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This year's winter seminar at the Institute of Engineering 

Physics is devoted to a wide range of problems in nuclear physics and 

the physics of elementary particles. Many of the lectures will be of 

interest to all the seminar participants. Much attention is devoted to 

the structure of the nucleus, the physics of fission, meson physics, 

and nuclear reactions. 

The first portion of the materials is being published in time 

for the start of the seminar. The lectures appear in the order in 

which the editor received them. 

We wish to thank the authors for their help in preparing the 

written versions of their lectures, also those members of the Institute 

staff who assisted with the publication of this collection. 
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HIGH-ENERGY INTERACTIONS OF GAMMA QUANTA AND 

ELECTRONS WITH NUCLEI 

V.N. Gribov 

In a study by B.L. Ioffe, I.Ya. Pomeranchuk and this writer' the 

question was raised as to the possibility of determining experimentally 

what the important distances are in strong interactions at high 

energies. It was shown that, if the amplitude of the scattering of a 

particle a on a certain target b (Fig. 1) is substantially dependent 

on the square of the four momenta Pi (the mass), then the distances 

important in the interaction will be the longitudinal ones, which 

increase with an energy of the order of P/u2(k = c = 1) , where P 

is the momentum of the incident particle in the laboratory system, 1-1 

a certain characteristic mass. 

Figure 1 
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Unfortunately, it was found that the method of experimental investi- 

gation of the amplitude dependence on the particle "mass" through 

analysis of the bremsstrahlung, as proposed in ref. 1, cannot answer 

the question as to the important longitudinal distances because of 

the contractions due to the charge preservation2. In this paper we 

wish to turn our attention to the fact that studying the interaction 

of gamma quanta and electrons with nuclei makes it possible to ascer- 

tain experimentally what longitudinal distances are important in the 

electromagnetic interactions of hadrons. 

Bell has reported an interesting phenomenon3 whereby, if an 

interaction of gamma quanta with nucleons is dominated by vector 

mesons, the neutrinos by pi-mesons, in the interaction of gamma quanta 

and neutrinos with nuclei surface effects appear, i.e., the amplitudes 

contain, along with the volume terms proportional to the number of 

nucleons in the nucleus A , also surface terms proportional to A2/3 . 

At a high energy the surface terms have been found to be the govem- 

ing ones, and this has been regarded as a specific property p or IT 

of the dominant model. 

In this paper we shall show that the character of the interaction 

of gamma quanta and neutrinos with nuclei and the development of the 

surface effects at high energies have no connection with p-meson or 

r-meson dominance but are determined solely by which distances are 
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significant in those interactions. We shall show that, if the large 

longitudinal distances of the order of 6 = P/p2 , then the total 

cross-section, e.g., of gamma quanta with heavy nuclei, which includes 

only the hadron processes, will be 

(1) 

where R is the radius of the nucleus, Z3 the charge-renormaliza- 

tion constant due to the hadrons.1 - Z 3 can be expressed in terms of 

the hadron part of the Lehmann density of the Green's function of the 

photon, or in terms of the cross-section of annihilation of electron- 

positron pairs on hadrons, 

(2) 

Formula (1) has a simple physical meaning: VITRO is the total cross- 

section of interaction of hadrons with the nucleus, 1-Z 3 the length 

of time that a gamma quantum spends in the hadron state. 

The assumption that the large distances are important in the in- 

teraction is equivalent to assuming the convergence of the integrals 

(2) l The condition for the applicability of (1) is cS~>>R~ , where R 

is the mean path length of the hadrons in the nucleus. If the character- 

istic mass 1-1 is of the order of the meson mass p , and the path 

length is of the order of l/mT (mT being the mass of the pi-meson), 

the surface effect should develop at an energy exceeding 10 GeV. 
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The arising of the surface effects and formula (1) can be understood 

almost without calculations, as follows. Let us imagine that a gamma 

quantum interacts with the nucleons of the nucleus in the following 

manner: first it virtually decays into hadrons, the hadrons then inter- 

acting with the nucleons of the nucleus. Let us assume that this 

fluctuation lasts for a length of time 6 . Then the total cross- 

section of the interaction of gamma quanta with the nucleus will be deter- 

mined by the probability of a gamma quantum's hitting the nucleus, 

TRY , the probability that the fluctuation will develop inside the nucleus, 

R/1376 , and the probability that the hadrons forming will have time to 

complete an interaction with any nucleon of the nucleus, 6/R . Hence 

aY 
will be of the order of ITR~ ' R/1376 l 6/R-1/137 nR2 ' R/R-A'a . 

