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Devices such as next-generation magnetic read heads demand energy storage capabilities

and switching times beyond what is met by current permanent magnets. Superlattices of

soft and hard ferromagnets (FM) that exhibit exchange-spring coupling are well-suited to be

optimized for this purpose. Because of perovskites’ tunable properties from competing charge

and spin degrees of freedom, one such system of interest is (001)-oriented La0.7Sr0.3CoO3

(LSCO) capped with La0.7Sr0.3MnO3 (LSMO). In the interfacial layers, FM moments are

exchange-coupled strongly to each other, increasing overall coercivity. However, this system

has subtleties that cannot be teased out in simple spin orientation models. In particular,

growth mechanisms lead to rough interfaces and interlayer diffusion, which may drive a poorly

understood phenomenon. The LSCO interfaces exhibit distinct magnetic properties from the

bulk, possibly owing to an unexpected Co2+ oxidation state near the LSMO that could lead to

superexchange with Mn4+ or possibly antiferromagnetism. Therefore the characterization of

the electronic structure of interfaces is crucial to our understanding of the magnetic structure,

but this is impossible with surface techniques, since most interfaces are buried, as well as

spectroscopy, because the layers are similar in density. Specular x-ray reflectivity (SXR)

is one method that describes layer thickness, density, and out-of-plane interface roughness

of surfaces and buried interfaces. To characterize further, we apply SXR over absorption

edges to increase Co/Mn contrast. Back-conversion to x-ray absorption near-edge structure

(XANES) provides spectroscopic information on oxidation states that considers each sublayer

separately, thereby determining how the sublayers couple.

I. INTRODUCTION

Exchange-spring coupling is an emergent

phenomenon similar to the exchange bias in anti-

ferromagnetic/ferromagnetic (AFM/FM) inter-

faces: the hard layer pins the soft layer’s mag-

netic moments. The resulting combination the

has best traits of each layer: large coercivity as

well as high saturation magnetization [1]. This

boosts the energy stored by the magnet, because

it is proportional to the integral of the magnetic

hysteresis loop[2], U=
∫
M dH.

Prior results from -ray magnetic circu-

lar dichroism (XMCD) spectroscopy indicate

that different magnetic states are visible in

LSCO/LSMO bilayer interfaces compared to the
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FIG. 1. The magnetic hysteresis loop for an FM

exchange-spring system.

bulk layers[1]. In the bulk the LSCO is ferromag-

netic under ambient conditions in thin films for

the x = 0.3 strontium doping in this sample; it

is stably FM in the range 0.2 ≤ x ≤ 0.5 due

to double exchange[3] between Co3+ and Co4+.

The collaborators indicated in previous publica-

tions that they suspect that the LSCO inter-

facial layer with the substrate is in a low-spin

“non-magnetic” state for 4nm (∼10 unit cells)

due to strain-induced lattice mismatch. Most

interestingly, the direct exchange between like

ions is expected to cause AFM coupling [3] at

the LSCO/LSMO interface.

In order to characterize these magnetic

states, it is necessary to determine the oxida-

tion states of the B transition metal ions in the

ABO3 perovskite lattices that mediate the ex-

change interactions. Absorption spectroscopy

(e.g. XANES), which contains this information

and a wide array of additional electronic infor-

mation [4], imposes a spectroscopic average over

bulk and interfacial layers, so scattering is nec-

essary for examining the buried interfaces. Ex-

amining resonant energies in specular x-ray re-

flectivity (SXR) is necessary to improve contrast

amongst similar layers, and also can be fitted

and subsequently transformed to yield XANES-

like data for the individual layers.

This analysis is important because LSCO is

riddled with growth difficulties such as ordered

oxygen vacancies which may be tuned slightly

to induce changes in structure [5]. Unfortu-

nately, strain can preferentially change the direc-

tion of the O vacancies, making it hard to discern

whether LSCO’s magnetic properties are intrin-

sic or result from specific growth conditions. An-

other complication is that imperfect interfaces

make exchange coupling along different orien-

tations energetically favorable, canting the spin

axis and yielding different magnetic structure [6].

It is difficult to account for these growth diffi-

culties, but by careful resonant SXR fitting one

may get closer to accurately refining the struc-

ture and chemistry intrinsic to this material.

