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Energy Loss to Parasitic Modes of the Accelerating Cavities

Introduction

At maximum stored current, each circulating beam in PEP will consist
of three bunches, each about 10 cm long and containing 1.5 x 10!2 particles.
The large electric charge carried by such a bunch (2.5 x 10-7 coulomb) will,
because of its short length, give rise to a large transient excitation of
hundreds of parasitic modes in the accelerating cavities. The energy loss
of the stored beam to the cavities from this process may be comparable to
the loss to synchrotron radiation, and may, therefore, require a signifi-
cant increase in power from the accelerating rf system.
In this note I consider three aspects of this effect. In Section I
an attempt is made to estimate the magnitude of the energy Toss of a bunch
in a single passage through the accelerating cavities. 1In Section II I
consider the effects of the periodic passages of the bunches in a single
stored beam. And in Section III I look at the consequences of storing two
counter-rotating beams. The general conclusions are that the magnitude
energy loss to the parasitic modes is serious, though probably not disas-
trous; and that, in general, the separate stored bunéhes will act incoherently.
The excitation of parasitic modes can have consequences beyond the mere
subtraction of energy from the stored beam. In particular, there will be a
modification of the restoring force for the energy oscillations, bunch
lengthening effects, and the possible anti-damping of coherent energy osciila-

tions. These effects are not analysed here.

Thismaterial is based upon work supported by the U.S. Department of Energy,
Office of Science, under Contract No. DE-AC02-76S-00515.
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I. Single Pass Energy Loss

In connection with studies of electron ring accelerators, Keil! has
calculated the energy loss of a relativistic bunch traveiling down an ideal-
ized periodic cylindrical structure. I will use Keil's results to estimate
the energy loss of a stored electron bunch in PEP to the rf accelerating
cavities. The major part of Keil's work is a numerical solution for the
electromagnetic fields subject to appropriate boundary conditions at the
structure walls and at the bunch. He considers only an infinitely long
structure, so that all fields are strictly periodic (in the direction of
the beam axis). The consequence of this, and other, approximations made
in the calculations -- especially when applied to a small group of cavities
are not clear to me. Also, the PEP 6av1ty structure differs markedly from
the idealized form considered by Keil. The results obtained here can,
clearly, be considered only an estimate.

Most significantly for our purposes, Keil shows that his numerical

results for ultra-relativistic particle energies agree in some detail with

an algebraic expression for the energy loss obtained from an "optical re-
sonator mode]‘»l deveioped by Sessler and Vainshtein for configurations in
which the latter should be valid. We can, therefore, use this algebraic
formula for our estimate.

The structure considered 1is a sequence of identical "cavities" which
have cylindrical symmetry about the axis of the beam, as shown in Fig. 1.
The significant dimensions are the cavity length (structural period) b,
the hole radius a, and the bunch length g. The optical resonator model

presumes that the disc thickness is much less than the structure period
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Fig. 1. Section of Periodic Structure.

b so that the gap length g is nearly the same as b, and that the radius

of the bunch is much less than the hole diameter a. The model is not sen-
sitive to the major cavity radius A, assuming only that it is sensibly
larger than a. The numerical results are also not sensitive to A for ultra-
relativistic particles.

| Keil (following a suggestion of Lawson) believes that the optical
resonator model should be valid for energies for which y = E/mc? is much

larger than a critical V- For a < b and (b - g) << b,

Y. % 50 b/a. (1)

For PEP, vy is certainly well above Ye-
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I consider a bunch containing N particles (each with electronic

charge) and let Ev be the average energy loss per particle due to the

passage of the bunch through a sequence of M cavities. The formula given

by Keil -- his Eq. (37) -- can conveniently be written as

Yoo = UeF(a,A)

where U is the "basic" energy loss factor for the structure and F(a,))

is a "form factor" for the structure and beam. The basic energy loss is

where:

mc

o = =

a

mc?r N
0

Mb

U = mc?r N
0 a2

= rest energy of an electron 0.511 MeV

2.82 x 10-13 cm.

