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Abstract 

An improved technique for increasing the accuracy of photometrically determined redshifts for “blended” 

galaxies. ASHLEY M. PARKER ( Marietta College, Marietta, OH 45750) DEBORAH J. BARD ( Kavli 

Institute for Particle and Astrophysics, Menlo Park, CA 94025) 

 

The redshift of a galaxy can be determined by one of two methods; photometric or spectroscopic. 

Photometric is a term for any redshift determination made using the magnitudes of light in different 

filters. Spectroscopic redshifts are determined by measuring the absorption spectra of the object then 

determining the difference in wavelength between the “standard” absorption lines and the measured ones, 

making it the most accurate of the two methods.  

The data for this research was collected from SDSS DR8 and then separated into blended and 

non-blended galaxy sets; the definition of “blended” is discussed in the Introduction section. The current 

SDSS photometric redshift determination method does not discriminate between blended and non-

blended data when it determines the photometric redshift of a given galaxy. The focus of this research was 

to utilize machine learning techniques to determine if a considerably more accurate photometric redshift 

determination method could be found, for the case of the blended and non-blended data being treated 

separately. The results show a reduction of 0.00496 in the RMS error of photometric redshift 

determinations for blended galaxies and a more significant reduction of 0.00827 for non-blended galaxies, 

illustrated in Table 2. 
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Introduction 

The goal of this project is to utilize Sloan Digital Sky Survey’s (SDSS) data along with 

machine learning techniques to ultimately increase the reliability of photometric redshift analysis 

for blended and non-blended galaxies. Currently in SDSS database, self adjusting algorithms are 

used to determine photometric redshifts for all objects as a set, although none of these algorithms 

are optimized for galaxies [₁]. This summer research aims determine if more accurate 

photometric redshift measurements will result from looking at only galaxy data and separating 

blended from non-blended. 

A “blended” object is defined by the SDSS database as a light source (e.g. galaxy, star, 

etc.) for which intensity analysis shows multiple intensity peaks in the single light source, 

meaning there are multiple objects present [₁]. Figure 1 shows a simple illustration of the 

deblending process, taken from a paper on the SDSS deblending algorithm [₂]. Within the 

database the “frames pipeline” analyzes the data to determine if a light-emitting object is 

blended. If so, a de-blending algorithm is used to separate the multiple objects into “child” 

objects whose spectra add to become the “parent” image [₁]. After de-blending these “child” light 

sources are all treated as separate objects, and are categorized as blended data. Objects that are 

flagged as blended are given a unique parentID number greater than zero, otherwise parentID is 

set to zero for the non-blended [₁]. 

This parentID numbering is used in SDSS's newest data release, DR8, which covers 

approximately one third of the sky and includes all spectroscopic measurements that will be 

taken with this imaging camera [₁]. This research project will use data acquired from SDSS 

which includes approximately 900,000 galaxies for which both photometric and spectroscopic 
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data has been recorded. The reason both photometric and spectroscopic methods will be analyzed 

is that an accurate redshift measurement, assuming that the spectroscopic is the “true” redshift, 

must exist to test results from the new machine learning techniques.  

A photometric redshift is measured using photometry, a method of looking at the light 

from an object through 5 standard filters (u, g, r, i, z) and using the overall magnitudes per filter 

to determine the redshift. The average wavelengths for the SDSS filters are shown in Table 1 [₁]. 

Photometry is much less time consuming than the alternate method of spectroscopic redshift 

determination. In order to spectroscopically measure redshift there must be significantly more 

light collected for the object, so the full spectrum can be seen rather than just the intensities per 

filter. This makes spectroscopic far more accurate, however due to the large amount of telescope 

time it requires, the photometric is the most commonly used method. Telescope time is even more 

precious when it is used for a large scale sky survey, this is the reasoning behind efforts to increase the 

accuracy of the photometric method. 

This is, to my knowledge, an original research project which will yield a photometric 

redshift determination method, specifically for blended or non-blended galaxies, which could be 

implemented in the next generation of sky survey databases, namely LSST, Large Synaptic 

Survey Telescope. This increase in accuracy of photometric redshift measurements will impact 

many scientific measurements, which rely on redshift, such as the study of large scale structure 

of the universe and gravitational lensing. 

The goal was to find a method which yielded results for blended galaxies which were 

more accurate than SDSS's photometric redshift values. The goal for the non-blended galaxies 

was to determine a method equivalent to SDSS's method, although we did not expect to be 

capable of doing a significantly more accurate determination on this data set. 
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 In the future I will investigate the scientific application of the, more accurate, photometric 

redshifts. Ultimately this work is hoped to be useful for the future LSST database which will not 

contain spectroscopic redshift measurements for all objects, and will therefore need to make use 

of the photometric method. 

