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INSTABILITY OF NON-ABE LIAN GAUGE THEORIES 
AND IMPOSSIBILITY OF CHOICE OF COULOMB GAUGE* 

V. N. Gribov 

ABSTRACT 

In this lecture it is demonstrated that by virtue of the impossibility 

of introducing Coulomb gauge for large fields and of the growth of the 

invariant charge at large distances , non-Abelian gauge theories may 

not be formulated as a theory of interacting massless particles. This 

assertion appears as a strong argument in favor of the idea that the 

spectrum of states in noa-Abelian theories is substantially different 

from the spectrum of states in perturbation theory. 

*Lecture at the 12th Winter School of the Leningrad Nuclear Physics Institute, 

1977. Sections 1 - 4 translated by H. D. I. Abarbanel. Sections 5 and 6 trans- 

lated by Addis Translations International and edited by H. D. I. Abarbanel. 

See Note added. 
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1. INTRODUCTION 

In the formulation of free gauge theory, corresponding to the group SU(N), 

it is regarded by analogy with quantum electrodynamics like a theory describing 

N2 - 1 interacting massless vector particles. Massless vector particles are 

described by three-dimensional transverse fields Bi(x): 

aBi _ - - 0. 
BXi 

In order to be convinced that this is really so, we are obligated to demonstrate 

that all variables, aside from Bi(x), which formally enter the gauge Lagrangian, 

can be excluded, that is, the theory may be cast into only interacting massless 

fields. At first glance, it seems that such proof exists and appears trivial by 

virtue of the possibility of formulating the theory in Coulombgauge, In the pres- 

ent work we demonstrate that this is not correct and the usual Lagrangian in 

coulomb gauge is not equivalent to the initial gauge invariant Lagrangian. The 

reason for this inequivalence is found in the fact that, in distinction to electro- 

dynamics, in non-Abelian theories it is not possible to uniquely introduce three- 

dimensional transverse fields (in particular, transverse fields can be pure gauge). 

We demonstrate also that the infrared instability of non-Abelian theories (asymp- 

totic freedom), demonstrated in perturbation theory, leads to the fact that this 

non-uniqueness is essential for the scales, where the invariant charge is of order 

unity. These assertions make most probable that the spectrum of states of non- 

Abelian theories doesn’t contain massless particles. At last, by virtue of 

conservation of charge, it may result in the confinement of color. 
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11. COULOMB GAUGE 

Since the Lagrangian of the Yang-Mills field 

g=L- 
4g2 

tr G pv Gpv ’ 

G =aA 
PV PV -avAy. + pps Av] 

is invariant with respect to gauge transformations 

AP =U-lA;(U+U-lL U, 
axP 

(1) 

(2) 

where U is a uaitary matrix; then it is always possible to choose U in such a 

manner that one of the components of the field goes to zero, for example, Ao. 

In this case 9 takes the form 

9=-x A+ - ~~~~ H.. , 
1 I 

* 

2g2 
1 u (3) 

Hij = &- A. 
i J 

describing a mechanical system with potential energy 4 ij IH H ij. However, by 

virtue of the fact that Hij Hij/4 is unchanged by the transformation 

Ai=S-lBiS+S -1 a ax S, 
i 

(4) 

the potential energy does not depend on all components of Ai, that is, the mech- 

anical problem contains a cyclical variable. If we fix the potentials Bi in (4) by 

some condition, then formula (4) may be understood as determining in the place 

of the variables Ai new variables: a cyclical coordinate S and non-cyclical 

*The minus sign in front of 2 is caused by Ai being anti-Hermitian matrices. 
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variables Bi. The passage to massless fields consists in that Bi is fixed by the 

condition 

-&- Bi=O . (5) 
i 

If Bi is determined by the condition (5), then the cyclic coordinate is deter- 

mined by 

8Ai 
- =Vi(A)S-1 $ , axi i 

(6) 

where 

vi (A) ~= ~ + Ai, ~ l 

i [ 1 
If (6) determines S uniquely, then (4) determines Bi uniquely. The kinetic 

energy takes the form in these variables: 

-$ tr Bi+ Vi(B)f)( ‘i+ Vi(B)i)l~ -+ EKES, 

f = S s-l , 

and the momentum connected with the cyclical coordinate 

+x= V2(B)f+ ViBi= Vi(B)Ei, 

(7) 

(8) 

is conserved. 

