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This year's winter seminar at the Institute of Engineering
Physics is devoted to a wide range of problems in nuclear physics and
the physics of elementary particles. Many of the lectures will be of
interest to all the seminar participants. Much attention is devoted to
the structure of the nucleus, the physics of fission, meson physics,

and nuclear reactions.

The first portion of the materials is being published in time
for the start of the seminar. The lectures appear in the order in

which the editor received them.
We wish to thank the authors for their help in preparing the

written versions of their lectures, also those members of the Institute

staff who assisted with the publication of this collection.

Seminar Management



HIGH-ENERGY INTERACTIONS OF GAMMA QUANTA AND
ELECTRONS WITH NUCLEI

V.N. Gribov

In a study by B.L. Ioffe, I.Ya. Pomeranchuk and this writerl the
question was raised as to the possibility of determining experimentally
what the important distances are in strong interactions at high
energies. It was shown that, if the amplitude of the scattering of a
particle a on a certain target b (Fig. 1) is substantially dependent
on the square of the four momenta Pg (the mass), then the distances
important in the interaction will be the longitudinal ones, which
increase with an energy of the order of P/u?(h = ¢ = 1) , where P
is the momentum of the incident particle in the laboratory system, u

a certain characteristic mass.
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Unfortunately, it was found that the method of experimental investi-
gation of the amplitude dependence on the particle "mass'" through
analysis of the bremsstrahlung, as proposed in ref. 1, cannot answer
the question as to the important longitudinal distances because of
the contractions due to the charge preservation?. In this paper we
wish to turn our attention to the fact that studying the interaction
of gamma quanta and electrons with nuclei makes it possible to ascer-
tain experimentally what longitudinal distances are important in the
electromagnetic interactions of hadrons.

Bell has reported an interesting phenomenon® whereby, if an
interaction of gamma quanta with nucleons is dominated by vector
mesons, the neutrinos by pi-mesons, in the interaction of gamma quanta
and neutrinos with nuclei surface effects appear, i.e., the amplitudes
contain, along with the volume terms proportional to the number of
nucleons in the nucleus A , also surface terms proportional to A2/3 .
At a high energy the surface terms have been found to be the govern-
ing ones, and this has been regarded as a specific property o or =
of the dominant model.

In this paper we shall show that the character of the interaction
of gamma quanta and neutrinos with nuclei and the development of the

surface effects at high energies have no connection with p-meson or

m-meson dominance but are determined solely by which distances are



significant in those interactions. We shall show that, if the large
longitudinal distances of the order of & = P/u? , then the total
cross—-section, e.g., of gamma quanta with heavy nuclei, which includes

only the hadron processes, will be

6x=zmzz(4-z_,) , D

where R 1is the radius of the nucleus, Z3 the charge-renormaliza-

tion constant due to the hadrons.l - Z3 can be expressed in terms of
the hadron part of the Lehmann density of the Green's function of the

photon, or in terms of the cross-section of annihilation of electron-

positron pairs on hadrons,

_ - e? 2y d=’ ‘ , (2)
1 zs"ﬁz—fp(ae)? |
Formula (1) has a simple physical meaning: 2wR? is the total cross-—
section of interaction of hadrons with the nucleus, 1--Z3 the length
of time that a gamma quantum spends in the hadron state.

The assumption that the large distances are important in the in-
teraction is equivalent to assuming the convergence of the integrals
(2). The condition for the applicability of (1) is &2>>R% , where %
is the mean path length of the hadrons in the nucleus. If the character-
istic mass u 1s of the order of the meson mass p , and the path

length is of the order of l/m1T (mr being the mass of the pi-meson),

the surface effect should develop at an energy exceeding 10 GeV.



The arising of the surface effects and formula (1) can be understood
almost without calculations, as follows. Let us imagine that a gamma
quantum interacts with the nucleons of the nucleus in the following
manner: first it virtually decays into hadrons, the hadrons then inter-
acting with the nucleons of the nucleus. Let us assume that this
fluctuation lasts for a length of time & . Then the total cross-

section of the interaction of gamma quanta with the nucleus will be deter-
mined by the probability of a gamma quantum's hitting the nucleus,

mR% , the probability that the fluctuation will develop inside the nucleus,
R/13768 , and the probability that the hadrons forming will have time to
complete an interaction with any nucleon of the nucleus, §/% . Hence
o, will be of the order of mR2 ° R/1376 ° §/a~~1/137 R? ° R/!LNA'UYN .
This reasoning is valid, however, only if 6% . If in the coordinate
system in which the quantum has a low energy the duration of the fluctu-
tion is of the order of 1/u , then in the laboratory system, in which

the quantum has the momentum P , the duration of the fluctuation will be
§=P/u2 , i.e., increases with the energy of the quantum. If R > ¢ > & ,
the cross—-section of the quantum's interaction will be of the order of

TR? R/1378 , i.e., will decrease as the energy increases. Actually,
as Bell in essence pointed out3, the possibility of development of a fluc-

tuation having the dimension § greater than the free path 2% is

depressed by quantum-mechanical interference by a factor of §/% , and
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the cross-section will be of the order of WR21376 s

i.e., decreases
with increasing energy still faster. Under these conditions one can
no longer neglect the probability that a fluctuation may develop out-
side the nucleus. When § becomes greater than the radius of the
nucleus, all fluctuations will mainly develop outside the nucleus,

and the hadrons that formed in one of the 137 cases will collide with
the nucleus with a cross-section wR% , i.e., the cross-section of the

quantum's interaction will be of the order of 1/137 ° wR2 ., 1In this
way we arrive at a cross-section of type (1).