= classical electron radius
= number of particles in the bunch

= number of cavities

= cavity length (period of the structure)
= hole diameter

0.216 MeV/cm for PEP.

The form factor F(a,A) depends only on two dimensionless parameters

characteristic of the cavity and beam dimensions:

a

a
= b.083 - ,

2n /2 a
b b

z(%)

A = (/b))%

Ny

(2)

(3)

(4)
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o aX
F(a:}\) - K o
(o +1)2+1 (a + A)2 + )2
a(l -2)
+ arctan , (5)
(a+ 1)(a+2) +2
= 3.682.

with K = 2 J;l(O) 2/

In order to get a qualitative feel for the nature of the form factor,
I have used these expressions to compute F(a,A) for various ratios b/a and
2/b. The results are shown in Fig. 2. The dependence of therenergy loss
on the ratio b/a is not very strong -- varying by only a factor of two, or
so, over the range of practical interest. The decrease of F(a,\) even for
small bunch Tengths is perhaps surprising. The energy loss at b/a ~ 6
drops to one-half the value for a point bunch when the bunch length reaches
only about 1/3 of the hole radius. (Incidentally, the model gives zero
energy loss for a bunch length equal to the cavity length; that is, for
/b =1.)

I should say here that the bunch length terms in F(a,\) were arrived
at in a rather crude way by saying that a bunch of length 2 contains the
same frequency components (in its current, for example) as a point bunch up
to the frequency c/%, and none for higher frequencies. For PEP, the bunch
will presumably be more-or-less Gaussian. In keeping with the roughness
of the bunch-length treatment in the energy loss, I think we will not go
too far astray if we take 2 = 20y, where qy is the root-mean-sauare longi-
tudinal bunch spread.

Let's now look at the energy loss expected for PEP, and, at the same
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time, the loss expected for the SLAC accelerator structure, so that we can
compare with the energy loss that has been measured there for a single
bunch. Table 1 gives the appropriate parameters and the energy loss U

computed from Eq. (2).

Table 1. The basic energy loss for PEP and SLAC
Quantity PEP SLAC
N* ‘ - 1.5 x 10'2 1.0 x:10°
M 1.2 x 102 0.86 x 10°
a 6.0 ém 1.15 cm
b 41 cm 3.5 cm
b/a 6.83 3.04
U 29.5 MeV 32.8 MeV
*For PEP, I consider only a single bunch (elec-
trons or positrons) with a beam current of
100 mA for a 3-bunch beam.

It is a little more difficult to know what to take for the bunch length
in both PEP and SLAC. For PEP, the bunch length for small currents is
expected to be about 5 cm. Most electron storage rings have, however,
anomalous bunch lengthening, of up to a factor of 3 or more, that increases
wifh increasing charge in the bunch. It will be surprising if there is not
a comparable Tengthening in PEP. (It may indeed be that at least a part of
the bunch lengikening is due to the same energy loss mechanism we are
considering here.) I choose to evaluate the form factor F(a,A) for two

lengths: the natural length 20 at 15 GeV, and three times 20.
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Similarly, there is some uncertainty about what to take for the bunch
length in SLAC. According to Greg Loew, the distribution of current with

rf phase, when averaged over many pulses, is roughly uniform over an inter-

val of about 10° of rf phase.l Roger Miller points out, however, that some
of this spread may be due to pulse-to-pulse jitter between the injector and
the accelerator, and that a single bunch may be as short as 5° , the value
he has measured for the injector on a test stand. The appropriate length
here is, of course, the single pulse current distribution. Facing this
uncertainty, I choose to calculate the energy loss for both 5° and 10°.
These corréspond to lengths of 0.15 cm and 0.29 cm respectively.

The energy losses obtained for these assumptions are shown in Table 2.

Table 2. The energy loss including effect of bunch length.
Quantity PEP SLAC
i 5cm (=2 ) 0.15 cm (5°)
2/b 0.122 0.043
Flasn) 0.82 1,22
- u0 24 MeV 40 MeV
e e e e e e e
& 15 cm (= 32 ) 0.29 cm (10°)
2/b 0.37 0.083
F(a,A) 0.30 1.05
uo 9 MeV 34 MeV

The loss for PEP is estimated to lie between 10 MeV and 20 MeV, and for



SLAC, between 35 MeV and 40 MeV.

How reliable are these estimates? I find it difficult to guess. First,
let's look at the SLAC result. It has been reported earlier by Koontz, Loew
and Miller that the energy loss for a single bunch of 10° electrons traver-
sing SLAC is measured to be about 38 MeV. Recently, however, a re-analysis
of the data indicates that this was an apparent maximum energy loss, while
the mean energy loss in the bunch is probably nearer to about 20 Mev. It
would appear that the theoretical estimate may be nearly a factor of two
too large.

