from an at-

tractive force of magnitude ρ0C
2r2S+1 and gives rise to a linear background shear in the

local frame with velocity SΩ0xey. Hence C =
√
GM and S = −3/2 for Keplerian rota-

tion). In this case, the centrifugal (−Ω0× (Ω0× r) = Ω0
2rex) and attractive (−C2r2S+1ex)

accelerations partially cancel (via approximations utilizing x, y, z � r0):

arad = (Ω0
2 − C2r2S)rex ≈ −2SΩ0

2xex. (19)
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With this radial acceleration and the Coriolis acceleration (−2Ω0×v), Eq. (1) for the velocity

field in the rotating frame, v, becomes

∂tv + v · ∇v = −∇p
ρ0

+
FL

ρ0

+ ν∇2v − 2SΩ0
2xex − 2Ω0 × v. (20)

Decomposing v into the background shear flow and velocity perturbations (v = SΩ0xey+u),

Eq. (20) becomes

∂tu + u · ∇u = −∇p
ρ0

+
FL

ρ0

+ ν∇2u + 2Ω0uyex − (2 + S)Ω0uxey − SΩ0x∂yu. (21)

To account for the background shear in the evolution of the perturbations, the remesh-

free approach of Brucker et al [5] was implemented. Due to the shear in the local frame, the

forward and reverse Fourier transforms must be modified to maintain periodicity along the

shearing direction:

f̂(k, t) =
∑
x

f(x, t)e−i(xiki−SΩ0xtky), (22)

f(x, t) =
∑
k

f̂(k, t)ei(xiki−SΩ0xtky). (23)

Hence, the fixed-grid wavevector K becomes a function of the Lagrangian (shearing) wavevec-

tor k and time, K(k, t) = (kx−SΩ0tky, ky, kz), and when transforming to Fourier space, the

derivative operators become

∂x → i(kx − SΩ0tky) = iKx, (24)

∂y → iky = iKy, (25)

∂z → ikz = iKz, (26)

∂t → ∂t − iSΩ0xky. (27)
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The shearing box implementations of Eqs. (11) and (15) are then

∂tû = −û · ∇u− iKP̂tot
ρ0

+
B̂ · ∇B

4πρ0

− νK2û + 2Ω0ûyex̂ − (2 + S)Ω0ûxeŷ, (28)

P̂tot
ρ0

=
iK · M̂
K2

− iK · L̂
4πρ0K2

− 2iΩ0ûyKx

K2
+

(1 + S)2iΩ0ûxKy

K2
. (29)

Eq. (8) becomes, in velocity perturbations,

∂tB = B · ∇u− u · ∇B + η∇2B + SΩ0Bxey − SΩ0x∂yB, (30)

and the shearing box implementation of Eq. (12) becomes

∂tB̂ = B̂ · ∇u− û · ∇B− ηK2B + SΩ0B̂xeŷ. (31)

FFTs and Parallelization

Although Dedalus is written in Python, the FFTs dominate the computational cost of a

simulation. Optimizing the FFTs largely negates the performance penalties of using a high-

level language, while maintaining the ease of use and speed of development of Python.

Outsourcing the FFTs from Python to FFTW, a C-based library that optimizes FFT

routines based on local hardware, results in a substantial speed improvement over Python’s

(i.e. NumPy’s) built-in FFT algorithms. Much greater gains can be made on a graphics

processing unit (GPU) using Nvidia’s CUDA architecture to compute the FFTs and other

calculations.

Finally, MPI-based parallelization has been implemented, allowing a single simulation

to simultaneously run as N separate tasks. To achieve this, the computational domain is

evenly divided among the N tasks along the kz direction in Fourier space. The reverse

Fourier transform is then accomplished in a series of steps, as depicted in Fig. 2. First, each
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task performs a 1D IFFT in the kx direction on its dataset, and the shearing phase shift is

applied as in Eq. (23), if necessary. Second, an MPI All-To-All call is issued, in which each

task evenly divides its data N times in the x direction, and sends the Nth slab to the Nth

task. Each task then stacks the N slabs it has received, and performs a 2D IFFT in the ky

and kz directions. The resulting datasets have gone through a full 3D IFFT, and the data is

evenly divided among the tasks along the x direction in real space. The parallelized forward

transform is the reverse of this process.