The presence in (1) of the factor 1 - Z3 is also easy to ex~
plain if the amplitude of the gamma quantum's elastic forward scattering

on the nucleus, which determines the total cross-section, is visualized

with the diagram in Figure 2.

Kk, F '

Ky
Kn Ky
/"{
Figure 2

The amplitude F of the scattering of a beam of hadrons on a nucleus

of radius R wvaries appreciably with variation of the transverse momenta
of the particles by a quantity of the order of 1/R , rapidly decreas-
ing when the momenta vary greatly. Since 1/R is much smaller than the
scale of momenta of significance in the diagram of figure 2, the momenta

of the particles Ki differ almost not at all from Ki . The usual



amplitude of the elastic scattering of a single particle can be writ-
ten under analogous conditions in the form i2wR28(q) . The corre-
sponding amplitude of the scattering of a group of particles is pro-
portional to i'ZWRZHG(Ki - Ki) . As a result, the diagram in figure 2
is equivalent to the diagram in figure 3 multiplied by i°2wR? . The

diagram in figure 3 defines the charge renormalization.

-@

Figure 3

Such a picture of the interaction is obtained by assuming that a
low-energy quantum virtually decays into small masses of the order of u .
But it is possible that relatively frequently a quantum decays into very
large masses. This corresponds to a divergence of the integral for
1l - Z3 . The existence of such fluctuations involving large masses cannot
possibly occur with a low quantum energy if the path length £ for the
states with the large masses is great. But as the energy increases to
where the length of the fluctuation § , even for very large masses,
becomes comparable with the path length 2 in the nucleus, such masses
start to participate in the interaction with a cross-section of the
order of 7RZ . Only masses for which the length of the fluctuation

§ at any energy is less than the path length can, at any energy, make a

contribution to the cross-section that is proportional to the volume
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of the nucleus. In a case in which the mass integral for 1 - Z3

diverges, the cross-section of the interaction of a gamma quantum with

a nucleus can be written in the form:

6y =‘v2ﬂ'R2[4-23(x§)]%6; , 3)
. b
2y et (", 2 da?
1-2, (%;) 7r'°f plE) oz - (4)

The mass X at which the integral (4) is cut off is defined by the

condition

5(22)=%§—z2(z:,f3), | 5)

where l(xg,P) is the path length of a group of particles having the

2 and momentum P . A proper definition of 2 (x2,P)

total mass x
will be given in the text.
If the integral (2) diverges logarithmically, i.e., the cross-

- . + -
section of annihilation of e , e on hadrons has the same order of

magnitude as the cross-section of annihilation into leptons, then
2, e? zs
- ~ & )
where u 1is a certain constant. The second term in (3) is proportional

to the volume of the nucleus and has the order

\4 2 2 R
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If jz'(xé,P) is not dependent on the energy, which is possible if
2 = 2 /p2 2 v
L(x4,P) = 2(x4/P4) , then xd~P and GY do not depend on the energy,
2
and the surface term increases logarithmically. If z(xo,P) increases
with increasing energy, condition (5) will occur only up to energies at

2 2
which &(x_,P) >R . When z(xo,P)>R , the cutoff of xg is deter~

mined by the condition
z(xg,P) =R . (8)
Here the volume term has the order e27R? , while the surface term,
which is the main one, either winds up a constant, if z(xﬁ,P) is not
dependent on P , or continues its logarithmic increase.
By studying experimentally the dependence of OY on the energy
and on A , we can isolate the two terms and find the dependence of

%2

5, on P . The dependence of xi on P reflects the energy dependence of

the longitudinal distances § = 2P/x? , important in the interaction of

the gamma quanta with the nucleons. If xg

increases with increasing
P , but more slowly than P (xﬁ/ZP + 0) , then important will

be the large longitudinal distances that increase with the energy but
are smaller than with a finite 1 - 2z, . If xgruPu , then the im-

3
portant ones are the longitudinal distances up to 1/p . The increase
of OY with the energy can continue up to those energies at which
e2/r * in xé/u«fl , and the perturbation theory for electromagnetic

interactions becomes inapplicable.
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If the integral (2) should diverge faster than logarithmically,
the cross-section would increase exponentially.* The perturbation theory
in electrodynamics would become inapplicable at energies much lower
than usually assumed. We are not considering this possibility.

For a given P2 , Po the cross-section of the interaction of
electrons with nuclei, described by the diagram in figure 4, will have
the same properties. The only difference is that, instead of by
1 - 23 , 1t will be determined by the magnitude of the polarization
operator (Fig. 3) when P2 #£ 0 .

2
¢ f
1 F;}:géa
Figure 4
We shall show that

2 .
d6= 84-231R2-'—:q{[4m2+l32+ —P—:(KO+K¢',)Z]‘H1+ (9

. Ps d}|<,
+P2[4m2+2Pz]n2}' ZKQK,D (2:,:)3

d6t=d6s+d6v, (10)

N

where

* ' . .
Translator’s Note: Literally the Russian here says ''powerwise' or

"in a power manner.'
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It is interesting to note that in the case in which the important
ones are the distances less than 2P/u? , i.e., in which the integral
for I, diverges, Hl(Pz,xg) is not dependent on P2 , whence the

1

surface term in the cross-section does not depend on P2 when
P2<<X2

o]

The above results are obtained on the assumption that the inter-

action of fast hadrons with a nucleus can be regarded as the result
of successive interactions with the nucleons of the nucleus, and
the interaction of the nucleons of the nucleus can be described with
the aid of pair correlations. This latter assumption is apparently
not fundamental; dispensing with it would merely complicate the

analysis.