One of my main worries about the analytical model is that it is derived
by taking an integral over a spectral density -- which integral is rather
arbitrarily truncated at the low frequency end at the frequency c/b.
Unfortunately, the spectral density is large and changing rapidly at this
low-frequency 1imit, so the integral is quite sensitive to the choice of the
cut-off frequency. What surprises me, therefore, is that Keil's numerical
calculation -- which considers all low-frequency modes individually, and
uses the analytical model only to account for the highest-frequency modes
that are too numerous to treat individually -- gives the same answer within
a few percent.

The SLAC waveguide has a geometry that is very close to the idealized
structure taken for the calculations. How can we account for the discre-
pancy? A couple of factors come to mind. First, the electron bunch in
SLAC has a radi"s that is not small in comparison with the hole radius a
(as assumed in the calculations). It is my guess that this would decrease

the energy loss to higher modes, but I have not yet made an estimate of
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Finally, I mention one other concern I have about the theoretical esti-
mates. The model (and Keil's numerical work) considers the energy loss in
an infinite periodic structure. The SLAC structure should probably be
reasonably approximated by such a model since each guide section contains
100 cavities. The PEP structure, on the other hand, consists of groups
of only five cavities. There may be some significant differences from a
strictly periodic structure.

Because of all the‘uncertainties in the computed energy loss, it seems
Tikely to me that the results could be in error by perhaps a factor of two
(either way). Since the estimated loss for PEP is comparable to the radia-
tion Toss of 26 MeV, a factor of two could have serious consequences for
the PEP design. It would be important to have an experimental measurement

of the energy loss in the PEP cavities as soon as possible.
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II. Energy Loss with Periodic Beam Passes

The energy loss considered in the preceding Section was for a single
passage of a bunch through the cavities. Perry Wilson® has considered a
modification of this energy loss due to the periodic passages through the
cavities of the bunches of a stored beam. I will now consider this pro-
blem -- for which I obtain a significantly different result.

The energy Nu0 deposited in a cavity by the single passage of a bunch
of N particles appears as energy stored in the electromagnetic field in
the cavity. It is convenient‘to consider this field as the sum of the
fields of each of the normal modes of the structure. Since the total energy

is the sum of the energy in each mode, we can write the energy loss u  as

g = Z Ugy o (6a

th

where u, is the energy lost by each particle to the n”" mode -- which

n
energy is found in the mode immediately after the passage of the bunch.

The total energy deposited in the nth

mode by the whole bunch is N%n
(I choose to call mode "zero" the "fundamental" -- that is, the lowest fre-
quency that is used for the accelerating field.)

When the energy Nu,, is deposited in the nth

mode, the fields will
afterwards ring down with an oscillation frequency W, and a decay constant
ap- A particle that traverses the cavity at the time t after the passage of
the bunch will feel an effective accelerating voltage vn(t) from that mode

that is given by

vn(t) = Ve N cos wnt (7)
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where

v = - ’ (8)

and e is the charge of the electron. I may also note for future reference
that Uon is, for a point bunch, related to the shunt impedence Rn and the

quality factor Qn through X

Qé. ™
Uy = Ne“’ZQR" S
n
Now consider what happens when bunches all containing the same number
of particles traverse the cavity periodically with a time separation T.
On each passage through the cévity, a bunch leaves behind a field -- in
the mode n -- that can.be written as an infinite sum of terms like Eq. (7).
In fact, in the steady state, the effective voltage seen by a bunch as it
crosses a cavity is
L = vn(T) + vn(2T) + vn(3T) + ... (10)

where vn(T) is the expression of Eg. (7) evaluated at t = T.
When a bunch traversas the cavity each particle will gain the energy

th

e Vn from the n" mode, and it will still lose the energy u, The net 1loss

ne
in energy in the state Uy is, then,

Uz = d. =2Y. . (11)

The sum of Eq. (10) is easily evaluated (see, for example, Ref. 2) and we

get for U,

?./;/ AN i\?i\,lwl:\ !-_L-_-; K M A M&J-Q/"\l 7‘«5« j Z ;Cf Fi
AP i N ¢
l\\lﬁ@(g' Wy = ,P*f ‘2~



un = UOnf(an:en) s (12)
where
1 - e-z(’S
f(8,8) = : (13
1 - 2678 cos g + 728
with y
Gn = anT .
(14,
8, = lwnT - 21rJn| ;

_Nwith jn an integer chosen to makefea <.

