Bottomonium Results by BABAR

Silvano Tosi

Università & INFN Genova

now at Université Lyon I, CNRS/IN2P3, Institut de Physique Nucléaire Lyon

Summary:

- Observation of η_b
- Energy scan above Y(4S)
- Search for $\Upsilon \rightarrow \gamma A^0$, $A^0 \rightarrow invisible$
- Hadronic transitions $\Upsilon(4S) \rightarrow \Upsilon(nS)$

PANIC 2008, November 9-14th Eilat, Israel

Work supported in part by US Department of Energy contract DE-AC02-76SF00515.

SLAC National Accelerator Laboratory, Menlo Park, CA 94025

The **B**-Factory PEP-II at SLAC

- Beam energies (at the $\Upsilon(4S)$): 9 GeV e⁻/ 3.1 GeV e⁺
 - the center-of-mass energy is changed by changing the energy of the e^- beam.
- Instantaneous luminosity: $L_{peak} \approx 12 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$
 - $-\sim$ 4 times the design luminosity.

Spectrum of Bottomonium States

- Many transitions still to be observed.
 - observed recently observed
 - not yet seen

- Bound states $b\overline{b}$:
 - Spectrum described with potential models: Coulomb potential + linear term.
- 30 years after the discovery of bottomonium, all singlet states (and many D-wave states) were missing, including the ground state, $\eta_b(1S)$.
 - Hyperfine splitting $m(\gamma(1S)) - m(\eta_b)$ gives information on the spinspin potential
 - Sensitive to α_s

Search for η_b

- Using the process e⁺e⁻→Y(3S)→γη_b
 Predictions: BR(Y(3S)→γη_b) ~ 10⁻⁴÷2×10⁻³
 CLEO⁽¹⁾: BR(Y(3S)→γη_b) < 4.3×10⁻⁴
 (¹⁾ PRL 94, 032001 (2005)
 Hyperfine splitting: 35 ÷ 100 MeV ⇒
 m(η_b) ~ 9400 MeV/c²
- Total width: $4 \div 20 \text{ MeV/c}^2$.
- Decays of η_b are not known:
 - study of the inclusive photon spectrum: $E_{\gamma} = (s - m^2) / 2\sqrt{s}$

- $\Upsilon(3S) \rightarrow \chi_{bJ}(2P) \gamma \rightarrow \Upsilon(1S) \gamma \gamma$: peak at ~ 760 MeV
- $-e^+e^- \rightarrow \gamma_{\rm ISR} \ \Upsilon(1S)$: peak at ~ 850 MeV

• Study of peaking backgrounds

 $e^+e^- \rightarrow \gamma_{\text{ISR}} \ \Upsilon(1S)$: data taken at ~40 MeV below the Y(4S).

- In the final fit:
 - exponential background: all parameters free
 - $-\chi_{bJ}$: everything fixed, but yield
 - ISR: everything fixed.
 - signal: yield and mass free.

 $\Upsilon(3S) \rightarrow \chi_{bJ}(2P)\gamma$ on 3S data, removing the signal region. After subtracting the exponential background:

• Detailed Monte Carlo studies show that the η_b width cannot be measured in the fit.

- Fixed to 10 MeV in the nominal fit
- A systematic error is determined by varying the width till 20 MeV.

• A significant excess of events is observed at a mass below the $\Upsilon(1S)$. The only likely candidate is the $\eta_b(1S)$. However, other interpretations cannot yet be discarded (like a light Higgs or a glueball).

• Under the bottomonium hypothesis:

Mass:

$$9388.9^{+3.1}_{-2.3}$$
(stat) ± 2.7 (syst) MeV/ c^2

Hyperfine splitting:

$$71.4^{+2.3}_{-3.1}$$
(stat) ± 2.7 (syst) MeV/c²

BR($\Upsilon(3S) \rightarrow \eta_b \gamma$): [4.8 ± 0.5(stat) ± 1.2(syst)] × 10⁻⁴

Good agreement with expectations for η_b **PR**

PRL101, 071801 (2008)

- More results are awaited soon!
 - other decay chains from $\Upsilon(3S)$, via χ_b or h_b

-verification of bottomonium hypothesis and constraints on quantum numbers.