 

Methods 

 The initial step of the project was to learn SQL, Structured Query Language, which is 

used to write queries that acquire data from SDSS. The multitude of data available on SDSS's 

database makes it ideal for “training” a machine learning program such that the example data 

should show nearly every variation in galaxy type. The data used for the “training” consisted of 

approximately 100,000 non-blended galaxies and 800,000 that were blended. The difference in 

sample size was unintentional; it is a product of the fact that most of SDSS’s galaxy data is 

blended. 

This project made use of CasJobs DR8, a program which utilizes SQL queries to acquire 

large amounts of data, from the most recent data release. The queries allowed for request of 

specific useful quantities such as: spectroscopic redshift measurement, two separate photometric 

redshift measurements using “random forest” and “robust fit” methods, magnitudes in the bands 

u, g, r, i, z, parentID and uncertainty measurements for all relevant quantities. An example of one 

SQL query for non-blended galaxy data, which was used for this research, is shown in Figure 3. 

  Data was requested for all objects which are of the type “galaxy” and downloaded for use 

in the ROOT data analysis framework. Data was requested for both blended and non-blended 

objects separately, so that a determination could be made if the photometric redshift 
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measurements for blended galaxies are less accurate than measurements of non-blended objects. 

There was an investigation into which of the predetermined photometric redshift determination 

methods is most accurate, which was determined to be the “robust fit” technique. 

For this research a machine learning technique, specifically TMVA, was used in order to 

find a more accurate method for determination of photometric redshift for blended galaxies. The 

Toolkit for Multivariate Analysis (TMVA) is a 'ROOT-integrated environment' which allows 

multivariate regression techniques to be used to analyze large data sets [₃]. A TMVA regression 

script template was edited to include all necessary information about the studied galaxies. The 

goal of the script is to start with only the galaxy magnitudes in the 5 different bandwidth filters 

(u, g, r, i, z) and from that determine a redshift which is in good agreement with the 

spectroscopic value, which is considered the “correct” redshift. Within the script various methods 

attempt to determine redshifts, afterwards a given method's results were compared with the 

spectroscopic redshift determined by SDSS to see which method gave the best approximation. 

The TMVA regression script was “trained” separately for blended and non-blended 

galaxies. All available TMVA methods were tested on the data, which include: PDERS, 

PDERSkNN, KNN, LD, FDA_GA, FDA_MC, FDA_MT, FDA_GAMT, MLP, SVM, BDT, and 

BDTG. All method titles are acronyms which describe the underlying mathematics of the 

method, there are far too many methods to describe them all in sufficient detail in this paper, for 

specific information regarding the individual methods see reference [3], the TMVA users guide. 

 The data analysis began by determining the accuracy of the current SDSS photometric method by 

comparing it to the spectroscopic data, which was needed to show the improvement of the machine 

learning methods used. In this study the accuracy of a given method was determined by an RMS error, 

given by: 
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          Equation 1. 

 

 Where , with z being the determined redshift and the overhead bars in the 

equation representing when the average is taken [₄]. 

Results 

 On the far right of Figures 4 and 5 the graph shows the difference in redshifts as determined by 

spectroscopic and SDSS photometric methods, for non-blended and blended data respectively. From these 

figures, 4 and 5, it is clear that for both data sets there are large discrepancies between the photometric 

and spectroscopic redshift determinations. It is also clear from the shapes of the curves that the blended 

and non-blended data are distinctly different in their shape and reaction to the SDSS photometric method, 

thus showing the need for this research. The RMS errors for non-blended and blended data for the SDSS 

photometric method are shown in Table 2, 0.0724 and 0.04587, respectively.  

 In order to determine the most accurate of the TMVA methods, many histograms were produced 

showing the photometrically determined redshifts to be compared with the spectroscopic. These are 

depicted in Figures 7 and 8, which show the redshifts for the 7 most accurate TMVA methods and the 

SDSS photometric method. The best method should have a 2 peak profile similar to the graphs on the far 

left of figures 4 and 5, which show the spectroscopic or “true” redshift. Notice that the values end 

promptly at zero and do not go negative. Since the current “standard” cosmological theory infers that the 

universe is expanding, all galaxies should be moving away from the Milky-Way, making all redshift 

values of galaxies positive, therefore a negative value is considered non-physical. 