RESULTS

Code Verification and Testing

Multiple tests were performed to verify the MHD implementation in Dedalus. First, the

motion of a shear-Alfvén wave, an eigenmode of the linearized MHD equations which travels

along magnetic field lines, was tested. A constant background magnetic field B0 was setup

across the domain, along with the velocity and magnetic field perturbations corresponding

to a shear-Alfvén eigenmode. Shear-Alfvén waves were found to propagate with the correct

phase velocities based on their direction of travel and the magnetic field strength: vA ∝

B0 cos θ, where vA is the speed of a shear-Alfvén wave and θ is the angle between the

magnetic field and the wavevector.

This test was repeated with nonzero viscosity and magnetic diffusion. Fig. 3 shows

the resulting amplitude and phase velocity plots for several seeded modes, which behave

as expected. The velocity and magnetic field amplitudes decay exponentially, with rates

proportional to wavevector magnitude, as expected from Eq. (18), and the phase velocities

are constant in time and of the expected magnitude (here B0 is directed along (1, 0, 0)).

The advection of a low amplitude magnetic field was also tested. A small (|B| ≈ 10−3),

random magnetic field was imposed on a constant fluid velocity of order unity. The magnetic
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field forced velocity perturbations of the same order, and both fields were advected with

the background fluid velocity. This behavior was expected, since the non-linear terms are

negligible with such small field perturbations.

The shearing box implementation was tested using the swinging wave test of Lithwick

[6]. The wavefronts of the vorticity waves are seen to turn with the local domain’s shear, as

expected. Snapshots of the wave at several times are shown in Fig. 4.

Science Results

At the time of this report, the parallelization techniques described above are being finalized

and tested. While they are critical for high-resolution simulations quantitatively studying

the MRI, linear and early non-linear behavior can be investigated at lower resolution. These

MRI simulations begin with a vertical magnetic field and small (≈ 10−6) random velocity

perturbations. Channel modes, precursors to turbulence in the MRI, are seen to form and

grow exponentially. The mode formation is seen in Fig. 5, which depicts ux in one xz plane

at several times. The modes lie primarily in xy planes and are nearly axisymmetric, as

expected. Higher resolution simulations following these modes further into the non-linear

domain will be performed utilizing the parallel architecture of Dedalus.

DISCUSSION AND CONCLUSIONS

Dedalus is among the first entirely open-source spectral MHD codes. The Python develop-

ment environment facilitates ease of use and code development, and the project’s emphasis

on object-oriented techniques have helped make Dedalus a very modular code which can

be easily adapted to study a variety of problems. The parallelized FFT algorithms, the

use of external libraries, and the incorporation of GPU-based calculations using CUDA all

contribute substantially to the performance of the code. With shearing-box simulations
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underway, the MHD capabilities of Dedalus may help identify points of comparison and de-

parture between current lab-based HMRI experiments and the standard MRI operating in

astrophysical accretion discs.
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FIGURES

Figure 1: The motion of fluid tracers initially aligned with the edges of the co-rotating local
domain, as viewed from an inertial frame. Lower angular velocity at larger radii results in a
local linear shear across the x direction of the local domain. The size of the box relative to
r0 is exaggerated for clarity.

Figure 2: Data distribution using MPI parallelization: task cuts along kz in Fourier space,
data passing during MPI All-To-All call, and task cuts along x in real space.
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Figure 3: Amplitude and phase velocity evolution of several shear-Alfvén waves, with vis-
cosity and magnetic diffusivity.
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Figure 4: Swinging wave demonstrating local linear shear (ux depicted).
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Figure 5: Formation of channel modes (ux depicted in an xz plane).
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