YN 

This reasoning is valid, however, only if 6&R . If in the coordinate 

system in which the quantum has a low energy the duration of the fluctu- 

tion is of the order of l/p , then in the laboratory system, in which 

the quantum has the momentum P , the duration of the fluctuation will be 

6=P/p2 , i.e., increases with the energy of the quantum. If R>6>R, 

the cross-section of the quantum's interaction will be of the order of 

rR2 l R/1376 , i.e., will decrease as the energy increases. Actually, 

3 as Bell in essence pointed out , the possibility of development of a fluc- 

tuation having the dimension 6 greater than the free path R is 

depressed by quantum-mechanical interference by a factor of 6/E , and 
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the cross-section will be of the order of TR~$$, i.e., decreases 

with increasing energy still faster. Under these conditions one can 

no longer neglect the probability that a fluctuation may develop out- 

side the nucleus. When 6 becomes greater than the radius of the 

nucleus, all fluctuations will mainly develop outside the nucleus, 

and the hadrons that formed in one of the 137 cases will collide with 

the nucleus with a cross-section mR2 , i.e., the cross-section of the 

quantum's interaction will be of the order of l/137 ' rR2 . In this 

way we arrive at a cross-section of type (1). 

The presence in (1) of the factor 1 - Z3 is also easy to ex- 

plain if the amplitude of the gamma quantum's elastic forward scattering 

on the nucleus, which determines the total cross-section, is visualized 

with the diagram in Figure 2. 

Figure 2 

The amplitude F of the scattering of a beam of hadrons on a nucleus 

of radius R varies appreciably with variation of the transverse momenta 

of the particles by a quantity of the order of l/R , rapidly decreas- 

ing when the momenta vary greatly. Since l/R is much smaller than the 

scale of momenta of significance in the diagram of figure 2, the momenta 

of the particles K' i differ almost not at all from Ki . The usual 
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amplitude of the elastic scattering of a single particle can be writ- 

ten under analogous conditions in the form i2rR26(q) . The corre- 

sponding amplitude of the scattering of a group of particles is pro- 

portional to i'2aR2116(Ki - K;) . As a result, the diagram in figure 2 

is equivalent to the diagram in figure 3 multiplied by i'2rR2 . The 

diagram in figure 3 defines the charge renormalization. 

----eB+--- 
Figure 3 

Such a picture of the interaction is obtained by assuming that a 

low-energy quantum virtually decays into small masses of the order of 1-1 . 

But it is possible that relatively frequently a quantum decays into very 

large masses. This corresponds to a divergence of the integral for 

1-z3. The existence of such fluctuations involving large masses cannot 

possibly occur with a low quantum energy if the path length R for the 

states with the large masses is great. But as the energy increases to 

where the length of the fluctuation 6 , even for very large masses, 

becomes comparable with the path length R in the nucleus, such masses 

start to participate in the interaction with a cross-section of the 

order of ITR~ . Only masses for which the length of the fluctuation 

6 at any energy is less than the path length can, at any energy, make a 

contribution to the cross-section that is proportional to the volume 
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of the nucleus. In a case in which the mass integral for 1 - Z3 

diverges, the cross-section of the interaction of a gamma quantum with 

a nucleus can be written in the form: 

The mass x 
0 

at which the integral (4) is cut off is defined by the 

condition 

S(L2) = -$f = e(z;, p) , 0 

where R(xz,P) is the path length of a group of particles having the 

total mass x2 and momentum P . A proper definition of !L(x2,P) 

will be given in the text. 

If the integral (2) diverges logarithmically, i.e., the cross- 

+ section of annihilation of e , e- on hadrons has the same order of 

magnitude as the cross-section of annihilation into leptons, then 

(3) 

(4) 

(5) 

(6) 

where JJ is a certain constant. The second term in (3) is proportional 

to the volume of the nucleus and has the order 

(7) 
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If Ux$P) is not dependent on the energy, which is possible if 

Qx2,P) = k(x2/P2) , then x:-P and or do not depend on the energy, 
n 

and the surface term increases logarithmically. If !L(xi,P) increases 

with increasing energy, condition (5) will occur only up to energies at 

2 
which R(xo,P) >R . When !&(xt,P)>R , the cutoff of x2 is deter- 

0 

mined by the condition 

k(x;,P) = R . (8) 

Here the volume term has the order e2,R2 , while the surface term, 

which is the main one, either winds up a constant, if R(xi,P) is not 

dependent on P , or continues its logarithmic increase. 