1.  Interaction of Hadrons with a Nucleus at High Energies

As pointed out above, the interaction of a gamma quantum with
a nucleus at high energies occurs in such a way that the gamma quantum
first converts to hadrons, and the hadrons then interact with the nucleus.
So before turning our attention to the interaction of the gamma quantum
with the nucleus, we shall discuss how the description of the interaction
of the hadrons with the nucleus changes as one moves toward high
energies as compared with the description at low energies. The total

cross—-sections and elastic interaction of hadrons with a nucleus at not
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very high energies is usually described either with an optical model
or with the aid of the Glauber theory of successive collisions.
These two approaches are similar if we take into account only the
pair correlations of the nucleons in the nucleus, and they boil

down to considering Feynman diagrams of the type in figure 5, which
describe successive elastic scatterings on the nucleons of the
nucleus. If we assume that the mean momenta of the nucleons in the
nucleus are much smaller than the momenta that figure in the inter-
action of the hadrons, for the low energies we can consider only the
elastic scatterings, since the inelastic processes require large

transfers of momentum, which lead to a breakup of the nucleus.

Figure 5

It is shown that as the energy increases, when the transferred

momenta necessary for the production of particles decrease and become

of the order of the momenta of the nucleons in the nucleus, the inelastic

processes and diagrams in figure 6 do have to be taken into account.
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Figure 6

Before turning our attention to the diagrams in figure 6 and
their influence on the character of the total cross~sections, we shall
look briefly at how one calculates the total cross-sections for high
energies, but energies such that the inelastic processes are still
unimportant. Everywhere in what follows we shall disregard the con-
traction of the diffraction cone in the hadron processes. Calculation
of the diagram in figure 5 for these energies yields the following.
The amplitude of the forward scattering Fn corresponding to the nth

rescattering is (see the appendix, for instance):

n) . n-4 PJZ 2
F Z(ZE%V) .T]d P1dg1...dznf-x(z1¢zz) ~2(2 -2 a2

where N dis the number of nucleons in the nucleus; V the volume of

the nucleus; P the momentum of the incident particle; Py Zi the

coordinates of the nucleons, Zi in the direction of the momentum of

)

the incident particle, Py perpendicularly to P ; x(Zi - Zi+l

the correlation function of two nucleons in the nucleus x(x) =1 ; f
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the scattering amplitude; m the nucleon mass; Z. > Z . > Z

1 9% e n
If the amplitude F , equal to
(n)
F=2F", (13)
is written in the form n BN
—_N..] F(p,2 cLV (14)
v Fp2) |

we can then be sure that F(p,Z) satisfies the equation

- foily ] om0

‘2 fi] (f)

- 2 2
Zo=NR"-p7,
which is the analogue of the equations for the optical model with the

scattering amplitude £ , which plays the role of a potential. If we

neglect the correlations, i.e., set x =1, from (15) we get the trivial

result
| “Afzez,(p)
Flpz)=fe Tlze2el o, (16)
4 __ iN y
e~ 4pmV a7
and
2 : 2 .
F=‘!\%JF<P,Z>dV=2PmN'MR b (18)

6t 2 JL .
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The idea behind our further analysis is that an equation of type (15)
will remain valid with a small variation if by the amplitudes f

and F(p,Z) we mean the amplitudes of the interaction of groups of

which enter the diagrams in figure 6.

In the appendix we calculate the diagram in figure 6 on the
assumption that the nucleons in the nucleus are nonrelativistic, their
momenta much smaller than the transferred momenta that figure in the
strong interactions at high energies. The latter is equivalent to
assuming that the path length of the hadrons in the nucleus is greater
than the distance between the nucleons. It is assumed that under these
conditions we may confine ourselves to considering only the correlations
between the nucleons that participate in two successive collisions.

For the amplitude of a process that includes interaction with n nucleons

the result can be written in the form

. 8 '
" [ N \IN? 2 -44, 3-2) -ig (2,-2)
F =(——-) = d’dz .dz Jf-e 2(z-z2)f.e 2 ° 2 (19)
aa” \FpmV VZ-.A“ I Tt @ zfsc Jﬂ,ﬂ
£ being the amplitude of a process corresponding to the diagram in

bec

figure 7. We sum over the real intermediate states

- 20
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where mg is the mass of the intermediate state, 1u the mass of the

incident particle.

