Analysis of Approaches for a Design of APS-U Fast Injection System

For Mini Kicker Work Shop in ANL

Anatoly Krasnykh
10/25/2013

Outline

- Approaches for Broadband Kicker Structures

$>$ Even and Odd TEM-modes
> Kicker directivity
> Kicker end effects
> Kicker components (feedthrough, electrodes, etc.)

- Analysis for Kicker Drivers
> Thyratron (or Pseudo-Spark) based approaches
$>$ Shock wave transmission lines as an assist of fast pulsers
> MOSFET based pulser concepts
> DSRD as an assist for fast pulsers
Some additional details related to this issue could be found in SLAC-WP-077, SLAC-WP-078, SLAC-WP where the ILC DR fast TEM-mode kicker problems and other issues of a HP nsec technology had been discussed.

TEM-mode Even and Odd Kicker Impedances

- Pulsers produce a transvers kick. The odd TEM mode is excided.
- The bunch pusses a kicker structure without offset. The even TEM mode is generated in the kicker structure.
- The field patterns for modes are dissimilar. As a result the impedances are different.
- Matching both impedances is possible by the introduction of the ground fenders.
- Additional fenders will reduce the beam impedance and will help the SR beam dynamics.

Page 3

Kicker Electrodynamics: Ground Fenders

TFB Kicker Beam Impedance Comparison

f0=476MHz
Beam Impedance Ratio for the (59.5-1725.5) MHz range is ~ 1.6.
This ratio is reduced for the higher frequencies (in 3.6-5 normalized frequency range). Geometry of the kicker ends (geometry of paddles and absence of tapering on the electrode ends, i.e. the absence of transient region) are dependable for a reduction of Beam Impedance Ratio.

Page 4

Lesson Learned (LER X-TFB TEM-Kicker)

$Z_{\|}^{a v} \cong 34 \mathrm{Ohm}$

$$
P_{k} \cong 306 W @ 3 A
$$

$V_{g}^{a v} \cong 102 \mathrm{~V}$
The kicker ends are in charge for this freq.

Lesson Learned (LER X-TFB TEM-Kicker)

Center 4.72 GHz
CRes Bu 10 kHz
C:ITRACEOA1.CSV file saved

A tapered ends are needed

Page 6

Does mismatch be allowed?

- Bunch pattern:
- High single-bunch charge 48 -singlet
- 324-singlet
- Total space for kickers: 3 m
- Beam energy: 6 GeV
- Total kick angle: 3 mrad
- Length of each kicker: 0.6 m
- Number of kickers: 5
- Kick angle per kicker: 0.6 mrad
- Kicker type: two-blade horizontal stripline
- Body geometry: Elliptical + Circles
- Blade geometry: Elliptical + tapered ends
- Gap between blades: 9 and 12 mm
- Differential impedance: $2 \times 50 \pm 0.5 \Omega$
- Common mode impedance: $50 \pm 5 \Omega$
- Design work is under way.

Quantity	Symbol	Range	Units
Total current	I	200	mA
Number of bunches	N_{b}	$48-324$	
Bunch rate	f_{b}	$13-88$	MHz
Rms bunch duration	σ_{t}	$70-18$	ps
A broadband kicker			
Structure Will be needed!			

There will be an impedance mismatch

50 Ohms 100 Ohms 50 Ohms
Page 7

Directivity: Kicker End Effects

Example is based on experimental results from PEP-II

SLAC

HER, single bunch $0.8 \mathrm{~mA}, 16.5 \mathrm{MV}$, att=26dB

- Sigma_beam < dR (a condition)
- $\mathrm{dt}_{\mathrm{C}} \mathrm{b}<2 \mathrm{tp}+\mathrm{tk}$ (a root of problem)
- Reflection on the (Z0, Zp, Zk) nodes (a result)
- Dissipation in kicker electrodes (an effect)

Page 8

Loss of Directivity: HOM Simulations (single bunch)

Advanced kicker structure

The blade inner surfaces are flush with connecting vacuum chamber for reduction of impedance seen by the beam.
Tapered ends are necessary for connection to the feedthroughs. A clip is used to connect the end of blades to the inner conductor of the
feedthroughs. Geometry of the clip is optimized for impedance matching.