Figures 9 and 10 show the “best” (lowest RMS error) TMVA method redshift values as a function 

of the spectroscopic redshift and compare those to the SDSS photometric data as a function of 

spectroscopic redshift, for blended and non-blended data respectively. When comparing figures 9 and 10, 
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it becomes obvious that the non-blended data seems very tight where the blended data shows a large 

spread, which can partially be contributed to the blended data set being much larger but is also believed to 

be attributed to shortcomings of the SDSS deblending algorithm.  

  

Discussion and Conclusion 

Table 2 shows that for blended galaxy data the KNN method gave the most accurate results which 

are slightly more accurate than the SDSS determination. Table 2 also shows that for non-blended galaxies 

the MLP method yields the most accurate results for redshift, significantly more accurate than the SDSS 

determination. This was not an expected result; this research began with the hypothesis that a better 

photometric method could be determined for blended galaxy data and a similar, but not significantly more 

accurate, method would be found for non-blended data. This hypothesis was exactly the opposite of what 

was determined by the research: a significantly more accurate photometric redshift determination method 

was found for non-blended galaxy data while only a slight improvement was made on the blended galaxy 

data.  

It is clear, from figures 7 and 8, that the BDT,  LD and FDA_GAMT methods, first row right, 

second row left and third row right, respectively in both figures 7 and 8, are not the best methods due to 

the fact that they clearly include many non-physical redshift values. The BDTG method, shown on first 

row right in both figures 7 and 8, is also clearly not the best method due to the large amount of noise in 

the data which leads to the strange shape of the curve. The PDERSkNN method, shown in figures 7 and 8, 

third row left, yielded an unusual pile-up of redshift determinations at 0 which is not representative of the 

actual data. The data from these figures was input into Equation 1, along with the spectroscopic data from 

figures 4 and 5, in order to determine the RMS errors for all methods, which are displayed in Table 2.  

In conclusion, a significant improvement over the SDSS photometric redshift determination 

method was made for non-blended galaxies. This will have far reaching effects on how photometric 



10 

 

redshifts are determined for future large-scale sky-surveys, such as LSST. This work should be taken into 

account when the de-blending algorithms for the LSST database are being developed since the blended 

data clearly behaves differently from the non-blended due to the effects of the de-blending process. These 

improved photometric redshift determination methods should also be applied to existing data so that a 

more accurate representation of the universe can be seen. 
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Figures 

 

 

 

Figure 1: a) here is a “blended” parent object, solid black line, consisting of 3 child objects shown as 

colored dotted lines. b and c) shows the corresponding deblended children d) shows the difference 

between the sum of the children and the original parent, illustrating the imperfection of the method. 

 

 

Table 1: The average wavelength, in angstrom, of the 5 model magnitude filters for SDSS DR8 data ₁. 
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Figure 3: This SQL query is requesting data on non-blended galaxies where both spectroscopic and 

photometric data is available. 

 

Figure 4: Shows non-blended data: on the far left is the spectroscopic redshift determination, middle 

shows the SDSS photometric method and on far right is the difference between the two. 
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Figure 5: Shows blended data: on the far left is the spectroscopic redshift determination, middle shows the 

SDSS photometric method and on far right is the difference between the two. 

 

 

Table 2: Above are the RMS errors, in accending order, computed using Equation 1, of the various TMVA 

machine learning techniques as compared to the SDSS photometric method. The * next to some methods 

is to indicate the fact that although the RMS may be low, because it was calculated on the redshift interval 

of 0 to 1, it is not the best method due to the large number of non-physical redshift determinations. 
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Figure 7: The above figure shows the redshift results of various methods for blended data. Method titles 

from left to right beginning with top; BDT, BDTG, LD, KNN, PDERSkNN, FDA_GAMT, SDSS 

photometric, MLP. 

 

 

Figure 8: The above figure shows the redshift results of various methods for non-blended data. The 

method titles from left to right beginning with top; BDT, BDTG, LD, KNN, PDERSkNN, FDA_GAMT, 

SDSS photometric, MLP. 
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Figure 9: (Left) The “best” redshift determining TMVA method for blended data, KNN, as a function of 

the spectroscopic redshift.(Right) The SDSS photometric data as a function of spectroscopic redshift. 

 

 

Figure 10: (Left) The “best” redshift determining TMVA method for non-blended data, MLP, as a function 

of the spectroscopic redshift.(Right) The SDSS photometric data as a function of spectroscopic redshift. 

 