We introduce the operator F(p,Z) , whose matrix elements be-

tween any states are defined by the equality

e; (ZZ 23)

Fo(p2)= Z(4va chdz cLzJc

(21)
~i95 (2.0

xe(2,- 3)J(d... "-ae(zn,,—z,,)}e:

The operator F(p,Z) satisfies the equation

-2) ’ ,
F(P 2)= Jc"'l’ij(:;zl( o A 'x(Z-Z)F'(P,Z-) R (22)
2 2

g-_:___l‘_f__ () ,=8 M- K
v 7 Y9 ed T %d T2p
This equation describes all possible transformations in the beam of
hadrons on interacting with the nucleons of the nucleus. It converts
to (15) if only one intermediate state with a mass m , equal to the

mass of the incident particle, is possible. A symbolic solution of

this equation is easily found if F(p,Z) is written in the form:
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o4 ioo (2+2,)
P =5t [dee’ " F®

d-Lloo

_ 1 I |

ae(;)=fwe-$z % (2)d 2
0

The scattering amplitude is

=$ij(9,zjdV JPsz s F(%’.'

We shall write (24) in the form

f

o1 et
FO= 17209 ¥ "1ty FF Wiifang

f4FG),

F(0)=

Substituting (27) into (26) and integrating, we get

| y
_ 2 } H'TRZ—J———- : 1, x
=N bt}ae(w,) IR 700 bz G
41,“;_{-2:00,)%? ’
~ N ' 822‘,? 4
i fd".&-.,g” §T AR fag

The first term, proportional to the number of nucleons in the nucleus,

actually equals zero when applied to a real state having a mass 1y

for them q =0

[2(iq)~ I:T , q + 0] .

(23)

(24)

(25)

(26)

(27)

(28)

(29)
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For the same reason the second term equals 2PmN ° i2wR? .

The last term in (28) F 1is defined by the poles of the integrand

in (29) . These poles are placed for negative ¢ = - E = - %- and
determine the damping F(Z,p) . Here F 1is of the order -v—fl

where £ = %— is the path length. Therefore

F’fZPmN[ZﬁRZ-L+O(—$—5£3)] ?
§~ 2pm-i6,

Hence the amplitude of the scattering of a group of particles on a
sufficiently large nucleus is a diagonal operator, and the total

cross—section, as at lower energies, is 27R2 .

We stress in conclusion that the volume absorption equals zero
only for a real state of the incident particle, i.e., for the ampli-

tude of scattering on a mass surface. If P2 of the incident parti-

(30)

cle does not coincide with u2 of the intermediate state, then q, #0,

and we get a volume absorption proportional to('P2 - u? é)zN'
2P

This means that for low energies the scattering amplitude of a virtual

particle is substantially different from the amplitude of scattering

on a mass surface.

Translator's Note:

The avthor's hand-written notation seems

occasionally ambiguous. He appears, for instance, to
switch back and forth betweem P and p .
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2.  Interaction of Gamma Quanta with Nuclei - The Large Distances

In this section we shall give a derivation of formula (1) in
which the concept of the distances at which interaction occurs will
explicitly figure. For this we shall write the amplitude of the
virtual forward Compton effect Fvv(s,xz) in the form of an integral

of the time-ordered product of the electromagnetic currents.
5y [P XDy ()] Add R d

2_P2

where x¢ = *

is the quantum "'mass'. As was discussed in ref. 1,

the amplitude Fvv (s,x2) 1is dependent on x?

at high energies s
only in the case in which large longitudinal distances of the order
P/u? are important in the integral (31) , u being a certain

characteristic mass, P the quantum momentum in the laboratory

system S~ 2PM , M the mass of the nucleus.

* Translator's Note:

Again the author's handwriting is
troublesome. His flowerlike symbol ® has been
guessed by the translator to denote a lower-case X ,
but in equation (31) we find it mixed in with a
more conventional-looking x . Are both symbols
suppose to be x ? And again, the line that the
author draws (if any) between lower-case and upper-
case Roman letters is extremely unclear.

Actually, by writing the index of the exponential in (31) as

232

px<p,b ~p =pu(6-2)* 75 2.
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we see that important in (31) are the t - zav-%—,
o

2
and Fvv(s,x )
. P . e . .
depends on x? only if z~. t—v~;7 are significant. Assuming this

to be the case and making use of the reduction formulae, we write
.(A[Tji(.xg jy(XA)  in the form:
AT, (xp]y (xQAD =

(32)
i [Pyt colT (o
yOITE X xIUITL IS,
where UA oY, ﬁA (y) are operational sources of the nuclear
field. Substituting (32)into (31) and changing the variables, we get:
2 2 [ -ip(X4=X2)+LPa¥
F‘W(S.z)—-e'[e * | (33)
; I . 4 4 4
x (0| T 3 (x)U@ L&) j,(x)| 0y d™x, dx, d %
Remembering that XlO - XZO + + « and Eoﬁv %- » We may consider that
in (33) the points O, gonv %» are between the points X10 and X20 s
and in place of (33) we can write
2 LF(XZ-X1)+LPAE
F,,(s52")=-€|e x
W
(34)

- : 4
*<0]j3 A TUOU®) jy(xp]oy dfx, d*x,d5
Xy X2

or, expanding the product of operators with respect to the intermediate

states, we get

-ezz<°“9|n_>_ <nlj PA;TU.(O)U.('E)C’.“ 'm>< ” lO)

Pro = Po mo- Po (35)
Pa=PmP B e B
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nm

iPa - 4
The expression (n]je P ﬁTU(O)U(ﬁ)dﬁlm> =Fom. F
is the amplitude, discussed in the preceding section, of the forward

scattering of a group of particles with momentum P on a nucleus.