Letting ‘IT = 0, we find an equation for the exclusion of the longitudinal com- 

ponents of Ei. Dividing Ei into longitudinal and transverse parts, 

Ei=ni+$ 
i 

and comparing (9) and (7)) results in 

3 

(9) 

VU + = ai Vi(B) f = - Cl (B) f . (10) 
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From the condition T = 0, we find equations for $J and f in the form 

o(B)+ = O1 
a2 

of=-p , 

p = Bi, 7ri . [ 1 
The Hamiltonian of the system after this may be written as 

J-J=& 
2g2 

niri+f Af + f Hij H.. 
13 -2Pf , > 

A=&., 
a2 

or, using (ll), 

f-J=-- 
2ti2 ITi ni - p A L p+ IH H 2 ij ij ’ 

(11) 

(12) 

(13) 

This completes the usual proof that the initial Lagrangian describes interacting 

massless gluons. 

However, for the proof of (14) we made an important assumption that the 

procedure of introducing transverse fields is determined uniquely by Eq. (4) and 

(6). If this procedure is not unique, that is, one and the same Ai corresponds to 

several B i, then using Bi as an independent variable, we will, by summing on 

the fields Bi, repeat the same Ai several times. If for different fields Ai, the 

number of repetitions will be different, then we obtain a senseless result. 

III. IMPOSSIBILITY OF UNIQUE INTRODUCTION OF TRANSVERSE FIELDS 

The question about the unique introduction of transverse fields amounts to 

the following: We imagine that we found such a Bi, which appears to obey Eq. 

(4), (6). Does there exist another field, Bt, which is transverse, connected 
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with the field Bi by the gauge transformation 

B’ =U+B U+U+ ay ? 
i i i 

Since B; and Bi are transverse, then U must satisfy the equation 

vi(B) ;+ U+ = 0 . 
i 

(15) 

(16) 

This equation may be gotten from the condition of the extremum of the action 

W= 2 au ax U+Bi 
i 

(17) 

with the supplementary condition U+U = 1. From this expression for the action, 

it is almost evide.nt that for sufficiently large fields Bi there exist solutions of 

Eq. (16) withU-. 11 as r -, co. 

For this, in order to be convinced, we note that for sufficiently small Bi, 

W 2 0 and achieves the absolute minimum for U = 1. 

We examine the significance of W of “trajectories” near 1 

U=I+iv, v+ =v. 

On these trajectories 

W = 
/ 

d3xtr(v 0 (B) v), 

q (B)v= - 

(18) 

(1% 

(20) 

* 
The author is indebted to A. M. Polyakov for bringing attention to the possibility 

of writing the action in this form. 
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Since the operator 0 (B) is analogous to the Schriidinger operator for a par- 

ticle in the field [B, 8/8x] , dependent on the velocity, it is evident that for fields 

Bi of sufficient size, we will produce field amplitudes in a wide region where the 

field Bi is different from zero and the operator o(Bi) will have negative eigenvalues. 

In this circumstance, the action W will be negative, evaluated with the eigenfunc- 

tions corresponding to these negative eigenvalues. Since the minimum value of 

the action (17) Wm is less than or equal to WL ( WOm is the minimum value on the 

“trajectories” near a), then we arrive at the conclusion that for the fields Bi for 

which o (B) achieves negative eigenvalues, the action (17) achieves a non-trivial 

extremum, and consequently (16) has a solution with U -. 11 as x -. CIO . 

In such a manner we arrive at the conclusion that for such field values, 

the Coulomb gauge is not uniquely determined. Moreover, as is well 

known, the linear action (19) achieves “a” extrema, if O(B) achieves “a” eigen- 

values. If this situation persists for the action on all “trajectories,” we will 

have had the next mapping of non-unique transverse potentials. We have broken 

the whole space of fields Bi into regions depending on the spectrum of the oper- 

ator o (B) (Fig. 1) such that each region Cn belongs to a field for which o (B) 

achieves “n” eigenvalues. The boundaries between regions, Li, correspond to 

fields for which 0 (Bi) achieves a zero eigenvalue. Thus in the region Co the 

transverse potentials are determined uniquely. In all other regions, Cn, from 

each potential Bi may be found, at the most, n potentials in that or other region, 