 $- \mathcal{X}(2S) \rightarrow \gamma \eta_b(1S)$

Energy Scan Above *Y***(4S)**

arXiv:0809.4120

- Main motivation:
 - Search for counterparts of the exotic states with *c* quark.
- Scan from 10.54 to 11.20 GeV in 5 MeV steps.
 - 25/pb per step, plus 600/pb around $\chi(11020)$
- Hadronic cross section measurement as a function of energy

$$- R_b(s) = s_b(s)/s_{\mu}(s)$$

- $s_b(s)$: total cross section for $e^+e^- \rightarrow b\bar{b}(\gamma)$
- $s_{\mu}(s)$: 0th order cross section for $e^+e^- \rightarrow \mu^+\mu^-$

Search for Invisible Light Scalar Particles

- In extensions of the Standard Model (SM) like Next to Minimal Supersymmetric Standard Model a Higgs singlet is added.
- So there is an additional Higgs boson (A⁰), (pseudo)scalar, CP odd, that can be light.
 - The SM Higgs boson can decay to $A^0 A^0$
 - For masses below ~10 GeV, A^0 can be accessible in decays of the Υ , with BR ~ 10⁻⁴.
 - A dominant decay, especially if $m(A^0) < 2m(\tau)$, could be $A^0 \rightarrow \chi \overline{\chi}$, with χ light dark matter component.
 - A Higgs boson with such properties might have eluded the LEP searches.
 - CLEO⁽¹⁾: BR($\Upsilon(1S) \rightarrow \gamma A^0$)×BR($A^0 \rightarrow \text{invisible}$)<3 × 10⁻⁵ for m(A⁰) < 7.2 GeV/c²

⁽¹⁾ PRD 51, 2053 (1995), ⁽²⁾ PRL 95, 041801 (2005)

- Maximum likelihood fit to $m_X^2 = m^2(\Upsilon) 2 E_{\gamma}^*$ m(Υ) for the selected events.
- Two trigger lines in two E_{γ} regions: treated separately.

photon" events

• Upper limit on BR($\Upsilon(3S) \rightarrow \gamma A^0$)×BR($A^0 \rightarrow$ invisible) as a function of m(A^0)

- Range: 0.7×10^{-6} (with m(A⁰)=3.0 GeV/c²) ÷ 31×10⁻⁶ (with m(A⁰)=7.6 GeV/c²)
- Assumption BR($A^0 \rightarrow \chi^0 \overline{\chi^0}$)=1
- The models above each range of color are excluded.

Scan parameters: $m(A^0) \le 2m(\tau)$ $2m(\tau) \le m(A^0) \le 7.5 \text{ GeV/c}^2$ $7.5 \le m(A^0) \le 8.8 \text{ GeV/c}^2$ $8.8 \le m(A^0) \le 9.2 \text{ GeV/c}^2$

Hadronic Transitions $\Upsilon(mS) \rightarrow \Upsilon(nS)$

- Hadronic transitions between heavy quarkonia can be described with the QCD multipole expansion model (QCDME ⁽¹⁾):
 - Expansions in terms of (ak) if the radius *a* of the bound $q\overline{q}$ state is much smaller than the wavelength 1/k.
 - Vicinity to threshold openings may modify the QCDME predictions.
- In the charmonium system, data agree with predictions:
 - BR($\psi(2S) \rightarrow \eta J/\psi$) / BR($\psi(2S) \rightarrow \pi \pi J/\psi$), m($\pi \pi$) in the transition $\psi(2S) \rightarrow \pi \pi J/\psi$
- In the bottomonium system, many more transitions available: more comparisons.
 - The m($\pi\pi$) distribution in the $\Upsilon(3S) \rightarrow \Upsilon(2S)\pi\pi$ and $\Upsilon(2S) \rightarrow \Upsilon(1S)\pi\pi$ transitions do agree with the QCDME expectations.
 - The m($\pi\pi$) distribution in the $\Upsilon(3S) \rightarrow \Upsilon(1S)\pi\pi$ transition is not in agreement with the QCDME model.

Non BB Decays of Y(4S)

Conclusions

- Many interesting results on bottomonium physics.
- First measurements using data taken at energies other than the 4S were presented at the summer conferences.
- Observation of the bottomonium ground state.
- Precision measurement of the hadronic cross section above the $\Upsilon(4S)$. Study of resonances awaited soon.
- Stringent limits on invisible decays of a light scalar particle produced in bottomonium decays.
- Studies of hadronic transitions between the $\gamma(nS)$ reveals tension with the QCDME model.
- And many more results are awaited soon !!

Backup Slides

The **BABAR** Experiment

- Selection of *bb* events for the scan:
 - > 2 charged tracks
 - visible energy > 4.5 GeV
 - tracks vtx < 5mm (xy), 6 cm (z)
 - 2nd ord FoxWolfram mom<0.2

• $e^+e^- \rightarrow \Upsilon(3S) \rightarrow \gamma A^0$: search for a particle decaying "invisibly" on the recoil of an isolated photon.

- Reconstruction of the photon as an e.m. shower in the calorimeter.

- Veto events with activity in the μ detector in direction opposite the photon (suppresses $e^+e^- \rightarrow \gamma\gamma$ background)

– No activity in the tracker

– Total energy of residual photons < 100 MeV.