By studying experimentally the dependence of o 
Y 

on the energy 

and on A , we can isolate the two terms and find the dependence of 

x: on P . The dependence of xi on P reflects the energy dependence of 

the longitudinal distances 6 = 2P/x2 , important in the interaction of 

the gamma quanta with the nucleons. If x; increases with increasing 

p , but more slowly than P (xi/2P + 0) , then important will 

be the large longitudinal distances that increase with the energy but 

are smaller than with a finite 1 - Z 3' If x:-Pu , then the im- 

portant ones are the longitudinal distances up to l/p . The increase 

of CT 
Y 

with the energy can continue up to those energies at which 

e2/.rr * Rn x;/p4 , and the perturbation theory for electromagnetic 

interactions becomes inapplicable. 
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If the integral (2) should diverge faster than logarithmically, 

the cross-section would increase exponentially.* The perturbation theory 

in electrodynamics would become inapplicable at energies much lower 

than usually assumed. We are not considering this possibility. 

For a given P2 , PO the cross-section of the interaction of 

electrons with nuclei, described by the diagram in figure 4, will have 

the same properties. The only difference is that, instead of by 

1 - z3 , it will be determined by the magnitude of the polarization 

operator (Fig. 3) when P2 # 0 . 

We shall show that 
Figure 4 

where 

d6’= IZ~.ZXR*$ 
I 

4~2+pz+~~(n,+K:~].n,+ * 
0 

3 
f’o d3tc’ 

+ pZ[4m2+2p2]% 'Z. (2X)3 ' 

&$ =d6’+ d6’ , 

(9) 

(10) 

(11) 

* Translator's Note: Literally the Russian here says "powerwise" or 
"in a power manner." 
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It is interesting to note that in the case in which the important 

ones are the distances less than 2Pll.1~ , i.e., in which the integral 

for II1 diverges, l'Il(P2,xE) is not dependent on P2 , whence the 

surface term in the cross-section does not depend on P2 when 

p+<x; . 

The above results are obtained on the assumption that the inter- 

action of fast hadrons with a nucleus can be regarded as the result 

of successive interactions with the nucleons of the nucleus, and 

the interaction of the nucleons of the nucleus can be described with 

the aid of pair correlations. This latter assumption is apparently 

not fundamental; dispensing with it would merely complicate the 

analysis. 

2. Interaction of Hadrons with a NucZeus at High Energies 

As pointed out above, the interaction of a gamma quantum with 

a nucleus at high energies occurs in such a way that the gamma quantum 

first converts to hadrons, and the hadrons then interact with the nucleus. 

So before turning our attention to the interaction of the gamma quantum 

with the nucleus, we shall discuss how the description of the interaction 

of the hadrons with the nucleus changes as one moves toward high 

energies as compared with the description at low energies. The total 

cross-sections and elastic interaction of hadrons with a nucleus at not 



14 

very high energies is usually described either with an optical model 

or with the aid of the Glauber theory of successive collisions. 

These two approaches are similar if we take into account only the 

pair correlations of the nucleons in the nucleus, and they boil 

down to considering Feynman diagrams of the type in figure 5, which 

describe successive elastic scatterings on the nucleons of the 

nucleus. If we assume that the mean momenta of the nucleons in the 

nucleus are much smaller than the momenta that figure in the inter- 

action of the hadrons, for the low energies we can consider only the 

elastic scatterings, since the inelastic processes require large 

transfers of momentum, which lead to a breakup of the nucleus. 

Figure 5 

It is shown that as the energy increases, when the transferred 

momenta necessary for the production of particles decrease and become 

of the order of the momenta of the nucleons in the nucleus, the inelastic 

processes and diagrams in figure 6 do have to be taken into account. 
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Figure 6 

Before turning our attention to the diagrams in figure 6 and 

their influence on the character of the total cross-sections, we shall 

look briefly at how one calculates the total cross-sections for high 

energies, but energies such that the inelastic processes are still 

unimportant. Everywhere in what follows we shall disregard the con- 

traction of the diffraction cone in the hadron processes. Calculation 

of the diagram in figure 5 for these energies yields the following. 

The amplitude of the forward scattering Fn corresponding to the nth 

rescattering is (see the appendix, for instance): 

where N is the number of nucleons in the nucleus; V the volume of 

the nucleus; P the momentum of the incident particle; pi , Zi the 

coordinates of the nucleons, Z i in the direction of the momentum of 

the incident particle, pi perpendicularly to P ; X(Zi - zi++ 

the correlation function of two nucleons in the nucleus x(a) = 1 ; f 
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the scattering amplitude; m the nucleon mass; z1 > z2... > zn . 