2 e
Keeping in mind that F P+ Pno 524?), , Pmo= p+ —%B;- .
we get

Py (s zz <o |Jvlh>F gmuv|0> (2p)’

& M2 nm MZ-Z (36)
The second term in (35) , corresponding to the change p + - p ,

is small since the denominator P + pow 2p 1instead of (Mﬁ - xz)/2p .
Small, too, for an analogous reason are the contributions of the other
regions in (33) with a time ratio in contrast to (34) if the mass inte-
grals of type (34) converge. As has been shown,

F'hm=2IRzL-2pM-5(n—m) . (37)

Substituting (37) into (36) , we get:

* . d M5 2
F‘ﬂ(s,xz)=27zR2u~2pM-ezjm Pye(M,) -
Puap (P = 7 <o]j @n)<nljs 10y (27§ (ZK; -p,) =
= (-3, p, - PaePrg) P (Py) > (39)
Pyy = €85 Pap(Pr) = Pn P(PY) |
where e; is the quantum-polarization vector, p(MIZI)/Mrz1 the

spectral density of the Green's function of the photon. Hence the

total cross—section of the interaction of a real photon with a nucleus is:
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6, = 25R" (25 - 1)~ 27R* (1-Z5) (40)

2
M
,1...25 = ezf‘—d-ﬁz—P(Mz) . (40a)

In deriving (40) we assumed that the integral for 1 - Z_ converges.

3
To estimate with what degree of accuracy (40) is valid, and to con-

sider the case in which the integral for 1 - Z diverges, it is

3
found more convenient first to express the amplitude of the scattering
of the quantum on the nucleus in terms of the amplitudes of the inter-
action of the quantum and hadrons with the nucleons of the nucleus, then
to use formulae of type (33) or dispersion relations with respect to
the mass, but now for the amplitudes of the interaction of the quantum
with the nucleon. We do this in the next section.
3. Interaction of a Gamma Quantum with a Nucleus -

The Not Very Great Distances

Under the assumptions formulated in section 1 the amplitude of

the forward scattering of a gamma quantum on a nucleus FYY(S) can be

depicted in the form of a set of diagrams like those in figure 6. FYY

can be written as (19) , the only difference being that the state (a)

, f. .

is the gamma quantum, and fab and fda are replaced by f dy

Yb

The other amplitudes are, as before, amplitudes of the hadron processes.
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The parameters q, for a real quantum are equal to mﬁ/Zp . By anal-
ogy with  (21) we introduce the amplitudes FYy(p,z) and FYOL(p,z) ,

where a 1is the hadron state. These amplitudes satisfy equations

similar to (22):

2 iga(z-Z) :
F'n’ (P'Z) ;fxx+Ldez’ xe b2 2(2-2) F‘X (ZI,P)) e
-2,(p)
-iq (2-2') ) ;
Fx(P,2)=J[x+LC,rd'ZIJ(e a-lz 2(@-2) Fy (.27 (41b)
i -2y (p)

where fYY is the amplitude of the Compton effect on the nucleon,
fY the amplitude of photoproduction of the hadron state. Equations
(41) are written in operator form with respect to the hadron states.

Solving equations (41) through recourse to the momentum expression (24),

we get

_ A
FX ()= 4-LC}95($+L%) J(z( ) (42a)

Iy

f 1
1-iGfz(5+iq,) ¥ ° (42b)

Fxx(?)= ._.?_Y_Y_ + Lg}xx(’?:f Lq’z)

2
Hence, by calculating Fh’%‘fFXX(P:Z)d«V s » instead of (28) we can
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write

. ) ) . . ) |
N Z.(ig) 1 =

2. . 1
+y AR b‘;fﬁ“"rzh_w;;x(aqz) x(i9) 4_Lt;;zuqz)fz+F2fX'

i 2
9,) =0 ;o=
z2'ab ab 2p
The first term in (42) is the volume interaction FXY , the second

being the surface one FiY , while the third is small like (30)

Unlike (30) , the volume term does not equal zero and the surface term

(43)

does not equal 21R2 « 12pmN , since fY is different from £ and qz #0

in application to a real state. We shall estimate the order of magni~
tude of the individual terms in (42). We note that in order of magni-

tude

N4
v o 320

ol

: . N N
-u€j~—uv.4pm i2pmb

where o 1is the cross-section of the hadron process, £ the path
length. The correlation function x(iqz) depends on iqz and on the

mean distance between particles r - When q, r, << 1,

x(iqz) = l/iqz , and when 9,7, >1, x(iq) decreases. The character-

istic denominators determining the dependence of FZY and FiY on the
quantity q, in the intermediate states have the form 2£/x(iqz) +1,

and for small q, are equal to Zizqz + 1 . These denominators are of
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the order of unity when q, < %— and are large when q, >> %—.

The contribution to FXY s FSY from the regions q, << %— and

q >> £ can be written, respectively, as

P =N2[fxx‘3[xj4c‘3‘x} '

s hJ 4
N -p?s
F V A Jy ifz fx
when q, << %— 3
2 4 A
+ NI
Uxx CJ(X %(4 2i.o{!8)fx]
F§=—N—ZTRZLH 22§
wov*t Vgz 't
A
when %z >>.—ZT- 7
where E%—— = -izf . If, as happens in the p-dominant model3,
2
m
= = > : = P
fY = gyf and fYY = nggY and q, 0 , since q, 2 ° then

in accordance with FZY = 0 we have

Fey=2pMi- 28R gy .