Evidently, e’a represents the decay of the fields between bunch
passages, and 6 is the phase slippage of the mode from one bunch passage
to the next.

The function f(8,8) thus represents the correction to u , that must
be made because of the “memdry" in the mode of past traversals. I shall

Y call f(s,8) the "resonance factor" for each mode. The nature of this
resonance factor is illustrated in Figs. 3, 4 and 5.

The essential features of the resonance factor aré as follows:

(a) If 6§ > 1, there is 1ittle memory from one passage to the next
and f(8,8) is near 1 for any 6, and the energy loss is near Uop
for the mode.

(b) If 6 <1, there is significant memory and the modification of
the energy loss depends strongly on 6.

(c) If § << 1, the resonance factor is greater than 1 for 6 < /28,

and less than 1 for 6 > /26.
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(d) If 8 56 and 6§ <1, the mode is "resonant" and f(§,6) < 2/6,
SO that there is an increase of the energy loss in inverse
proportion to the decay term §.

() Ife>1and § <1, the mode is "anti-resonant" and f(§,6) =
8/2, and the energy loss is depressed in proportion to the

decay term §.

The total energy loss per revolution of each particle in a bunch is

the sum of the energy losses to each mode:

o
n
™M
[
"
™8

Uy, T(8..8.) - (15)

n=0

If we knew the resonance frequencies W, and the decay constants an,‘as well
as the single-pass energy loss Usn? for all modes, we could, in principle,
compute the total 1oss'u for the steady state. There are, however, so many
significant modes that the determination of the parameters of each is not
feasible -- either experimentally or theoretically.

Wilson? has made an estimate of u based on two assumptions: (a) that
6, can be placed "off resonance" for all modes expect for mode zero, and
(b)* that all modes have the same decay parameter 8. I believe that this
estimate is optimistic on two counts. First, it is difficult (impossible?)
to guarantee that all relevant modes will be off-resonance, and second, we

n

should expect that én should decrease with w_ as wn-%’ so that the reduction ><

in u,, even for Wy, of f resonance (which goes as 1/6n) will for the higher

*
This is equivalent to the assumption made by Wilson that his function f(ao)
follows the form (1 + Kaﬁ) for values of a, that are comparable to 1.
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modes be less than in Wilson's estimate.
I would Tike to suggest that an estimate of u as given in Eq. (15)
be made in the following way. First, let's separate out the fundamental

mode n = 0 from the sum and write

X
u = uof(ao,eo) + 8 (16)
. Ué ©
with
S = nfl uonf(an,en) . (17)
It will also be convenient to let
S, = & Upp - (18)
n=1

The energy Toss to the fundamental mode requires a special treatment, anyway,
because the fields of this mode add coherently with the rf accelerating fields
of the drive system of the cavity, modifying the total cavity loss at the
fundamental frequency. This problem has been handled routinely in accelerator
and storage ring design, and is also covered in detail in Wilson's report.

In PEP, the bunch period T is much larger than the period, 2t/w,, of
the fundamental mode and is, therefore, even larger than the periods of the
higher modes. This fact (together with the odd-shaped cavity structure of
PEP) leads me to propose the following assumption:
That the phase shifts 6 for n 2 1 will be distributed randomly from 0 to T
with uniform probability. We can then ask: What is <S>, the expectation

value of S, under this assumption? From Eq. (17),
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(s) - n; o (F(80580)), (19)
where

; M m

\f(5,9)>e = T’O/- f(8,0)de . (20)

The integrand of Eq. (20) is of the form a/(1 - b cos 6). Evaluating the
definite integral (leaning on a table of integrals), I get the convenient

result that

(f(a,e)> S (21)

so that

<s>=§u=s. (22)

I can interpret this result in the following way: Although the loss S
to the higher modes will, in general, differ from S0 for any given cavity,
we cannot say a priori whether it will be greater than or less than S, 5 and,
in fact, the resonant increase of the energy loss in some modes will, in
general, be compensated for by the off-resonance decrease in other modes.
So our best guess should be that S = <S> = So.
Physically, this result means that although a mode that lands "on resonance'
will have its energy loss increased by the factor 2/8, the chance of its doing
so is only ~ &/2. So that if there are many modes with the same § and the |

same excitation, the decreased energy loss of the off-resonance modes would,

on the average, just cancel the increased loss of the on-resonance modes.
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Unfortunately, in a PEP cavity, the many parasitic modes will have
widely differing decay constants Gn and excitations Up - It is, therefore,
not unlikely that a nasty fluctuation could place one (or more) of the
dominating modes on resonance with no chance of compensation by other off-
resonant modes. In particular, the first several modes will have signifi-
cantly different excitations and decay constants, and we should be prepared
for significant departures from the expected S in any particular cavity
design. We may expect, however, that for the large number of modes with
frequencies greater than a few times wy» there will always be many modes
with comparable excitations and decay constants so that the averaging to
1 for these modes should be fairly reliable.