If the amplitude F , equal to 

is written in the form 
P = ; Fen’ , 

we can then be sure that F(p,Z) satisfies the equation 

(13) 

(14) 

(15) 

which is the analogue of the equations for the optical model with the 

scattering amplitude f , which plays the role of a potential. If we 

neglect the correlations, i.e., set x=1, from (15) we get the trivial 

result 

4 [~+Wp)l ) F(p,r)=fe--F 

iN 
+ =- 4pmV f 

and 

(16) 

(17) 

(18) 
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The idea behind our further analysis is that an equation of type (15) 

will remain valid with a small variation if by the amplitudes f 

and F(p,Z) we mean the amplitudes of the interaction of groups of 

hadrons with a nucleon, with a transition to other groups of hadrons, 

which enter the diagrams in figure 6. 

In the appendix we calculate the diagram in figure 6 on the 

assumption that the nucleons in the nucleus are nonrelativistic, their 

momenta much smaller than the transferred momenta that figure in the 

strong interactions at high energies. The latter is equivalent to 

assuming that the path length of the hadrons in the nucleus is greater 

than the distance between the nucleons. It is assumed that under these 

conditions we may confine ourselves to considering only the correlations 

between the nucleons that participate in two successive collisions. 

For the amplitude of a process that includes interaction with n nucleons 

the result can be written in the form 

f bc being the amplitude of a process corresponding to the diagram in 

figure 7. We sum over the real intermediate states 

(20) 
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where m 
g 

is the mass of the intermediate state, 1-1 the mass of the 

incident particle. 

Figure 7 

We introduce the operator F(p,Z) , whose matrix elements be- 

tween any states are defined by the equality 

The operator F(p,Z) satisfies the equation 

r N 2- p2 
=- 

4pmV ’ @j&d = ‘cd’ m;p ’ 

This equation describes all possible transformations in the beam of 

hadrons on interacting with the nucleons of the nucleus. It converts 

to (15) if only one intermediate state with a mass m , equal to the 

mass of the incident particle, is possible. A symbolic solution of 

(21) 

(22) 

this equation is easily found if F(p,Z) is written in the form: 
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The scattering amplitude is 

’ 

(23) 

(24) 

(25) 

(26) 

We shall write (24) in the form 

Substituting (27) into (26) and integrating, we get 

The first term, proportional to the number of nucleons in the nucleus, 

actually equals zero when applied to a real state having a mass p2 , 

for then q = 0 

[x(iqh & , q + 01 . 

(28) 

(29) 



20 

For the same reason the second term equals 2PmN ' i2-frR2 . 

The last term in (28) ?? is defined by the poles of the integrand 

in (29) . These poles are placed for negative 5 = - 2 z - $ and 

determine the damping F(Z,p) . Here ? is of the order 

where R = $ is the path length. Therefore 

(30) 

Hence the amplitude of the scattering of a group of particles on a 

sufficiently large nucleus is a diagonal operator, and the total 

cross-section, as at lower energies, is 27rR2 . 

We stress in conclusion that the volume absorption equals zero 

only for a real state of the incident particle, i.e., for the ampli- 

tude of scattering on a mass surface. If P2 of the incident parti- 

cle does not coincide with p2 of the intermediate state, then q ,#o, 

and we get a volume absorption proportional to P2 - u2 
2P 

This means that for low energies the scattering amplitude of a virtual 

particle is substantially different from the amplitude of scattering 

on a mass surface. 

Translator's Note: 
The author"s hand-written notation seems 

occasionally ambiguous. He appears, for instance, to 
switch back and forth between P and p. 
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2. Interaction of Gamma Quanta with Nuclei - The Large Distances 

In this section we shall give a derivation of formula (1) in 

which the concept of the distances at which interaction occurs will 

explicitly figure. For this we shall write the amplitude of the 

virtual forward Compton effect Fvv(s,x2) in the form of an integral 

of the time-ordered product of the electromagnetic currents. 

F,,(s,asZ)=ie2~~i?X<AIT~i(-~,)~,,(x,)~A)d4x~d4~,~ c 

where x2 = p2 is the quantum "mass".* As was discussed in ref. 1, 

the amplitude F vv (s ,x2> is dependent on x2 at high energies s 

only in the case in which large longitudinal distances of the order 

P/P2 are important in the integral (31) , p being a certain 

characteristic mass, P the quantum momentum in the laboratory 

system S-2PM , M the mass of the nucleus. 

(31) 

* Translator's Note: 
Again the author's handwriting is 

troublesome. His flowerlike symbol 'X has been 
guessed by the translator to denote a lower-case x , 
but in equation (31) we find it mixed in with a 
more conventional-looking x . Are both symbols 
suppose to be x ? And again, the line that the 
author draws (if any) between lower-case and upper- 
case Roman letters is extremely unclear. 