In order to calculate FYY without the assumption of p-dominance, we
can either use formulae of type (31), but for the amplitudes of the
interaction of the gamma quantum with the nucleon, or the dispersion

relation with respect to the quantum masses for the same amplitudes.

(44)

(45)

(46)
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In this section we use the dispersion relations. We shall assume that
for the amplitude of the forward scattering of a virtual quantum having
a mass P% » which is transformed into a quantum having a mass P% s

there is a nonsubtractive dispersion relation with respect to the

quantum masses which has the form

t(dzbdat fulszled)
%)@l p) (k- D) @

fys.prop2) =s

»J(xx(shP‘lz’Pzz)=,‘.Zmrt(K1"'Kﬂ)84(P1‘ZKL) * (48)

o . : ’ 4 o, . !
XJ( "(K4,..K,,,K:---Km7‘})5 (Pz-'ZKL) rx(K*‘Km) .
- Yhm e : '
' a .
where Jtn'm(;(‘_,_ Kpy Kgooo Ko s q) are the amplitudes of the hadron
processes on a nucleon with the momentum transferred to the nucleon
= 2 _ 42 = ,
q, 4 + q,, 9 qa; 0, I‘y(Kl...Kn) being the vertex part of
the conversion of the photon into n hadrons. Analogously, with the
aid of a single dispersion relation the amplitude fya(s’ pi, Kl...Ka)

can be written in the form:

2 4 [ dxd 7 ?
th_(s’P"'”)—ﬂ Z}-P,‘ZJCXO'(S’ 4) ) (49)

~~ 4 ’ B , , )
cha(S,P:...) = z": Fx K, ..KR)S (P-ZKL)J(M(K1'“Kme"Kmar). 50)

As to the possibility of using these dispersion relations, two questions

naturally arise. Are not the dispersion relations (47) and (49),
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especially (49), violated owing to the presence of combined character-
istics more complex than the threshold ones? And are the nonsubtractive
dispersion relations valid? The combined or composite characteristics,
even if they do exist, are not important at high energies. One can
verify this with, for example, formula (36), which is nothing other
than a double dispersion relation with respect to the quantum masses,
and which is obtained only by assuming the convergence of the integrals
over the intermediate states. Investigation of the analytic properties
of the Feynman diagrams has led to the same result.
The use of nonsubtractive dispersion relations obviously constitutes
a hypothesis that cannot be proved. We must stress, however, that there
is an important difference between the usually employed dispersion
relations with respect to the energy and dispersion relations with respect
to mass. The increase of invariant amplitudes at high energies s is
a normal phenomenon in both strong and weak interactions. On the other
hand, it is natural to suppose that with large masses, i.e., in the case
of highly virtual processes, the amplitudes decrease owing to the cﬁtoff,
caused by the strong interactions, in any event at masses of ngb s .
Assuming the dispersion relations (47) - (50) and substituting

them into (44), we get:
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d.331 d.Zz
ZPm XX‘ L2% R xj 22 et X (51)

14 1
er{ZLqEM G Zigle 4%

2 2
P N dz, d,; r 2igt ir (52)
Mt Loelell Y 20g8+17 'l
If the integrals over xi , x% converge at finite masses of the order

u?

2 £ =+ 0 and
2p:

of q (large distances), then ql -

d.QEQ dxz

(53)
-4(o,to,£+£qzo,+o,zzq)] ry
d.ae, def d} 9 2

PX N CxlaE rX[ % +4(q£)}]l} ' .

Hence, using the optical theorem, we get the total cross-sections in the

form:
4 -
6::25{R2[4‘0(_§—[£2)](4‘Z;) b) v (55)
4pz
6; TZJ d:;dx‘ 4G 5)jrx~N5 0( K (56)

i.e., with a satisfactory precision of the order of

4,2
R
6;/5;" Z;RZ'V' z4£ ppzz N PLz H

condition (40) is realized.



31

If the integral (40a) for 1 - Z;l diverges, i.e., if masses much

greater than u? are the important ones, then according to (51)
ij is determined by masses satisfying the condition qf <1 . The
contribution of the large qf 1is small owing to rapid decrease of

the expression inside the square brackets. Here, if the integral

(40a) over x? for 1 - 23

diverges logarithmically, then it is

determined by the region qf << 1 , and GiY becomes

2? 2 '
s °d
Bn=2'.1zRZJ %P(QEZ) , ':ezo~ %g . (57)

The volume term, on the other hand, is determined by the region

q% > 1 and in order of magnitude is:

6y = N6y (%), (58)

where c$ (xg) is the portion of the cross-section of the interaction

of the gamma quantum with a nucleon attributable [from the standpoint

of the dispersion integral (47)] to masses xi and x% larger than
xi . The question as to the dependence of xg on the energy was dis-

cussed in the Introduction. The assertions made there, from the stand-

point of formulae (51) and (52), are self-evident.
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4.  Interaction of Electrons with Nuclei

The interaction of an electron with a nucleus leads to the
interaction of a virtual gamma quantum with the nucleus (diagram
in figure 4). The differential cross-section of the electron scatter-
ing with formation of an arbitrary number of hadrons can be written

in the form:

2 | 3
et 2 d’«'
d6 ‘W?[KPK9PP9+P Frr] 2¢) (27)%

where « 1is the momentum of the incident electron in the laboratory
system, K}l: li},,*' K;u p= K},, "KJ" the momentum of the virtual
quantum, M the mass of the nucleus. The quantity Fuv is the
imaginary part of the forward-scattering amplitude for the virtual
gamma quantum. In the preceding sections we calculated the quantity

ét étFuV for a real quantum, i.e., for p2 = 0 and polarization
vectors perpendicular to the quantum momentum. As seen from the
foregoing, generalizing for the case p2 # 0 presents no difficulties,
for only in the final stage have we considered the photon mass equal

to zero. A slight difficulty does arise only in calculating the con-
tribution of longitudinally polarized quanta. This stems from the fact

that expressions (38) and (39) are approximate, and from the fact that

the longitudinal-polarization vector is dependent on the energy.