With respect to the lower-lying modes, it should be possible to provide
the cavities with a subsidiary tuning device for shifting the frequencies
of the modes; and, with only moderate luck, it should be possible to adjust
any given cavity so that S S So. Alternatively, if all cavities were con-
structed with somewhat different dimensions, the averaging would occur among
the cavities and the chance of any large fluctuation from the expected S
would be much reduced.

It is clear that the distribution of the likelihood of any particular
value of S is not normally distributed. It might, in fact, be interesting
and useful to try to derive this distribution -- with a reasonable assump-
tion about the mode distribution -- to get some feeling for what the expected
deviations from the "expected" mean may be like.

The energy loss S, to the parasitic modes can be obtained by subtrac-

ting the single pass energy loss to the fundamental mode from the total single
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pass loss.
Sg = Ug - Ugp -

To get u,,, we can use Eq. (9), taking the experimentally observed values

for the various factors, namely:

2.25 x 10° sec”!

(>
n

9.5 x 10® ohms

e
1]

2.8 x 10% .

For a bunch of 1.5 x 10!2? particles,

u = 4.6 MeV . (23)

00

Taking the two possible values of u, for PEP from Table 2, we get:

5cm ;3 S 19 MeV
) (24)

15 cm S0 ~ 4.3 MeV

=
1]

Py
It

This, then, is our best estimate of energy loss S of the stored particles to
higher fregquency modes of the cavitie;. The rf system must provide this
energy in addition to the radiation loss UY -- which, for comparison, is

26 MeV at 15 GeV.

It may be worth pointing out also that the energy loss of (24) will for
the most part appear in the walls of the cavities. The cavity cooling must
take care of this loss as well as the wall losses in the fundamental (accelera-
ting) mode. To get the magnitude of this loss, we can multiply the energy

loss per electron of (24) by the total number of circulating charges (in
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both beams). We get

P, I 0.8 to 3.8 Megawatts. (25)

This power is a significant addition to the cavity losses in the funda-

mental mode, which are about 2 Megawatts.
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ITI.  Cavity Losses with Two Stored Beams

The preceding Section considered the energy loss of the particles in a
single stored beam of several equal bunches with the equal time separation
T -- as would occur with either electrons, or positrons, only, in the ring.
I consider now what will be the effects when beams of electrons and positrons
are stored together. When two beams are stored, each cavity will be excited
by two trains of bunches, each train will have a bunch separation T, but the two

trains will be interleaved with a time displacement, or "stagger", of T, -

See Fig. 6.
1 )
2 {
< T i _': ;‘—-Tl
: Beam 1 k
|
+— T — g
| : | | L,
Beam 2 B
Fig. 6. Interleaving of two beams at a cavity.

We could, of course, analyse the fields (and energy losses) associated
with each cavity mode when it is subjected to the sum of the two staggered

bunch trains. The following qualitative arguments show, however, that such
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an analysis is not necessary.

First, I note that the total field produced in each cavity is just
the sﬁm of the fields produced by each train acting separately. Each par-
ticle will experience the fields produced by its own beam -- as considered
in Section II -- and an additional cross-coupling field V; produced by the
other beam. If the stagger time T, were zero at any cavity, the two fields
would add coherently, and the energy loss per particle would be doubled.
Fortunately, however, the PEP design places the accelerating cavities at a
distance of some tens of meters from a beam interaction point so that the
stagger time T1 is much larger than the period of the fundamental accelera-
ting field (whose wavelength is 0.83 meters). The cavities are, of neces-
sity, placed so that the time T, is precisely an integral multipie of the
fundamental period 2ﬂ/w0. For all of the other cavity modes, however, such
synchronism would be purely accidental.