Actually, by writing the index of the exponential in (31) as 
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we see that important in (31) are the 1 t-zup,and Fyv(s,x2) 
0 

depends on x2 only if ZY t Y 5 are significant. Assuming this 

to be the case and making use of the reduction formulae, we write 

(A ITj,(.x,J j J (xz)l A) in the form: 

<AITj,(x&(XJb) = 

J 
-LP,(Y-Y'l 4 4 , 

=i e cl yd Y (OIT~,(X,,~~(~~)U,(~‘)~,(Y)~O) 9 

where UA (y') , A U (y) are operational sources of the nuclear 

field. Substituting (32)into (31) and changing the variables, we get: 

Remembering that Xl0 - X2o + + ~0 and 5 - i 
0 

, we may consider that 

in (33) the points 0, 5 * i 
0 

are between the points x1o and X2o , 

and in place of (33) we can write 

F,, (s, a?) = - e2 
43(X,-X,) + iP,f 

e x 

(32) 

(33) 

(34) 

or, expanding the product of operators with respect to the intermediate 

states, we get 

(35) 

Pn=Prn=P +p-‘-P L 
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The expression < h 

is the amplitude, discussed in the preceding section, of the forward 

scattering of a group of particles with momentum P on a nucleus. 

Keeping in mind that 

we get 

The second term in (35) , corresponding to the change p + - p , 

is small since the denominator 'P, + PO- 2P instead of (Mz - x2)/2p . 

Small, too, for an analogous reason are the contributions of the other 

regions in (33) with a time ratio in contrast to (34) if the mass inte- 

grals of type (34) converge. As has been shown, 

F ,,=2rR2ic?pM~6(n-m) . 

Substituting (37) into (36) , we get: 

FJ3(5,~‘)=z~R2i.2PM.e2 
dM2, 

CM ; - ze2)2 p49 (M:) I 

where e V 

a is the quantum-polarization vector, P @$I /M2 the n 

spectral density of the Green's function of the photon. Hence the 

(36) 

(37) 

(38) 

(39) 

total cross-section of the interaction of a real photon with a nucleus is: 
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~Q=~TLR'(z;~ -+-27iR'(d-;s.j) 

j-r, = e2 
I 

d M2 
M2 pm21 * 

(40) 

(404 

In deriving (40) we assumed that the integral for 1 - Z3 converges. 

To estimate with what degree of accuracy (40) is valid, and to con- 

sider the case in which the integral for 1 - Z 3 diverges, it is 

found more convenient 'first to express the amplitude of the scattering 

of the quantum on the nucleus in terms of the amplitudes of the inter- 

action of the quantum and hadrons with the nucleons of the nucleus, then 

to use formulae of type (33) or dispersion relations with respect to 

the mass, but now for the amplitudes of the interaction of the quantum 

with the nucleon. We do this in the next section. 

3. Interaction of a Gamma Quantum with a Nucleus - 

The Not Very Great Distances 

Under the assumptions formulated in section 1 the amplitude of 

the forward scattering of a gamma quantum on a nucleus Fyy(s) can be 

depicted in the form of a set of diagrams like those in figure 6. F 
YY 

can be written as (19) , the only difference being that the state (a) 

is the gamma quantum, and fab and f da are replaced by f yb ' f dy * 

The other amplitudes are, as before, amplitudes of the hadron processes. 
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The parameters q z for a real quantum are equal to $/2p . By anal- 

ogy with (21) we introduce the amplitudes Fy,(p,z> and F,,(p,z) , 

where a is the hadron state. These amplitudes satisfy equations 

similar to (22): 

(414 

(41b) 

where f 
YY 

is the amplitude of the Compton effect on the nucleon, 

f the amplitude of photoproduction of the hadron state. Equations 
Y 

(41) are written in operator form with respect to the hadron states. 

Solving equations (41) through recourse to the momentum expression (24), 

we get 

(424 

Hence, by calculating , , instead of (28) we can 
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(43) 

The first term in (42) is the volume interaction F" , the second 
YY 

being the surface one FS 
YY 

, while the third is small like (30) . 

Unlike (30) , the volume term does not equal zero and the surface term 

does not equal 27rR2 l i2pmN , since fy is different from f and qs # 0 

in application to a real state. We shall estimate the order of magni- 

tude of the individual terms in (42). We note that in order of magni- 

tude 

where o is the cross-section of the hadron process, R the path 

length. The correlation function x(iqs) depends on iqs and on the 

mean distance between particles r . 
0 

When q, r. << 1 , 

x(iqs) = l/iqs , and when q,ro > 1 , x(N) decreases. The character- 

istic denominators determining the dependence of F 
V and FS 
YY YY 

on the 

quantity q, in the intermediate states have the form ZR/x(iqs) + 1 , 

and for small q, are equal to 2iRq + 1 . These denominators are of 2 
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the order of unity when 

The contribution to FV 
YY 

1 1 
qz< a and are large when q z >> a . 