Resonant SXR is just one tool for interface

characterization. In order to develop a defensible

structural model, I suggest diffraction for verify-

ing lattice parameters and shape. In addition,

off-specular (or diffuse) reflectivity (OSXR) and

crystal truncation rods (CTR) are important

measurements for buried interface structure. A

qualitative analysis of OSXR can show the ex-

tent to which the roughness of the layers is cor-

related [7][8], and quantitative analysis gives in-

plane roughness and interlayer diffusion[9][10],

which SXR lacks. Exchange mechanisms are
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sensitive to bond angle changes (and compet-

ing mechanisms in the LSMO sublayer) and thus

CTR, which can describe 2D crystallography at

interfaces[11], would also aid this characteriza-

tion effort.

I present my findings from a resonant

SXR study for sample X11, comprised of a

(LaAlO3)0.3(Sr2AlTaO6)0.7 (LSAT) substrate,

12nm of LSCO, and 6nm of LSMO, all in the

(001) orientation. This sample was grown via

pulsed laser deposition by Binzhi Li, a graduate

student in Yayoi Takamura’s group at the Uni-

versity of California, Davis. The novelty of this

paper is that the LSCO interfaces are modeled as

distinct from the bulk. In parallel with comple-

mentary measurements, I arrive at an improved

method for characterizing interfaces of compli-

cated lattices, with superior functionality and

performance over more conventional permanent

magnets in devices.

II. DATA COLLECTION

Data on sample X11 was collected on the

week of August 3, 2015 at Beamline 2-1. I

cleaned the sample in isopropyl alcohol and

deionized water, sonicating for 2 minutes in each,

directly prior to measurements and placed it in

the He-filled sample chamber over a small vac-

uum to hold it in place. First I aligned the

sample in the beam using SPEC c© software by

measuring with the ion chamber, and adjusted

slits to get the desired beam size for my sam-

ple size (in this case, 65µm). Next I took initial

XANES, using a VORTEX R© silicon drift x-ray

detector aligned perpendicular to the beam di-

rection to examine fluorescence, by stepping in

energy around the Mn and Co edges.

FIG. 2. The experimental setup on Beamline 2-

1 at SSRL. The detector for fluorescence is visible

(bottom-left), perpendicular to the sample.

Then I took SXR with another

VORTEX R© detector located at 2θ, the

specularly reflected angle from the beam, by

stepping in θ but with linearly increasing detec-

tion times. This helped increase photon counts

at higher angles, decreasing our statistical

uncertainty. In order to get the background

photon counts, which are subtracted out at

each energy, I repeated this scan at off-specular

angles (2θ = 2 × θ − 0.5◦). I repeated this at

energies near the absorption edge, and at non-

resonant energies far from edges for comparison.

I needed filter boxes to protect the detectors,

and calibrated them for a wide incident energy

range.

In the future, these results may be augmented

by OSXR information. In July, I used this on a
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previous sample called ZQL4, which had alter-

nating 18 unit cell sublayers of LSMO and LSFO

(La0.7Sr0.3FeO3), repeated five times. I took

OSXR by repeatedly performing “background”

scans around various 2θ values. I did not per-

form this measurement on X11 because the com-

piled OSXR curves, known as “Resonant Diffuse

Scattering” or “banana” plots, seemed difficult

to analyze quantitatively. Qualitatively they

had no curved horizontal lines (bananas), reveal-

ing that for ZQL4 the in-plane roughness was

uncorrelated (see Figure 3 below), but I lacked

sufficient beam time to examine X11.

FIG. 3. Resonant Diffuse Scattering (logarithmic in-

tensity heatmap, red is high, [a.u.]) at 10keV for

ZQL4, an LSMO/LSFO superlattice grown on (111)

SrTiO3.

