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Synopsis Carbonaceous contamination stripes were removed by in situ plasma treatment, for a total of

5 hours, and mirror reflectivity quantitatively improved. Preparatory studies show high selectivity against

B4C erosion, with no change in treated/untreated surface roughness.

Abstract An in situ oxygen plasma cleaning process has been applied to LCLS B4C-coated

Kirkpatrick-Baez (KB) mirrors. After a total of five hours treatment, the initial carbonaceous

contamination stripes, acquired over 7 years of FEL beam irradiation, were visibly reduced to barely

detectable. After treatment, the output photon flux showed a reflectivity improvement between ~20% and

~170%, depending upon the photon energy. Further characterization, including detection of possible

sputter-deposited impurities and improvement in KB focusing properties, are planned following return of

FEL beams, at the conclusion of the current six-month downtime, in June, 2017. Preparatory, off-line

measurements suggest that the process is both "safe and effective" for B4C-coated mirrors. Test

depositions of 50 nm amorphous carbon could be removed with high selectivity against B4C erosion, with

no change in treated/untreated surface roughness. Nevertheless, sputter-deposited impurities from

adjacent components may be an issue, as seen in soft x-ray reflectivity studies, where surface reflectivity

restoration remained imperfect.
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1. Introduction

Like synchrotron radiation user facilities, the Linac Coherent Light Source (LCLS) FEL user facility has

seen build-up of carbonaceous stripes on UHV mirror optics. Stripes form preferentially in regions

illuminated by the FEL beam.

This phenomenon is perhaps most detrimental on the LCLS bendable, soft x-ray Kirkpatrick-Baez (KB)

mirrors (Kelez, et al., 2009), which tend to have greater exposure to carbon-containing gases, due to close

proximity of the experimental station (2.1 and 1.4 meters), and the nature of experiments conducted. In

these systems, contamination stripes affect not only general mirror reflectivity but also KB mirror system

ability to focus to a small spot, due to a Gaussian height profile of the longitudinal deposited

contamination stripe (consequence of FEL Gaussian transverse intensity profile), which may not be

adequately correctable through our "2-moment" mirror bending mechanics.

We would like to remove this contamination in situ, to restore both reflectivity and focus. We seek an in

situ mirror surface cleaning process which would ideally:

1) Remove deposited carbonaceous contamination, due to FEL illumination under UHV conditions with

residual gases.

2) Leave reflective coatings unaffected, i.e.:

a) pristine surface roughness maintained/restored after cleaning

b) pristine surface reflectivity maintained/restored after cleaning

c) pristine surface composition unaltered

3) Have minimal erosive/mechanical effect on hydrocarbon-containing compounds used in the existing

KB mirror system:

a) kapton-insulated wiring

b) epoxy potting compound

c) structural adhesive used to bond mirror substrates to bending mechanism

An additional, general complication for this at the LCLS is the use of B4C reflective coatings on all soft x-

ray FEL transport and focusing mirror optics. This low-Z, refractory coating is used because it is much

more resistant to FEL single-shot damage than more conventional metal coatings, such as Ni, Rh, and Pt.
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Approximately 50 nm amorphous carbon was separately vacuum deposited over half the B4C sample

using conductively-heated, pointed graphite electrodes. The B4C sample was held in a stainless steel

carrier, which also defined the six, f8 mm treatment regions. A UHV aluminium foil mask exposed a

single, f8 mm sample region at a time for treatment. The treatment region approximately faced the

GV10x plasma source, not directly on axis to the source, but certainly perpendicular to the GV10x source

axis. The presence of the deposited carbon could be seen through a viewport; its disappearance during a

treatment procedure was readily determined visually.

The plasma treatment conditions used are summarized in Table 1.

Table 1 Summary of plasma treatment conditions

Plasma source ibss Group, Inc., Model GV10x

Plasma gas Pure oxygen

Treatment chamber pressure 3.8 mTorr †

Gas flow rate ~Few standard cubic centimeters per minute (sccm) ‡

Plasma source RF power 70 W, at 13.56 MHz

† Read using Granville-Phillips Convectron gauge

‡ Estimated from turbomolecular pump pumping speed and conductance of hardware between pump and chamber

Under the plasma conditions in Table 1, the amorphous carbon visually disappeared after 15 minutes of

treatment. During this time, the presence of the amorphous carbon was easy to see, until the very end,

when in <1 minute, the carbon disappeared quite uniformly over the exposed sample region. Treatment

was continued, however, for a full hour total.

Erosion/mechanical degradation of hydrocarbon materials used in the LCLS KB system was also tested in

the same small treatment chamber, again using the plasma conditions in Table 1. Kapton insulation,

epoxy potting compound and structural adhesives were only eroded at rates of ~few µm/hour of plasma

treatment, maximum. This was considered acceptable.

Mechanical shear strength test samples were designed, and assembled using the KB system structural

adhesive. Half the samples were plasma treated for one hour, while half were left untreated. Stress/strain

curves for both sets were measured with a universal testing machine (Instron, undated); no systematic

differences between the two sets were detected.

Plasma treated B4C sample regions were further characterized. Surface roughness and etching were

quantified using an interferometric 3D profiling microscope (Coherent Scanning Interferometry), Zygo
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NewView 8300. Surface roughness was unaffected by oxygen plasma treatment (~5 nm rms, for

distortion wavelengths between 6 mm and 4 µm.) The removed carbon created a step height of ~55 nm.

The boundary between treated and untreated B4C was detectable, with a step of at most a few nm, which

suggests slight B4C etching.