, FS 
YY 

from the regions q << $ and 
Z 

9, >Z R can be written, respectively, as 

FS =i, 
Yl f f 

when q -C-C 1 
Z 

R ; 

when 

where 1 - E-igf. 
2R If, as happens in the p-dominant mode13, 

m 2 
f 

Y = gYf and f YY 
= gyfgy and q, + 0 , since qz = $ , then 

in accordance with F" = 0 we have 
YY 

In order to calculate F 
YY 

without the assumption of p-dominance, we 

can either use formulae of type (31), but for the amplitudes of the 

interaction of the gamma quantum with the nucleon, or the dispersion 

relation with respect to the quantum masses for the same amplitudes. 

(44) 

(45) 

(46) 
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In this section we use the dispersion relations. We shall assume that 

for the amplitude of the forward scattering of a virtual quantum having 

a mass q , which is transformed into a quantum having a mass P2 2' 

there is a nonsubtractive dispersion relation with respect to the 

quantum masses which has the form 

where f ( n,m q*-* 5, KJ- 4 9 4) are the amplitudes of the hadron 

processes on a nucleon with the momentum transferred to the nucleon 

4 Y q2 = + cl',, 41' - q2 = 0 o , rY$ l l Kn) being the vertex part of 

the conversion of the photon into n hadrons. Analogously, with the 

aid of a single dispersion relation the amplitude fya(% P:, K1...Ka) 

can be written in the form: 

(47) 

(48) 

(49) 

As to the possibility of using these dispersion relations, two questions 

(50) 

naturally arise. Are not the dispersion relations (47) and (49), 
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especially (49), violated owing to the presence of combined character- 

istics more complex than the threshold ones? And are the nonsubtractive 

dispersion relations valid? The combined or composite characteristics, 

even if they do exist, are not important at high energies. One can 

verify this with, for example, formula (36), which is nothing other 

than a double dispersion relation with respect to the quantum masses, 

and which is obtained only by assuming the convergence of the integrals 

over the intermediate states. Investigation of the analytic properties 

of the Feynman diagrams has led to the same result. 

The use of nonsubtractive dispersion relations obviously constitutes 

a hypothesis that cannot be proved. We must stress, however, that there 

is an important difference between the usually employed dispersion 

relations with respect to the energy and dispersion relations with respect 

to mass. The increase of invariant amplitudes at high energies s is 

a normal phenomenon in both strong and weak interactions. On the other 

hand, it is natural to suppose that with large masses, i.e., in the case 

of highly virtual processes, the amplitudes decrease owing to the cutoff, 

caused by the strong interactions, in any event at masses of XQS. 

Assuming the dispersion relations (47) - (50) and substituting 

them into (44), we get: 
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If the integrals over x2 
1' xs converge at finite masses of the order 

of 1-12 (large distances), then qR + -& R + 0 and 
2p 

(51) 

(52) 

(53) 

(54) 

Hence, using the optical theorem, we get the total cross-sections in the 

form: 

i.e., with a satisfactory precision of the order of 

rc -J-q.--- 
4 J14t2 Rt 

2IliR’ 2e p” 
pz p4 , and 

(55) 

(56) 

condition (40) is realized. 
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-1 If the integral (40a) for 1 - Z3 diverges, i.e., if masses much 

greater than u2 are the important ones, then according to (51) 

FS 
YY 

is determined by masses satisfying the condition qR $1 . The 

contribution of the large qR is small owing to rapid decrease of 

the expression inside the square brackets. Here, if the integral 

(40a) over x2 for 1 - Z;' diverges logarithmically, then it is 

determined by the region qR << 1 , and as becomes 
YY 

The volume term, on the other hand, is determined by the region 

qR > 1 and in order of magnitude is: 

where 0: (xi) is the portion of the cross-section of the interaction 

of the gamma quantum with a nucleon attributable [from the standpoint 

of the dispersion integral (47)] to masses XT and xi larger than 

xi . The question as to the dependence of xz on the energy was dis- 

cussed in the Introduction. The assertions made there, from the stand- 

point of formulae (51) and (52), are self-evident. 