(59)
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Expression (39) for puv can be written in the laboratory system

as:

P}N =[_6}’3Mf‘+PPP9+d'}LP7’—°L9P}L+°LP,°L9.]P(Mh)

_ PP Mn ~ | (60)
I Pk

A . . .
where Pu are the nuclear momenta. This expression is not gauge-
invariant.At first glance it might appear that in this expression only
the dominant term pupv has any meaning, while the other terms, of the

order TlT- compared to it, should be discarded. But this term makes
P2

no contribution to any of the processes by virtue of preservation of

the current, and we have therefore calculated an irrelevant quantity.

In fact, if from the very beginning we consider jk = j'élk , as was

MU

done above, these problems do not arise, and the dominant term becomes

p:k = Mﬁ . The correction terms of the intermediate states of the other

type ~ 1/p compared to it, since no additional dependence on the

energy can arise from et . The situation is different with eg . In this

; . A2 1
case, if gle = - 1 enters the dominant term, (é'P ) —=x1
TRRT! u 2
P
entering the correction term, we then get a contribution of the same
order. This means that our calculation of the longitudinal polarization
is not legitimate. To get around this difficulty, we write a general

expression for Fuv that satisfies the condition qu =0

]
uv = 0° vauv
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It has the form:

’ 2 A A
) |
Fua=-AlByot e PPy = P»P;: fP: PF]’LB(P kPo= P Op9). (o0

On the other hand, by analogy with (38) we can write

d M,
PPQ < ZTR Z(PQP ) j(M P )2?}19 . (62)

Comparing the dominant term on the right-hand side of (62) and (60),

which is proportional to pupv , with (61), we get:

PR 4
dM,
B=2%R%- 2P°Me (NT——TP . (63)
Calculating Fuvétet with aid of (62) and (61), we get:
2, Mz d My
A+BPZ=27FR ZPM e -—_h——:‘%{ . (64)
n

Substituting (63) and (64) into (61) and (59), we obtain the formulae
(9-11) given in the Introduction.

In conclusion I wish to express my profound gratitude to
I.T. Dyatlov, B.L. Ioffe, L.B. Okun' and K.A. Ter-Martirosyan for

their many helpful pointers.
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APPENDIX

In this appendix we shall derive formula (21) for the amplitude
of the scattering of a particle on a nucleus in terms of the amplitudes
of the hadron processes on a nucleon. Formula (12), valid for low
energies, is obtained from (21) as a particular case.

Looking at the diagram in figure 6, we shall regard the portion
of it circumscribed by the broken line as the unitary amplitude of the

scattering of a hadron on n nucleons (fig. 8) and shall designate it as

1 ? 1 \l A\l 1
F a(Ps P15 Py 475 Py Py + 45 «00)

P. . P

Figure 8
!
7 Pz ’ 4
Py P1'+q; P2+ %,

By assuming the nucleons of the nucleus to be nonrelativistic and by

%
introducing the relative momenta of the nucleons pi = nl + Ki s
T
we readily note that Kb,o~ 0(.‘,.0 2m ~ are much smaller than the
! / / . .
energies entering Paq, (P, PasPat Gay e ). Here, neglecting the

k!, q] . ' ' ' .
io’ *io in Faa(p’ Pys Py + ql...), we find that

Faa (P PasPr*Gas- ) = Faa(Py 84y 0z, - Gnoay PPA)-

This enables us to integrate over Kio, 9%, and to write the integral
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corresponding to the diagram in figure 6 in the nonrelativistic form

F(n) = 4. F(E:) PQQ(P)EVIL, PPA) r(K’;,+q,,;) <
2 ntN-n) [Nat+ (g ;) gxf][m%(zmb a,g))2+g<xz+qa>2]

N-4 d}K{, h-{ dl q': (A-1)
XLQ‘l (27)*2m P, (27)3*2m

*?

2
2 2 M
A=mw

or, by introducing the wave function of the nucleons in the nucleus

in the conceived coordinate system, we get

(k) e [ iER
Nai+ (ZKASKE N'@m) ‘Je W(q...rﬂ_gdw,..dvm (A-2)

With that choice of the factor in (A-2)
’ 2 - - 91
fllp(rq...rn_)l dvﬂ.-..dvnq =N . (A-2")

Hence for n << N

- R o e
F N A J‘X(rf“rn) e i F;a.(PaQ(L’PPA)Ud'VLQ (27,-033 r (A-3)

aa n! [2m)™"