except Co, connected with the potential Bi via a gauge transformatioa. Below we 

demonstrate these effects in an example of a particular solution to Eq. (16), but 

immediately note that analogous problems of uniqueness arise and in a relativ- 

istically invariant formation of the theory. For example, in the gauge 8 AP/8xP = 0 

the condition of uniqueness is determined by the same Eq. (16), but for four variables. 
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If, as it often happens, the theory is formulated in four-dimensional Euclidian 

space, the situation exactly coincides with that examined above. Consequently, 

in the Euclidian case, the gauge 8 AP/a xP = 0 also may not be introduced for 

large fields. 

In the pseudo-Euclidian case, the situation doesn’t stand clear and for 

clarifying questions, additional analysis is required. 
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IV. INCREASE IN THE INVARIANT CHARGE IN NON-ABELIAN THEORIES 

The calculation of the invariant charge in Coulomb gauge was carried out by 

I. B. Khriplovich even before the discovery of asymptotic freedom in non- 

Abelian theories. We cite this calculation for this: In order to explain the rea- 

son of the growth of the invariant charge and to demonstrate that a significant 

part of the invariant charge originates from averaging over fields for which it is 

not possible to introduce the Coulomb gauge. 

For the calculation of the invariant charge we use, following I. B. Khriplovich, 

one of its possible definitions, namely the quantity which is determined by the en- 

ergy of two interacting heavy sources. For this end in the expression for the 

energy of the system, we substitute for p, p + ph, and calculate the correction to 

the vacuum energy to second order in ph. This correction takes the form 

V 
I Van I” 

coul = % , 
2g 

d3x p,lx) (0 1 ; 1 o>ph(x) + c E. _ E 
n n 

where 

v ‘z 
=- 

on 
I 

d3xtr ph(x) (0 1 :P (x) 1 n > , 
g 

(21) 

(22) 

A$=&- 
a2 

q += a2q+2 

The first term describes the usual Coulombinteraction, connected with the prop- 

agation of the Coulombfield from one charge to another with only this distinction, 

that the Coulomb field does not propagate freely (the propagator is not equal to 

am2) but in the field of zero-point oscillations of the gluons Bi. The second term, 

which is negative and therefore diminishes the interaction, produces the usual 

polarization of thevacuum in an external field. 
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In this manner, the increase of the interaction may originate only from the 

first term, that is from the change in the conditions of propagation of the 

Coulomb field. So this change of the conditions of propagation leads to the 

stronger interaction at large distances as is clear from the following. Consider 

the operator -l/A before averaging of the field Bi: 

G(r,r’) = (r 1 -l/Air’)= I d3k qk(‘) ektr’) 
- 
Gw” E (k) , (23) 

where e (k), z+& are the eigenvalues and eigenfunctions of the operator A with 

momentum “k” at infinity. It is clear that if one calculates G(r,r’) for a field 

Bi lying near Ln (the boundary of the region Cn in Fig. l), where the operator 

o achieves a zero eigenvalue, then A also will achieve a null eigenvalue and 

G(r,r’) will go to cc. If we calculate G for a potential within the region Co, 

where the potential is either small or repulsive, then the change in the density 

of states would not be essential. Even if the average value of Bi is equal to 

zero, then it is all the same, inasmuch as attractive action is more essential 

than a repulsive one, for the presence of zero point oscillations leads to a 

strengthening of the interaction. It is also clear that a more intense action of 

the medium grows with growing distance between the charges, inasmuch as in 

this case, the probability grows that in the region between the charges is achieved 

a zero point vibration field lying near Ln, that is, guaranteeing a level of zero 

energy of the operator A. 

The phenomenon being discussed is clearly visible in the calculation of the 

invariant charge in perturbation theory. For the calculation of the first term 

in (21) we must expand in a series of powers of B the operator l/A and, con- 

sequently, l/O : 
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-1 -1 -=- 
A +LBal a2 a2 i’ i 3 [ 1 --?+T [Bi, ail-j pi, ail-j . (24) 

After averaging on the fields Bi, we receive the following expression for the 

contribution of this term to the Coulomb energy in the momentum representation 

(with ph = g26 (x’)): 

d3 k’ C; 

(2~)~ (k - k’)2 2 k’ 

M g2/k2 Bn A2/k2 , 
I (25) 

corresponding to the diagram in Fig. 2, where the solid line corresponds to the 

Coulomb propagator, but the dotted line, to the average value of the products of 

fields Bi, that is, the transverse Green function of gluons at equal times. For 

the calculation of the second term in (21), it is possible to substitute for A, a2. 