(57) 

(58) 
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4. Interaction of Electrons with NucZei 

The interaction of an electron with a nucleus leads to the 

interaction of a virtual gamma quantum with the nucleus (diagram 

in figure 4). The differential cross-section of the electron scatter- 

ing with formation of an arbitrary number of hadrons can be written 

in the form: 

where K is the momentum of the incident electron in the laboratory 

system, $=l$‘K;, p=#;-Kp the momentum of the virtual 

quantum, M the mass of the nucleus. The quantity FPv is the 

imaginary part of the forward-scattering amplitude for the virtual 

gamma quantum. In the preceding sections we calculated the quantity 

e1 e'F 
1-I v I.lv 

for a real quantum, i.e., for p2 = 0 and polarization 

vectors perpendicular to the quantum momentum. As seen from the 

foregoing, generalizing for the case p2 # 0 presents no difficulties, 

for only in the final stage have we considered the photon mass equal 

to zero. A slight difficulty does arise only in calculating the con- 

tribution of longitudinally polarized quanta. This stems from the fact 

that expressions (38) and (39) are approximate, and from the fact that 

the longitudinal-polarization vector is dependent on the energy. 

(59) 
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Expression (39) for p 
W 

can be written in the laboratory system 

as: 

4, = 
p2-M: A 
2fpl P, ' 

(60) 

where P A are the nuclear momenta. 
u This expression is not gauge- 

invariant.At first glance it might appear that in this expression only 

the dominant term p,p, has any meaning, while the other terms, of the 

order - 
Ii2 

compared to it, should be discarded. But this term makes 

no contribution to any of the processes by virtue of preservation of 

the current, and we have therefore calculated an irrelevant quantity. 

1x In fact, if from the very beginning we consider j, = j'e 
1-I lJ 

, as was 

done above, these problems do not arise, and the dominant term becomes 

Pxlh = M; . The correction terms of the intermediate states of the other 

type - l/p compared to it, since no additional dependence on the 

energy can arise from er 
1-1 l 

The situation is different with ei . In this 

case, if &I elf = 
1-11-1 

- 1 enters the dominant term, (QFt)2 $-Zl 

entering the correction term, we then get a contribution of the same 

order. This means that our calculation of the longitudinal polarization 

is not legitimate. To get around this difficulty, we write a general 

expression for F that satisfies the condition p F 1-I lJv = 0 ' P:FpV = 0 . 1-IV 
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It has the form: 

On the other hand, by analogy.with (38) we can write 

Comparing the dominant term on the right-hand side of (62) and (60), 

which is proportional to p p 
1J.v' 

with (61), we get: 

B=Z%R*L~~P,M~~ 
I 

dM: 
(ME-p’)“p * 

(61) 

(62) 

(63) 

Calculating FPvetei with aid of (62) and (61), we get: 

A++zrR2i .2p/q.$ J ME dMi 
(M,~--P~)~ l 

(64) 

Substituting (63) and (64) into (61) and (59), we obtain the formulae 

(9-11) given in the Introduction. 

In conclusion I wish to express my profound gratitude to 

I.T. Dyatlov, B.L. Ioffe, L.B. Okun' and K.A. Ter-Martirosyan for 

their many helpful pointers. 
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APPENDIX 

In this appendix we shall derive formula (21) for the amplitude 

of the scattering of a particle on a nucleus in terms of the amplitudes 

of the hadron processes on a nucleon. Formula (12), valid for low 

energies, is obtained from (21) as a particular case. 

Looking at the diagram in figure 6, we shall regard the portion 

of it circumscribed by the broken line as the unitary amplitude of the 

scattering of a hadron on n nucleons (fig. 8) and shall designate it as 

F,,(P, Pi, Pi + qi> Pi, Pi + 4; .*a) l 

Figure 8 

By assuming the nucleons of the nucleus to be nonrelativistic and by 

Pl introducing the relative momenta of the nucleons p! = - -I- K 
I 

1 n i' 

we readily note that 
3 

KI,,- qi+:* - 2m are much smaller than the 

energies entering Faa (pv p,‘t pi’+ q:, l l -1 l Here, neglecting the 

K! 4' lo' io in F,,(p, p;I pi + q;...), we find that 

Faa(p.p;~p:+~:,-4 =F,,(p,~:,~~.,...~~-,,pPA)* 

This enables us to integrate over K;~, qio and to write the integral 
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corresponding to the diagram in figure 6 in the nonrelativistic form 

or, by introducing the wave function of the nucleons in the nucleus 

in the conceived coordinate system, we get 

With that choice of the factor in (A-2) 

I IY(r,...~n.,,12dV,...dVn-, =N . (A-2') 

Hence for n C-C N 

bk) N” 1 
F - =- 

aa n! (2m)“-l J ' (A-3) 

X(-r,. . . r,,) = 
I y2(r ,... rN-,) dVn+, .., dVN-, . 