The effective accelerating field of any one cavity mode due to one tra

in

alone can be written as
vn(t) = An cos(wnt - wn) R

with t measured from the time of passage of any one bunch, and An cos .

is equal to the V  of Eq. (7). Let's define ¢, by

1

n |‘*’n a 2Trjnl

with jn an integer chosen to make ¢, S 7. Then the cross-coupling field

*
Vn becomes

-
*
]

; An cos(¢n - wn)

(26)

(27)

(28)
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Now the fact that wnT1>> 2w leads us to expect that the phase slip-
pages ¢, will be distributed more-or-less randomly over the interval
0 to m. In addition, the starting phase, [/ of each mode will also be
randomly distributed. We may reasonably expect, therefore, that on the

average over many modes, the cross-coupling energy loss will be zero.

Some of the same qualifications made in Section II about accidental
resonances should be made again here. It is always possible that one of
the dominant Tower-frequency modes might have (¢n - wn) near zero, so that
there would be an enhanced energy loss to that mode without complete compen-
sation by other modes. The effect would only be significant, however, if
that particular mode also happened to be on resonance for a single beam.
Even such coincidences should not concern us much, however, because of another
mitigating circumstance. The stagger time Tl, and, therefore, the phase

slippage o will be different for each of the 120 separate accelerating

cavities. And although the various values of T1 are integral multiples of
the fundamental period 2n/w0, they will, in general, not be neatly related
to the periods of the parasitic modes. This additional randomness should
lead to a rather smooth distribution of the phases ¢, and an average cross-
coupling energy loss that is much, much less than the cavity losses of a
single bunch or of a single beam.

In summary, I believe that the two stored beams will act 1ncohérent1y
in their excitation of the higher cavity modes. The energy loss of each
particle in a punch will be just equal to the energy loss in single beam
operation, and, as we have seen, this loss (to the higher modes) is expected

to be about equal to the single pass energy loss. Similarly, the power
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deposited in the cavities -- as evaluated at the end of Section II -- is
just the sum of the powers delivered by the two beams acting alone. The
interaction of the two beams with the fundamental cavity mode is, as remarked

earlier, intentionally coherent, and must be treated differently.
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IV.  Dependence of Parasitic Loss on Ring Parameters

The energy loss figures given above were obtained using the nominal
parameters of the PEP design. It may be useful to record here some general
formulas that relate the energy loss to the stored current and other
parameters that might be varied -- all assuming a given rf cavity structure.

I do this only for the parasitic loss S -- that is, only to the loss to the

parasitic modes of the cavities. (The loss due to the fundamental mode is
complicated by the interaction with the accelerating voltage, and has been
treated in Ref. 2.)

For the present purposes, I shall assume a nominal value for the para-

sitic loss S, which I shall take to be

Snom = 10 MeV at 2 = 10 cm . (29)

When more reliable values are obtained for this figure, all of the following
formulas will need to be corrected by the same factor: Sactua]/snom‘

I shall use the following symbols:

S: energy loss per particle to all parasitic modes.
Psm: average power lost to a group of m cavities by one beam.
Ng:  number of particles per bunch.
numbér of stored bunches in a beam.
I: average current per beam.

M:  total number of accelerating cavities.

m:  number of cavities in a group.

-

time for one revolution of the ring.

%:  bunch length (202)
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The energy loss calculated in Section I was for NB =1.5x 10 ,

and for M = 120. In general,
- )
S = Cg(aM Ny (30.
with

C = 5,55 x 107% ev , (31

1

and g(g), a bunch length factor I choose to define to be 1 for a nominal
bunch length of 10 cm. The "nominal" variation of g(2) is shown in Fig. 7.
Using the fact that NB = ITo/eB, we can express S in terms of the stored

current in one beam by

M T0 I
5. % £ —~——— f(g) (32
B
with
Cl
C2 = = 3.47 x 10! eV/coul . (33
e

For a given machine, M, B and T0 are determined sc that we can write

s = Cg(e) I (34
with
CMT
Ce PR . S (35
B
For PEP,
C. = 100 MeV/amp. (36
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For engineering purposes, the average power delivered to the cavities
is of interest. I give the relation for the power to a group of m cavities
by one circulating beam. Multiply by 2 for two stored beams. The power PSm
is related to S by

LI (37)
P = _ 37
i M T,
which can be written as
mT, .
PSm = Cug(z) ——-B I (38)
with
Cl
C, = iadie 3.47 x 10'! watts/amp?-sec . (39)
e
For a particular machine, and particular m,
— 2
PSm = CSI . (40)
with
C T.m
c, = — e, (41)
e? B
For PEP, taking B = 3 and m = 5,
C =

s 4,18 Megawatts/amp? . (42)
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