With this V($ul leads to the usual expression for the vacuum polarization, cor- 

responding to the diagram of Fig. 3: 

v(2) coul = - (Cig41n(A2/k2):/k2 487r2 . (26) 

Combining (25) and (26), we receive 

V coul = g2/k2 1+c;g2 WI 

which coincides with the usual expression for the invariant charge in first order 

of g2. In the calculation of higher orders of g2 in logarithmic approximation, 

the corrections to the dominant parts and Green function reduce to the same 

form as in QED, and 
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1 - C; Lg2Qn A2/k2 
48~~ 

(28) 

Comparing (21) and (28) and remembering that the second term in (21) is nega- 

tive, we see that in the region 

where the logarithmic approximation is still applicable, begins a huge (for g2< 1) 

strengthening of the interaction, so that’ <0 I l/A I 0 > - l/k2 g2. Such an in- 

crease in <0 I l/ A I 0 > may originate only by virtue of the essential role played 

during the averaging by fields for which 0 (B) achieves almost a null eigenvalue, 

that is, near to Lo or even another of the Li in Fig. 1. In such a manner the in- 

variant charge of order unity originates from the average on fields for which, 

generally speaking, the usual theory is already incorrect by virtue of the non- 

uniqueness in introducing transverse fields. 

The same may be said in another way. On the space scale at which the in- 

variant charge is of order unity, the fluctuations of the transverse field are so 

large that they may not be described interacting massless transverse fields of 

gluons. As was already noted in the introduction, this may signify that on such 

scales, massless gluons do not exist. Finally, in the same line, it may signify 

that these scales determine the radius of color confinement. 
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V. PARTICULAR SOLUTIONS OF THE CHIR4L EQUATION 

Below we shall confine ourselves to the SU(2) group and shall consider 

first the case Bi = 0, i.e., we shall ascertain whether there exist purely trans- 

verse gauge fields. We shall seek in this case a very simple spherically sym- 

metric solution in the form 

where the 7i are Pauli matrices, and 

-  

4  X. 
1 n. =- 

1 r ’ r2 = X.X. . 1 1 

Substituting (29) into (17), we get 

2 1 
Hence the equation for a(r) is 

a2 r- (or) -sin20 =0 
ar2 

. 

(29) 

(30) 

(31) 

If we introduce the variable t = Pnr, we shall arrive at the equation for a pendu- 

lum 

The 

that 

in a gravitational field with damping (Fig. 4): 

a +ci! - sin2a! = 0 . (32) 

potential energy of the pendulum is v(a) = -2 sin2 Q! (Fig. 5). It is obvious 

the solution, nonsingular for r - 0 (t -. - cc ), is for a pendulum which, 

whent-.- cc , is in the position of unstable equilibrium (Y = 0 (a! = n 7r). 

When t -. - cc , we have 

a!(t) = yr = yet. (33) 
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When t -+ 00 , we have o(t) -. f i, and for any t-by virtue of the presence 

of the damping-we get I a! (t) I < 7r. The field Bi corresponding to such an a(r) 

is not singular for finite values of r, and for r -. 00 it has the form: 

B;o = E 32 
api r2 

(34) 

i. e. , it decreases as l/r. 

The solution found for U(r), and conseque.ntly for B’(r), is characterized by 

four parameters : three parameters yo, which define the reference point, and 

a parameter y, which has the meaning of an inverse radius of the region beyond 

which B; decreases. 

We have shown that there exists an indeterminacy which is characterized by 

at least four parameters, i. e., corresponding to the zeroth field Ai we have at 

least a four-parameter family of fields Bi. 

