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Abstract 
 In the electronics behind computer memory storage, the speed and size are dictated by the performance 

of permanent magnets inside devices called read heads. Complicated magnets made of stacked layers of thin films can 
be engineered to have properties that yield more energy storage and faster switching times compared to conventional 
iron or cobalt magnets. The reason is that magnetism is a result of subtle interactions amongst electrons; just how 
neurons come together on large scales to make cat brains and dog brains, ensembles of electrons interact and become 
ferromagnets and paramagnets. These interactions make magnets too difficult to study in their entirety, so I focus on 
the interfaces between layers, which are responsible for the coupling materials physicists hope to exploit to produce 
next-generation magnets.  
 This project, I study a transition metal oxide material called LSCO, Lanthanum Cobaltite, which can be a 
paramagnet or a ferromagnet depending on how you tweak the electronic structure.  It exhibits an exciting behavior: its 
sum is greater than the sum of its parts. When another similar material called a LSMO, Lanthanum Manganite, is grown 
on top of it, their interface has a different type of magnetism from the LSCO or the LSMO! I hope to explain this by 
demonstrating differently charged ions in the interface. The typical method for quantifying this is x-ray absorption, but 
all conventional techniques look at every layer simultaneously, averaging the interfaces and the LSCO layers that we 
want to characterize separately. Instead, I must use a new reflectivity technique, which tracks the intensity of reflected 
x-rays at different angles, at energies near the absorption peaks of certain elements, to track changes in the electronic 
structure of the material. The samples were grown by collaborators at the Takamura group at U.C. Davis and probed 
with this “resonant reflectivity” technique on Beamline 2-1 at the Stanford Synchrotron Radiation Lightsource. This 
project was funded by the Department of Energy and supported by the SLAC National Accelerator Laboratory. 
 Preliminary results suggest that different ionic charges are indeed responsible for the different magnetic 
properties at the interface, which is promising because charge is easy to control. Once scientists understand how to 
tune the magnetic properties of materials like LSCO and LSMO, industries get closer to designing the magnets that will 
soon revolutionize consumer electronics.  
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 X-ray absorption spectroscopy 
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 X-ray absorption spectroscopy 

Matthew Newville, Fundamentals of XAFS  
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 X-ray absorption spectroscopy 
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 X-ray absorption for e- structure 

Matthew Newville, Fundamentals of XAFS  

Incident Energy 

F
lu

o
re

s
c
e

n
c
e
 I
n

te
n

s
it
y
 

Absorption  

Edge 

Zach Porter 9 
Zach Porter 9 



 X-ray absorption for e- structure 
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    Need to scatter! 

 Problem: which layer is which? 
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 Reflections 
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 Beamline 2-1 
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 Reflectivity 
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 Resonant reflections 
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 Resonant reflectivity 
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 Resonant reflectivity seems valid 
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 Electronic structure 

Fitting reflectivity curves 

     results are pending 
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 Kramers-Kronig transforms 
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THE method for buried interfaces 
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