We represent the vector qf as qi = qfL + q;Z , where qiL lies 

in a plane perpendicular to the momentum of the incident particle in 

the laboratory system and is analogous to r. = p + Z Then the 
1 il i' 
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integral 

will vary appreciably with variation of q' il by an order of 

magnitude l/R n' where R is the mean distance between the nucleons n 

rl'"rN l 

We assume that the path length in the nucleus is greater 

than the transverse distances important in strong interactions at 

high energies. Since Rn is of the order of the path length, l'% 

is much smaller than the transverse momenta important in the strong 

interactions and entering the amplitude F,,(P, qi , PP,) l This 

means that we can integrate over q' il by setting qfL = 0 in 

Faa(wif, PPJ . Then the integration over d2qi gives 

6 bl - P~)~(P~ - P,)... and 

We come to the most essential integration, over Zi . Since X(P, zl. l ‘ZJ 

is symmetrical with respect to Z1...Zn (allowing for the difference 

between neutrons and protons does not affect the result), we can omit 

the l/n'! , in front of the integral in (A-4) and consider that 

z,<t, <2,..* G ,,, . (A-5) 

The expression CqiZZi can be written in the form 
i 
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where 

We note that s,=(p-~:)2=(p-01,)2cP2+2PqH, 

equals the square of the mass of the intermediate state that occurs 

after the scattering on the first nucleon, 

the square of the mass of 

the intermediate state after scattering on two nucleons, etc. Hence 

integration over 91Z' q2.y' constitutes integration over the masses 

of the intermediate states S1' sy"" These integrations have the 

usual Feynman character (Figure 9). Since exp [iQzi(Zi - Zi+l) I 

Figure 9 

decreases in the lower half-plane, the contour of the integration 

over S i can be closed in the lower half-plane, and the integral of 

F,,( > can be reduced to the integral of the absorption part, i.e., 

to integration over the real intermediate states, and we can substitute 

S i- P2 
'Zi = 2p l 

As a result, aa ,b) can be written as 
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(h) j(” in-4 

F = J “) L aa (4pmY (A-7) 

where C is the summation over all possible intermediate states, 
b,c,d 

fb,c the amplitude of the transformation of a group of particles b 

into a group of particles c on a nucleon (Figure 7). Unlike the 

usually considered amplitudes of the interaction of individual particles 

(not groups of particles), these amplitudes are not matrix elements 

of an S-matrix. Infact, the absorption part, for example, in the 

variable S 3' 
is determined by the product facfza . In other words, 

the contribution of the real intermediate states to fat is defined in 

the usual manner by changing S3 + S3 + is , in fX ca by changing 

S3 + S 
3 

- is . If next we calculate the absorption part in S2 , then 

f ac becomes fabftc , where $, is determined by changing S2 to 

s2 - is . Hence ftc is defined as fbc(S2 - is, S3 + is) . At first 

glance it might appear that introducing such quantities may lead to 

difficulties. Actually that is not so, and quantities of that kind 

are a natural generalization of the usual amplitudes for the case of the 

interaction of groups of particles. One may verify this by picturing 

(4 the amplitude Faa as the integral of the time-ordered product of 
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the nucleon operators: (alTA(~,,~:)A(xz,xl)~ l .  .  A (x,,x:)t  0) 7 

where A@&)- ~(%,)'y(x:)v and the product can be decomposed 

with respect to the intermediate states 

(aIA(xsx:)ln>(nlA(x,,x:)I~)( > - -.< . 

The amplitudes ,<n IA'k, Xillm) are not matrix elements of an 

S-matrix unless one of the states <n\ ,,m> is a single-particle 

state and coincides with the quantities discussed above. 

Taking the final step to obtain formula (21), we adopt the 

assumption that the path length is large compared to the distance 

between nucleons. This mean that the points rl, r2, r3 are, on the 

average, in the integral (A-4) and at a distance from one another that 

exceeds the distance between particles, hence under the condition (A-5) 

we can confine ourselves to only the correlations of the nearest 

nucleons, i.e., can write 

;C~j,2&-221~&. l .;r,-,-2,)=L9(1?,,2~)X(2,-22)% 
x x (t,-$1 * - * wn-,-tJJ x(2;-2;,,)-* i when Zi-2i-4*Od (A-8) 

where Y (jpS- is constant inside the nucleus and equal to zero 

outside it. By virtue of the,normalization condition (A-2') 

(A-9 > 

where V is the volume of the nucleus. Substituting (A-8) and (A-9) 

into (A-7), we get the formula (21) used in the text. 