To understand how significant this indeterminacy is, we deem it useful to 

ascertain where the Bi fields that have been found are situated from the standpoint 

of describing the space of the Bi fields with the aid of Fig. 1. The first thing that 

we note is that the equation o(B) $ = 0 in the field Bi has a solution with z,!J, which 

decreases as r - co. This is clear from the fact that Bi depends on four arbi- 

trary parameters. With an infinitely small variation of the parameters, we switch 

to a field that satisfies the same co.nditions, i.e., we perform a gauge transforma- 

tion with U, which is close to unity, without altering the behavior of the field as 

r--,00, which does not depend on the parameters. This latter means that 

$(r)-0 as r-+ 00. We are then left with two possibilities: either z+!(r) is square 

integrable, in which case Bi lies on one of the lines Ln, or Q(r) is not square 

integrable. In this latter case, in the field Bi there should be a bunching of the 

levels toward zero, i. e., an infinite number of the levels and Bi(r) lies in the 

region C o. . 
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A direct substitution of Bi into the equation 0 $ = 0 leads to an equation which 

reduces to the Schrijdinger equation with a potential that decreases as l/r2 and has 

an infinite number of levels. 

Hence the Bf fields corresponding to the zeroth Ai from the standpoint of 

Fig. 1 are situated Ynfinitely far away” from Bi = 0. One can adduce arguments 

in support of the contention that all solutions of Eq. (16) for Bi = 0 possess this 

property. 

We shall now discuss Eq. (16) for the presence of the field Bi , and for sim- 

plicity’s sake we shall consider the field Bi as having a simple form convenient 

for solving the equation. 

We let Bi(x) have the form: 

B;(x)= ;capi 2 32 f(r) , 
r 

(35) 

where f(r) is an arbitrary function. This field is transverse. Selecting U in the 

same form (29) and substituting (35) and (29) into (17), we get an action in the 

form 

W =/r2dr{(si” +2 * [I -f(r)]1 

and the equation 

(36) 

6 + & -sin2a [l -f(7)] = 0 , (37) 

I. e. , the equation for a pendulum in a time-dependent field. This equation has 

solutions of the same type as does the equation for f = 0, i.e. , solutions in which 

a! ; -.D- as 7-00. However, if Bi is sufficiently great, Eq. (37) has other 

solutions too: CI! -. 0 as T -. co or a! - T as T - co , which will lead to fields 

B; that rapidly decrease as r + co . It is clear that one can select a field such 
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that the pendulum, after starting to move from a position of unstable equilibrium 

with an energy equal to zero, will at a certain instant charge its direction of 

velocity under the influence of the field and, after acquiring a positive energy, 

will start to damp out as it asymptotically approaches its starting position 

[0!(00)=0]. 0 ne can also select a field f such that the pendulum, after in- 

creasing its velocity at a certain instant T , will start to approach the starting 

position from the opposite direction a! (00) = r. If f (T ) has a more complex de- 

pendence on T , then the pendulum can several times pass through a position of 

unstable equilibrium and only then start to approach it asymptotically. 

We therefore arrive at the conclusion that, if the transverse field Bi is suf- 

ficiently great, one can have corresponding to it a whole set of transverse fields 

Bi related to the field Bi through a gauge transformation and decreasing fairly 

rapidly as r A 00 . 

We shall now discuss what determines the magnitude of the field f(T ) in which 

the pendulum returns to the equilibrium position. Numerical analysis shows that 

a minimal restriction on f (7 ) occurs if f (T ) acts at those instants T at which the 

deviation 01 (T ) is still much smaller than 1. In this case, instead of (37, we have 

ii! + h -2o!(l-f)=O . (38) 

Equation (38) is somewhat different from the equation q J, = 0 when J, = a! (r)& 

in the particular form of Bi in expression (35). Hence the”minimal” field is the 

field on the curve Lo. However, for “minimal” f = fo, Bi = Bi, and in order to 

have the indeterminacy, f has to be greater than fo. There will then exist a 

negative -E eigenvalue of the operator q . 