III. RESONANT SXR THEORY

Scattering theory begins with a consideration

of refraction from the layers of the material com-

prising a sample. Index of refraction typically

lies slightly below 1 (by ≈10−5) for x-rays in

materials, to account for x-rays bending toward

interfaces. While this looks worrisome at first

glance, since n = c/v which seems to imply that

the speed of light exceeds c, in this case v is the

phase velocity and not the group velocity. Also,

due to absorption, there is a tiny imaginary com-

ponent to n. These differences in n from unity

are denoted as n = 1 − δ + iβ. We use δ and

β, which are known for the elements, to calcu-

late reflectivity, as we will see in the subsequent

section, for multiple scattering on multi-layered

films. Luckily, there is a secondary definition

that starts from treating electrons on the con-

stituent atoms of a molecule as scatterers to get

at n [12]:

n = 1− 2πρatr0
k2

f(Q,E), (1)

where ρat is the atomic electron density, r0 is the

Thomson scattering length, k=|~kinc| is the inci-

dent wavevector’s magnitude, Q = ~kinc−~kref =

2k sin θ in [Å−1] is the (elastic) wavevector trans-

fer or scattering vector, and E=ck is incident

photon energy. Of most interest here is the

atomic scattering length:

f(Q,E) = f0(Q) + f ′(E) + if ′′(E), (2)

separated here into constant (in energy), real,

and imaginary components. The constant factor

f0(Q=0)≈ Z, the atomic number, if we neglect a

small relativistic correction at high E, and note

that, in reflectivity, Q∼0 to good approximation.

This alternative definition of n is useful because,
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as a result of electromagnetic waves being ana-

lytic on the complex plane, they are causal, and

one may relate f ′(E) and f ′′(E). Their relation

is called the K-K Transform, and is discussed in

Section V along with the interpretation of f ′′ as

XANES, which is rich in electronic information.

In order to simulate the sample, we need

to go between the indices of refraction of the

layers and the SXR data. To accomplish this,

the Parratt function uses fit parameters for the

layers to simulate scattering off of the sample.

Each layer is modeled by a characteristic thick-

ness t[Å], out-of-plane surface roughness σ[Å],

density d[1/Å3], and complex scattering length

f = (f0 + f ′) + i(f ′′), [a.u.] 1. The density and

scattering length are somewhat redundant, so to

avoid overdefining the sample one must be left

constant. In this work I fit the real and imagi-

nary parts of scattering length and leave density

as the theoretical volume of the unit cell.

In this regime, these parameters are used to

find the real and imaginary parts of index of

refraction (δ and β), at height z. To check if

the electron densities and roughnesses are phys-

ical, these may be inspected graphically. They

are comparable to the real and imaginary parts

of the SLD (scattering length density, [r0/Å
3])

graph used in similar programs like GenX[13]

(see Figure 4).

From here the program calls the Parratt func-

1 Also, SXR is sensitive to host of additional instrumen-

tal parameters, because scattering is ultimately a con-

volution of the beam with the sample.

FIG. 4. An SLD for sample X11 at the Mn edge,

from GenX[13], which uses Nevot-Croce. Real is

blue, imaginary is red.

tion, an exact recursive method that generalizes

Fresnel’s equations for multilayers, to calculate

the reflection intensity. The current algorithm

was developed by Trevor Petach, and it calcu-

lates δ and β at regularly spaced height values,

using error functions
∑

i interfaces

erf(z−zi) to es-

timate interfaces. This method is more compu-

tationally intensive than another method, called

Nevot-Croce, which treats δ and β as continuous.

Use of this function would save an estimated or-

der on magnitude of CPU time per calculation.

SXR is always plotted as log(I) vs. Q when

comparing results from multiple energies. In-

tensity I is a count of the number of photons

at the incident energy range of interest, nor-

malized by the monitor to be consistent when

changing time steps. In the Parratt formalism,

thickness manifests as the period of interference

oscillations, roughness makes log(intensity) die



6

off faster, and density or scattering length modi-

fies the intensity difference between interference

peaks (known as Kiessig fringes). The critical

angle, as a general observation, is mostly a result

of the top layer’s density, though it is a function

of energy as well.

FIG. 5. SXR for X11, over a wide energy range cen-

tered about the Co Kβ edge. Energy is increasing

from red to black.

IV. FITTING WITH GENETIC

ALGORITHMS

The overall strategy for fitting SXR data for

samples with low layer contrast is as follows:

First, roughly fit a dataset at a nonreso-

nant energy to determine instrumental param-

eters and get a starting point on layer parame-

ters.