B4C sample surface reflectivity and surface composition were characterized using soft x-ray reflectivity

and total electron yield, measured at BL 6.3.2 at the Advanced Light Source (ALS) at Lawrence Berkeley

National laboratory (LBNL) (Underwood, et al., 1996).

Absolute reflectivity was measured from ~60 eV to 1300 eV, at 1.5° grazing angle, which overlaps a

reasonable portion of the photon energy range required for the LCLS AMO KB System, ~300 eV to 2000

eV. Below ~600 eV, the reflectivity of plasma-treated regions matched that of untreated B4C regions on

the sample, within a few percent, however above ~600 eV, treated regions consistently showed decreased

reflectivity, by 5% to 10% over untreated B4C. This is attributed to sputtered stainless steel contamination

of the treated sample surface, which is inferred from the clear absorption signatures of Cr, Ni, Fe, and Mn

in the treated surfaces. Ideally, features from only B, C, and perhaps O from the plasma, and O and N

from atmospheric exposure, are expected.

Angle scans of surface reflectivity also suggest some slight etching of the B4C surface by oxygen plasma.

Untreated B4C regions display Kiessig fringe interference structure consistent with a B4C surface layer 55

nm thick, while plasma-treated regions clearly infer a thinner layer, 52.2 nm thick.

2.2. Experimental procedure

Taken altogether, the promising aspects of these off-line, preparatory studies prompted us to proceed with

plasma treatment of the LCLS AMO KB Mirror System, but with two important procedural changes,

designed to help reduce risk:

1) When mounted to the KB system mirror chamber, the axis of the GV10x plasma source was always

oriented at grazing incidence to mirror optical surfaces, unlike the facing, ~normal-incidence geometry

used with the B4C test sample. This was intended to significantly reduce any ion sputtering of

contaminants from internal structures onto the mirror surface, and follows the advice given in González

Cuxart, et al., 2016.

2) Plasma treatment was performed for the minimum reasonable time, i.e. only until the contaminated

stripe was barely visible. This was intended to minimize any etching of the B4C coating.
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the lengths of the orange and silver regions decreased, until all the orange disappeared. After that, the

width of the remaining silver region decreased, until any sign of the initial stripe was difficult to see.

Plasma treatment with the GV10x in "position 1" was visually effective at removing the carbonaceous

stripe on the downstream, vertically-deflecting mirror, but essentially ineffective on the upstream,

horizontally-deflecting mirror. Only when the GV10x was relocated to "position 2" was effective cleaning

of the horizontally-deflecting mirror seen. In addition, treatment in "position 1" was made until a faint

stripe was still visible on the vertically-deflecting mirror; this stripe remained after 2.5 hour treatment

with the GV10x in "position 2".

An initial, quantitative measure of plasma treatment effect on KB mirror reflectivity was obtained through

experimental, FEL intensity measurements, made downstream of the AMO KB Mirror System five days

before plasma treatment, and repeated six days after plasma treatment. The intensity measurements were

made with power meters, UP10 from Gentec-EO. The results appear as Table 2. The reflectivity

improvement is obtained from the ratio of the flux after treatment to that before treatment (each

normalized by an upstream measurement of the incident flux), the excess of this ratio over 100%, i.e.:

Reflectivity improvement = (Fluxafter/Fluxbefore) – 100%.

Table 2 Reflectivity improvement in the LCLS AMO KB Mirror System, following in situ plasma

treatment. FEL photon flux measurement downstream of the KB system was made before and after

plasma treatment using experimental power meters.

Photon energy 350 eV 550 eV 1000 eV 1560 eV

Reflectivity improvement 51% 19% 77% 167%

4. Discussion

At this time, the LCLS is in the midst of a six-month down time, during which no FEL beams will be

available. As a result, important characterization of the AMO KB mirrors, following the described plasma

treatment, must wait. Our observed significant removal of the carbonaceous stripe should permit much

improved KB mirror focus, as the original mirror figure may be substantially restored. This will be

examined.

Preliminary tests showed sample surface contamination, presumably by sputter erosion of nearby

surfaces. Testing for such contamination on the KB mirror system, using FEL beams, will also be

important, as contamination could significantly limit the applicability of this cleaning technology.
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Determining plasma conditions and geometry that result in sputtered contamination certainly deserves

further study and consideration.

The described plasma process, for the test sample chamber, and for the LCLS AMO KB system chamber,

very likely falls into the intermediate/Knudsen flow regime, i.e., between viscous flow and molecular

flow. Yet clearly, from the way in which cleaning occurred in the present set up, "flow direction/path" is

much more effective than diffusion in transporting the relevant chemical species to the surfaces to be

cleaned, and removing the subsequently-generated reaction products. Consider the "flow path" from the

GV10x source at "position 1" to the turbomolecular pump (see Figure 2). Plasma products flow past the

vertically-deflecting mirror and down to the turbomolecular pump. Only by diffusion will these products

significantly encounter the horizontally-deflecting mirror; it is out of the "flow path". We noted little

cleaning effect on the horizontally-deflecting mirror for the GV10x at "position 1". In an entirely similar

way, very little cleaning effect on the vertically-deflecting mirror was seen with the GV10x in "position

2"; this mirror is then out of the "flow path".

Therefore, it seems important that plasma cleaning set ups, using sources, parameters, and physical

systems similar to those encountered here, be designed to place surfaces to be cleaned in the general

"flow path" between the plasma source and the system pump.
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