To determine o!(r) in this case, we set 

cu(r)=oe +Z, (39) 
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where 

ii! +fi 
E E -2ore (1 -f)=+e (Ye , (40) 

in which oe decreases with large r. Substituting (39) into (37) and considering 

z and o!e to be small, and that 5 << a! E’ we get 

. . . z +E -2&(l-f)==ealE -$a,” 
(1-f) l (41) 

For (41) to have a non-singular solution for E -0, it is necessary that the right- 

hand side be orthogonal to o!e : 

EQ~ -gQe 4 4(l-f)]=O . (42) 

This relation determines the normalization of a! : a2 - E , i.e. , a! E E E - NIL 

Then 8 - E 2 also decreases with large r. As f further increases, E (the binding 

energy) increases, and the expansion in powers of E deteriorates. However, a 

solution still exists. When f increases to the point where a second level with 

a small binding energy E ’ appears, then, by repeating the above operations, we 

shall show that a secoad solution appears. We therefore get a degree of indeter- 

minacy equal to the number of eigenvalues of the operator 0 . Actually, owing 

to the fact that 01 (30) can equal not only zero but “n +’ as well (the pendulum can 

sail through the equilibrium position several times from different directions), 

the degree of indeterminacy of the fields Bi is even greater. 
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VI. TRANSVERSE GAUGE FIELDS 

In conclusion, we shall discuss whether a significant role in the interaction 

of gluons may not be played by the purely transverse gauge fields which slowly 

decrease as r - a0 (34), found in the preceding section. The existence of such 

transverse fields means that even in transverse gauge we have, along with the 

vacuum Bi = 0, vacua described by transverse fields with the asymptotic form 

(34). From the topological standpoint, these fields have a half-integer topologic 

charge. If between such vacua there existed tunneling transitions (analogous to 

the tunneling transitions between the vacua with integer topologic charges, 

achieved with the instanton solutions of Ref. 4), then, regardless of the magui- 

tude of the coupling constant and of the instability of perturbation theory, large 

transverse fields would always be present in a physical vacuum. Then the entire 

theory would change completely. But if the probability amplitude for such trans- 

itions equals zero, we can co.nfine ourselves to the transverse fields which de- 

crease more slowly than l/r, and we shall have one vacuum in the transverse 

gauge. 

If one attempts to ascertain the probability of such transitions, one gains 

the impression that this probability equals zero in the purely local theory. To 

understand the reason for this, we shall take as an example a field of the form 

xP By(T, t) = + capi (I - U(r,t) , 
r 

where U = 1 corresponds to the zeroth field, and U = -1 to the transverse gauge 

field with a zero radius. The transition from the field with U = 1 to the field 

with U = -1 is the one that interests us. 

The action for a Yang-Mills field of the form (43) has the form 
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-+1-2)2 
4r2 

(44) 

This action describes a string with the two equilibrium positions U = 1, U = -1. 

Between these equilibrium positions, and beyond them, there is a potential 

barrier whose height at the point r = 0 is infinite and tends toward zero as 

r -. CXJ . The energy of the system is finite only under the condition U(0, t) = f 1. 

If U(0, t) is fixed by one of these values, e. g. , U = 1, then for any excitations 

of the string involving a jump across the barrier for any values of r, except r = 0, 

the string will slip into the region of large r and, after a finite length of time, 

will arrive at the equilibrium state U = 1 for any finite r. However, even a 

tunneling variation of U(0, t) is impossible, for the barrier has a finite width and 

an infinite height. Hence any state of the string is characterized by the values 

U(l, t) = f 1, between which there are no transitions. Transitions would occur 

only in the event that we introduced a cutoff of the interaction at r = 0. 

The situation changes if there sre monopoles in the theory. Since the mono- 

pole field is defined by (43) for U = 0 and decreases at infinity only as l/r, it is 

already impossible for us to confine ourselves to fields which decrease more 

slowly than l/r. Then any solution of Eq. (16) is available, and it is consequently 

impossible to fix the transverse gauging in the presence of a monopole. It is 

interesting to note, though, that at great distances the monopole field is invar- 

iant with respect to a gauge transformation with a matrix having the form (29). 

In conclusion, I wish to express my profound thanks to A. A. Belavin, Yu. 

Dokshitser, A. M. Polyakov, V. Korepin, and I. B. Khriplovich for their 

numerous and extremely helpful comments. 
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Note added: 

After this translation was completed, we learned of a very fine translation of 

Gribov’s lecture by J. Bartels and W. Nahm from CERN. The translation and 

editing by Abarbanel attempt to retain as much as possible the flavor (and color! ) 

of the original Russian article. We feel that this SLAC translation No. 176 should 

go forth and be widely circulated as it will benefit the physics community at large. 

H. D. I. Abarbanel 

H. C. Tze, SLAC Coordinator 
of this translation project 
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