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Abstract

In 2010, the Fermi Bubbles were discovered at the galactic center of the Milky Way.
These giant gamma-ray structures, extending 50 degrees in galactic latitude and 20-30
degrees in galactic longitude, were not predicted. We wish to develop a model for the
gamma-ray emission of the Fermi Bubbles. To do so, we assume that second order Fermi
acceleration is responsible for the high-energy emission of the bubbles. Second order Fermi
acceleration requires charged particles and irregular magnetic fields—both of which are
present in the disk of the Milky Way galaxy. | use the assumption of second order Fermi
acceleration in the transport equation, which describes the diffusion of particles. By solving
the steady-state case of the transport equation, | compute the proton spectrum due to Fermi
second order acceleration and compare this analytical solution to a numerical solution
provided by Dr. P. Mertsch. Analytical solutions to the transport equation are taken from
Becker, Le, & Dermer and are used to further test the numerical solution. | find that the
numerical solution converges to the analytical solution in all cases. Thus, we know the
numerical solution accurately calculates the proton spectrum. The gamma-ray spectrum
follows the proton spectrum, and will be computed in the future.



The Milky Way Galaxy

Face-on view:
the galactic plane
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Ive years ago, this was our view of the Milky Way:




Large Area Telescope (LAT)

The Ferm




Now, we know the Milky Way looks like:

the Fermi
Bubbles

— Credit: NASA/DOE/Fermi LAT/D. Finkbeiner et al.



The Production of y-rays

 Dominant processes for gamma-ray
(y-ray) production in the Galactic ridge:
 Inverse Compton scattering
« Bremsstrahlung
* Neutral pion decay

* Thermal particles at a temperature of
10”"6K have energies of a couple eV.
Gamma rays are in the GeV to TeV
range. So, we need an acceleration
mechanism.




Inverse Compton Scattering

* The electrons lose energy
* The photons gain energy—jpossibly up to the gamma-ray regime
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Neutral Pion Decay

 Cosmic rays (CR) are of non-solar origin.
* pcr . COSMIC ray proton
* Nyqs 1 gas nucleus

- ¥ : neutral pion
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The Model: Second Order Fermi Acceleration
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he Heat Equation: aé(zaﬂ 82¢(5B t)
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Independent of x and t

Finite-Difference Approximation to the Heat Equation:
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This obtains numerical solutions.
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The Transport Equation Compared to the Heat Equation
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The Transport Equation for Second Order Fermi
Acceleration
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The Transport Equation for Second Order Fermi

Acceleration

Assumptions:
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Solve for the |steady-state |solution with a

momentum-independent escape time.

The analytic solution:

R
f(p) o< p *

Dependent on the ratio of particle
acceleration time and escape time.
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Proton Spectrum
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Proton Spectrum
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[equation from Becker, Le, & Dermer]
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Proton Spectrum
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Future Work

* Model the gamma-ray spectrum due to proton-proton
Interaction.
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