Second, fit a resonant dataset at some ele-

ment’s absorption edge (in this case Mn) to ver-

ify the layer properties, including the interlayer

roughness, which is not observable at nonreso-

nant energies.

Lastly, fit resonant datasets at energies along

the absorption edge of the element under exam-

ination (in this case Co), fitting with the fewest

number of parameters besides f ′(E) and f ′′(E)

to isolate the electronic changes.

I developed an algorithm to accomplish the

last step above so that I would have finer control

over the fits using the Matlab R©Optimization

ToolboxTM . The fitting routine is a genetic algo-

rithm (GA), which has distinct merits over most

algorithms when there are many parameters to

fit and many objective functions to satisfy. In

order to quantify the appropriateness of the fits,

and to pick the right energies for the data to

examine, I use the methods in the proceeding

subsections.

I compare the calculated reflection intensity

Ic to Im, the measured reflectivity scans from

Beamline 2-1 at the Stanford Synchrotron Radi-

ation Lightsource (SSRL), using a statistical test

called figure of merit, abbreviated FOM. This

is a standard test for fits that favors agreement

to measurement as well as simple models, be-

cause it weights with input parameters. In this

project, I chose the figure of merit formula from

a similar program called GenX [13]:

FOM = 1
N−p

∑
i

∣∣∣∣ln(Ic(i))− ln(Im(i)
)∣∣∣∣ (3)

where we define n as one data point (observa-

tion in theta or q-space), N as the total number

of data points, and p is the number of parame-

ters. It is important to subtract the background

from the measured intensities Im because it is
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impossible to account for this accurately as a fit

parameter.

FIG. 6. An SXR fit (log(I) vs. Q) for sample X11 at

the Mn edge, from GenX[13]. Blue is measured, red

is the simulation. Note the poor fit (FOM=0.11), re-

sulting from a poor physical model. The table values

for f ′ at resonant energies are inexact, and there is

likely a missing layer.

V. K-K TRANSFORMS

The relations between f ′(E) and f ′′(E) fol-

low from a consideration of electrons as damped

harmonic oscillators. For the derivation, which

is helpful to understanding the utility of the

equations, see Appendix A. The useful form of

the relations, known as the Kramers-Kronig (K-

K) transforms, is, evaluated at E0 [14]:

f ′(E0) =
2

π
P
∞∫
0

Ef ′′(E)

E2 − E2
0

dE (4)

f ′′(E0) = −2E0

π
P
∞∫
0

f ′(E)

E2 − E2
0

dE (5)

These formulas are easy to implement, in

principle. But in practice, tabulated values are

difficult to deal with. The NIST tables, used

in this work, were obtained from self-consistent

Dirac-Hartree-Fock calculations [15]. These only

range down to ∼20eV and up to ∼400keV for

transition metals, which is not nearly infinity.

Since the functions die off rapidly as
∫
dE/E2,

the function evaluations are acceptable at the

hard x-ray energies available at Beamline 2-1

(∼2keV to 13keV) [16]. Larger concerns are the

low sampling rate of the tables, and vast incon-

sistencies across different published tables like

Henke.

Fortunately, the imaginary part f ′′(E) is ex-

perimentally observable because it is propor-

tional to the absorption cross-section from a

XANES measurement. This allows us to move

back and forth to f ′(E), which is easier to fit in

SXR because it changes drastically over absorp-

tion edges by the number of absorbed electrons

[17].

Primarily, K-K transforms are useful for

guessing the energy of highest contrast in SXR

measurements. A program I implemented, called

kkXANES() in Matlab R©, takes XANES and

transforms it into f ′ using the first equation

above. The energy corresponding to the lowest

point in f ′ was subsequently chosen for resonant

SXR scans.

Beyond this application, the K-K relations

are powerful as a tool for self-consistent checking

of SXR fits: A significant difference between fit

parameters and their transforms would indicate

unphysical fits. However, FOM is blind to phys-
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FIG. 7. For sample X11, top: f ′′, interpreted from

XANES, and bottom: its KK Transform, f ′, com-

pared to table values.

ical or unphysical models, and unlike with SLD

plots the appropriate values for f ′ and f ′′ are

beyond an intuitive human evaluation. Thus, I

have implemented code that accomplishes this

calculation within the GA, as an objective func-

tion separate from the figure of merit, but their

successful implementation into the GA will be

the subject of future work.