Similar to a balun-type impedance x-fmr

Page 10

Feedthrough Performances

Better feedthroughs are needed:
Broadband, HV, vacuum tight, bake able, identical

May a topic be for SBIR?
Page 11

TEM-mode Kicker System

- Drive pulse shape: flat top
- Kicker housing with plates
- Feedthroughs with feeders
$>$ Loads
$>$ Neg. and Pos. pulse generators

- Peak blade voltage: $\pm 15 \mathrm{kV}$ to $\pm 22 \mathrm{kV}$.
- Total pulse width: 18.7 ns
- Flat-top width: 4 ns*
- Maximum rise / fall time: 7.3 ns*
- Maximum repetition rate: 2 Hz
- Jitter time: < $0.1 \mathrm{~ns}(P-P)$
- Jitter time for timing system < $0.1 \mathrm{~ns}(P-P)$

Page 12

HV Broadband Loads and Attenuators

Home Made HV Attenuators

Page 13

Fast Kicker Drivers:
 Thyratrons and Pseudo-Spark Switches

High power handling ($50+\mathrm{kV}, \mathrm{kA}$)
Marginal di/dt, dV/dt (~10E12 A/sec)
Recovery time too long
Life time may be limited and operation costly (to keep the optimal pressure)

Thyratron based approaches may need in a shock wave (SW) transmission line (TL) assistance

Approach would be recommended for an evaluation of shorter and better shape pulses

Page 14

Potential Fast Kicker Diver Concepts

Limitation of SW TL Assistant

Transmission line with ferromagnetic medium needs a high current.

$$
t_{r} \approx \frac{2.5 \cdot 10^{-5}}{H_{s w}}
$$

More current will be produced by a higher applied voltage.

High electric fields may produce the ionization in ferromagnetic media. Plasma formation and breakdowl are a killer of shock wave formation.

"Кривая жизни" для ферритов 600НН.
JINR preprint 9-12448, 1979

E_ferrite $\sim 10 \mathrm{kV} / \mathrm{cm}$, (for long life time: $\mathrm{E} \sim 5 \mathrm{kV} / \mathrm{cm}$ is acting electric field) \rightarrow gives the rise/fall times $\sim 1 \mathrm{nsec}$

Small size NiZn toroid cores are preferable. A needed length of the oil filled coax depends on an initial rise time and magnetic core parameters. A design of SW TL would require conducting the R\&D.

May a topic be for SBIR?

Page 16

Kicker Drivers: MOSFET based Approaches

A single MOSFET voltage hold off is less than 2 kV , switching current is $<100 \mathrm{~A}$, and a rise time ~ 5 nsec @ high impedance load. DE and APT are leaders in the fast MOSFET industry.

A higher output voltage will require more cells. A rise time will degrade. For example, DARHT-II kicker, +_20 kV @ 50 Ohm loads, rise time is $\sim 10 \mathrm{nsec}$

MOSFET based Approaches (cont.)

Behlke HV switches (array of stacked MOSFETs)

Variable On-Time
Very Low On-Resistance
> Technical Data (for example): $0.8 \times 21 \mathrm{kV} \sim 17 \mathrm{kV}$ @ 250A on rise time ~ 40 nsec

Best guess: 5 each of them (an effective impedance is ~15 Ohm), + SW TLs, and TL-based x-fmr \rightarrow 20+kVp @15 nsec

HTS 40-06 $4 \mathrm{kV} / 60 \mathrm{~A}$
HTS 50-05 $5 \mathrm{kV} / 50 \mathrm{~A}$
HTS 80-03 $8 \mathrm{kV} / 30 \mathrm{~A}$
HTS 160-01 $16 \mathrm{kV} / 15 \mathrm{~A}$

Just buy bunch of them and combine the TLs with TL-based x-fmrs to get the required voltage on resistive load.

Apparently home made TLs are will be needed (a rise time is realized on rather high resistive loads)

Fast Pulsers with a DSRD Assist

- A DSRD is a fast solid state device that can improve the switching performance of industrial high power switches (thyratrons, MOSGETs, etc.).
- All mentioned above kicker drivers are based on turn ON switches (SW relates also to this class). DSRD mode operation is based on a turn OFF mode. DSRD is a device with two electrodes (anode and cathode). A special circuit (a pumping circuit of the DSRD) is needed to realize the fast opening mode. The pumping circuit has to provide a current flow through the DSRDiode in forward and reverse directions. There are several electronic circuits to create such current flow.

Pulsers with DSRD Assist (cont.)

Overall Comments

- Kicker structure is an efficient HOM power extractor
- Peak HOM voltage and average power at the feeder may be sufficient to act on the kicker pulser system if the kicker structure has been designed with a narrow bandwidth
- Feeder imperfections (real cables, feedthroughs, kicker electrodes, loads) are one source of residual energy between bunches. HOM spectrum is broad and imperfections could select and capture the "right mode". Common actions (HV peak and HOM) need to be careful evaluated and mitigated
- Best guess: thyratron/MOSFET pulser with an assistance of shock wave (or DSRD stack as option) is more attractive concept for the APS-U injection system
- A practical evaluation (R\&D) of prototypes will be necessary to allow a optimal selection of injection system

Backup Slides

Courtesy FID Technology

Page 22

Backup Slides

\#2

Courtesy G. Mesyats

Backup Slides