Xy = (Wi ) AV, Y,

We represent the vector qJ!. as qj!_ = q:{_L + qj!_z , Where q]!_‘L lies

in a plane perpendicular to the momentum of the incident particle in

the laboratory system and is analogous to 'fi = pi.L+ Zi . Then the
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integral jet’%‘- PiL X (r‘,‘. ..T'n) d,zP,‘ dZan

will vary appreciably with variation of 9 by an order of

magnitude 1/Rn , Where Rn is the mean distance between the nucleons

r,...r. . We assume that the path length in the nucleus is greater

1 N

than the transverse distances important in strong interactions at
high energies. Since Rn is of the order of the path length, l/RN

is much smaller than the transverse momenta important in the strong

interactions and entering the amplitude Faa(p, qi ’ ppA) .

means that we can integrate over qil by setting qil =0 in

1 . . 2 .
Faa(p’qi’ ppA) . Then the integration over d q:.L gives

5(01 - 02)6(02 - p3)... and

(ﬂ)- Nﬂ A | 2 ¢ '.Z.‘.'
F‘a.a. T nl m"' 'Jd 1d'24"'d'2n X(p,,z,...zh)e it (a-4)

X F‘a.a(P’ q;,‘,‘) PPA)!:.I A&L

b
. 2% L

We come to the most essential integration, over Zi . Since x(p, Z

1

is symmetrical with respect to 2 ...Zn (allowing for the difference

1

between neutrons and protons does not affect the result), we can omit

the l/nlb in front of the integral in (A-4) and consider that

21<22 <23'~' -<Zn..1 -

The expression Zq;._ZZi can be written in the form
i

...Zn)

(A-5)
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' ;
% Gia?i = 2(Z,-2,) + Q2 (Z,-2D + % 0{n-1,z(2 n-r Znl, (A-6)

where .0{13"0122 v G227 ‘}4’z+'°rlzz y §32° o“’£+ Gpg + Dr;z .

We note that S,4= (P'q:)2=(P-C}1)z=pz+2P0’z4

equals the square of the mass of the intermediate state that occurs
after the scattering on the first nucleon,

*Sz‘=(P-0,'4'*0,'z)z= (Pfq'z)z"‘ Pz"‘zPO(u the square of the mass of
the intermediate state after scattering on two nucleonms, etc. Hence

integration over constitutes integration over the masses

Q97> doz°--

of the intermediate states S These integrations have the

1> Soree
)]

usual Feynman character (Figure 9). Since exp [iqu(Zi -

(Sy)

Zi+l

\T
f

|

l

I

!

I

Figure 9
decreases in the lower half-plane, the contour of the integration
over Si can be closed in the lower half-plane, and the integral of

Faa( ) can be reduced to the integral of the absorption part, i.e.,

to integration over the real intermediate states, and we can substitute
2

S.-p
45 = —=—— . As a result, F(n)

can be written as
i 2p
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w - N Jz dz,..dz +w,z(z zz)
Faa™ “(gpmr Py " z ’.["‘

(A-7)
iq5 (2,-23) "arg(zn-fz") X(p,2,---2,)
x fgc e z . e o e o ca P, 4 h 1)
where I is the summation over all possible intermediate states,
b,c,d
£ the amplitude of the transformation of a group of particles b

b,c

into a group of particles ¢ on a nucleon (Figure 7). Unlike the
usually considered amplitudes of the interaction of individual particles
(not groups of particles), these amplitudes are not matrix elements

of an S-matrix. Infact, the absorption part, for example, in the

variable is determined by the product facf}:a . In other words,

S3 ,
the contribution of the real intermediate states to fac is defined in

the usual manner by changing S, > S, + ie , in fia by changing

3 3
53 4-53 - ie ., If next we calculate the absorption part in S2 , then
X ] . .
fac becomes f bfb , where fbc is determined by changing 82 to
. X . . . . .
82 - ie . Hence fbc is defined as be(S2 ie, S3 + ie) . At first

glance it might appear that introducing such quantities may lead to
difficulties. Actually that is not so, and quantities of that kind

are a natural generalization of the usual amplitudes for the case of the
interaction of groups of particles. One may verify this by picturing

(n)

the amplitude Faa as the integral of the time-ordered product of
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the nucleon operators: <O.lTA(X1,X.|')A(Xz,X£). . ;A(X,.,X,:)[a> , ‘

where ‘A(X1 x;)~ ‘LTJ(X,')\P(X;), - and the product can be decomposed

with respect to the intermediate states
CalAlxIny<nlA L xDImY L 5K

The amplitudes -<n|A'(X2, Xé)‘m) : are not matrix elements of an
S-matrix unless one of the states <H\ 9’m>' is a single-particle
state and coincides with the quantities discussed above.

Taking the final step to obtain formula (21), we adopt the
assumption that the path length is large compared to the distance
between nucleons. This mean that the points Tys Tys Tg are, on the
average, in the integral (A-4) and at a distance from one another that
exceeds the distance between particles, hence under the condition (A-5)
we can confine ourselves to only the correlations of the nearest

nucleons, i.e., can write
X (P121124—22' 2,725 .- Zn_4-Z")=")0(P1,'24)'X,(21—21) x

x X (2,-23)-- X (Znoy=2,) _ (A-8)
X(ZL'ZLq)—’i when Z2i-2i 4>

where ?(?424)- is constant inside the nucleus and equal to zero

outside it. By virtue of the normalization condition (A-2")

b (91 2,)=

N
VH ? (A-9)
where V is the volume of the nucleus. Substitﬁting (A-8) and (A-9)

into (A-7), we get the formula (21) used in the text.
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