VI. DISCUSSION

The approach to fitting sample X11 was to

first support the hypothesis that there are three

LSCO layers, with different oxidation states on

at least the LSMO interface. From there, I would

simultaneously fit all SXR data on the Co edge,

to find f ′(E), and simply back-transform for

each layer to find layer-specific f ′′(E), which can

be interpreted like XANES.

However, the results are inconclusive be-

cause, as expected, LSCO is difficult to grow,

and the one electron difference between the in-

terfaces and the bulk are too small to fit with

significant differences in FOM. I also see an in-

adequate fit across all energies, suggesting a poor

physical model. I suspect a missing layer in

our current model, less dense than the LSMO

cap, which could be from surface reconstructions

or the presence of another chemical constituent.

Thus, the first step in this approach is currently

under way, and is rapidly approaching a resolu-

tion.

VII. CONCLUSION

In summary, I presented a promising method

for characterizing the electronic structure of

buried interfaces, which cannot be accomplished

through other types of measurements. This

procedure is complicated for the sample under

study, but it may be elaborated upon with a

better model, based on a better prediction of the
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chemical composition of the sample. Addition-

ally, more advanced fitting algorithms that make

full use of the KK relations may help impose

more physical solutions. The transform of the

fit results to XANES would be an unprecedented

feat, which would make the electronic structural

characterization understandable to the entire

crystallographic community. With this devel-

opment, materials by design for the permanent

magnets in read heads and high-performance

magnets would come closer to fruition.
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VIII. APPENDIX: K-K DERIVATION

Without loss of generality, we may say that electrons have some resonant frequency ωs and

a damping factor Γ, which encapsulates quantum mechanical effects [12]. In the presence of an

electric field Ein(t) = x̂E0e
iωt, this yields a displacement per electron

xs(t) = − e

m

Ein(t)

ω2
s − ω2 − iωΓ

where the subscript s is for scatterer. Now consider the radiated electric field, a spherical wave, and

evaluate at R for some retarded time t′ = t−R/c: Erad = −r0ẍ(t′)Ein(t) e
ikR
R . This is proportional

to Ein(t) by the atomic scattering length

fs =
ω2

ω2 − ω2
s + iωΓ

∝ Ein(t)

Erad

so we arrive at a dual definition of f =
∑

s fs, as we defined it before in relation to n.

Since the peaks are at ω = ωs and have ωFWHM ≈ Γ which is very small, we approximate the

peak from each scatterer as a delta function for convenience. This lets us express what should be∑
s in integral form. The functions for f ′(E = h̄ω) and f ′′(E = h̄ω) can be seen to be analytical

in the complex plane, since we are discussing a physical system, so we can use transforms to relate

them. Before I explicitly noted that for photons E ∝ ω to provide a warning that that they are

interchangeable in the literature.

Ralph Kronig and Hendrik Anthony Kramers, derived the Kramers-Kronig (K-K) relations in

1927. They exploited the singularities that develop at the resonant frequencies to employ Cauchy’s

theorem, rephrasing the problem as a contour integral in the complex plane.

Because the integrands can be shown to go to zero on the infinite radius semi-circle, labeled

segment D, and the radius ε → 0 semicircle B, the only nonzero contributions to our contour

integral are A and C, which lie along the real axis. The compact form of the relations is one

equation:

f ′(E) + if ′′(E) =
1

iπ
P
∞∫
−∞

f ′(E′) + if ′′(E′)

E′ − E
dE′ ,

where P denotes a principal integral, to remind us that we must not evaluate exactly at the resonant

energy (or frequency) as it is a singularity.
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FIG. 8. The contour integral used to find the K-K relations. Adapted from [12].

It can be seen from this that one may equate the real and imaginary parts of both sides to

obtain two separate equations. However, energy is confined to positive values, so this form of the

relations cannot be evaluated with actual data. Exploiting the symmetry of the functions (f ′ is

even and f ′′ is odd), integration tricks yield the usable forms:

f ′(E) =
2

π
P
∞∫
0

E′f ′(E′)

E′2 − E2
dE′

f ′′(E) = −2E

π
P
∞∫
0

f ′(E′)

E′2 − E2
dE′


