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High current proton accelerators are nowadays planned
for various applications that make use of a large flux of
spallation neutrons. The INFN has initiated a study on the
conceptual and technical feasibility of a (greater than)
40 MW CW linac for nuclear waste transmutation and
energy production.
A safe and reliable operation of these high current
machines will require proper control of the beam losses.
Accurate simulations codes are needed to assess that the
beam losses are maintained to a safe level. As a part of
the INFN program, an “ad hoc” code development
activity has started, using recent programming techniques
and numerical algorithms. The code in development
deals, for now, with the proton beam dynamics in the high
energy part of the proposed machine, composed by
superconducting RF (elliptical) cavities placed between
the long drifts of a quadrupole doublet array. The cavities
are treated using an on-axis field distribution, either
provided in analytical form or as tabular data.
Space charge is evaluated with a fast Poisson solver, that
uses a 3D multigrid algorithm. V Cycle or full multigrid
algorithms appear to be promising in terms of speed and
memory requirements, and can be readily modified for
parallel computers. Checks with standard direct point-to-
point calculations have been performed.
A major effort has been put in using a modular approach
for the data and program design. The code conforms to
the F90 syntax and, where possible, makes use of safe
programming criteria (controlled scoping of variables
through MODULEs and PRIVATE/PUBLIC qualifiers,
explicit procedure INTERFACES with INTENT
declaration, dynamic allocation of all the data structure
for the beam line, the particles and the space charge
meshes). Preliminary results of this ongoing work will be
presented in this contribution.
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The code has been developed for the simulation of high
current beams in a proton linac with superconducting RF
cavities. The chosen independent coordinate is time,
expressed in terms of the phase �

5)
ω=φ , where 

5)
ω  is

(2π) the frequency of the radiofrequency (RF) field.
Particle coordinates and momenta are updated in phase
steps. If a particle crosses during a timestep two adjacent
element boundaries, a substep is performed up to the
element end and then the timestep is continued in the

following element. Coordinates at the element output are
stored in buffers and written to disk in case phase space
plots at given positions in the beamline are desired.

Space charge kicks are applied in phase steps multiple
of the particle tracking steps. The space charge kick on
each particle can be evaluated either using a direct (point
to point) method (with the use of a “screening radius” to
prevent the Coulomb divergence of macro particles lying
at close distance) or using a fast 3D Poisson solver in the
beam frame, based on a multigrid algorithm[1].
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The linac beamline is made of quadrupole, drift space and
RF cavity elements. For quadrupoles and drift spaces
analytical maps are applied for the evolution during the
timestep, whereas in the RF cavities a direct integration of
the equations of motion in the space-time dependent
cavity electric field is performed.

The RF cavity field is described throught an analytical
expression of the on-axis longitudinal field of an “ideal β
cavity”, as follows:
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ωϕ+ω= sinsin2,

where 
DFF
�  is the cavity accelerating field, 

F
β  the cavity

synchronous velocity and 
F

ϕ  the cavity phase. Thus the

energy gain for the synchronous particle with 
F

β=β  is

��
DFF

, where 2
F5)

�� βλ= is the active cavity length

and � the number of cells. An iterative preprocessor
algorithm (before the actual tracking takes place) sets the
cavity phases along the beamline to the desired value for
the synchronous phase, defined for the reference particle
at the cavity center.

A second order expansion for the off-axis electric and
magnetic fields is used. A future extension allowing to
use longitudinal electric field maps provided by a cavity
eigenfield solver as SUPERFISH[2] is planned.

A special beamline element, providing a uniform
focussing channel in the three planes, has also been
included in order to check analytical predictions and to
test the space charge solver numerical properties with
different beam aspect ratios (as discussed in Ref. [3]).
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The three dimensional space charge calculation is
performed solving the Poisson equation in the rest frame
of the synchronous particle (the reference particle). The



electrostatic field in the rest frame is then transformed to
the electric and magnetic fields in the laboratory frame,
where the space charge kick is applied to the individual
particles. The charge distribution on the numerical grid is
evaluated in the rest frame using a cloud in cell (CIC)
charge assignment scheme, and field interpolation on the
particle positions from the grid values uses a trilinear
interpolation scheme, for consistency[4].

The Poisson equation for the electrostatic potential is
solved on a square mesh, typically consisting of
33x33x33 or 65x65x65 points (extending to at least 6
rms), using a fast multigrid solver.

Multigrid methods are the fastest iterative methods for
the solution of elliptic problems and are based on two
main components:
1 ��������
 ����������
 ��������
� (as the weighted

Jacobi or the Gauss-Seidel)
2 the discretization of the model problem
on �
������
��
������
 ����
 ������ (obtained, for example, by step
doubling).
The multigrid scheme makes use of the smoothing

properties of relaxation schemes: the high frequencies
(relative to the grid step) of the error decay by orders of
magnitude in the first few iteration of the relaxation
operator. However, relaxation is very ineffective for the
smooth components of the error (again, the smoothness is
to be intended relatively to the grid step).

In a multigrid scheme, relaxation is performed for a
few cycles (1-4, typically), to nearly eliminate the fast
oscillating errors. After that, only smooth error are left
and the estimate of the solution is “restricted” to a coarser
level, where a portion of these error components are no
longer smooth, due to the step doubling. This process is
iterated down the grid levels until reaching the elemental
grid consisting of 3x3x3 gridpoints (and only one
unknown), which can be directly solved. The approximate
solutions at each grid level are used then to form a better
estimate for the solution on the finer level, through a
proper “prolongation” operator. The procedure is then
iterated all over the grid hierarchy until the desired
convergence is reached. This cycling strategy is known as
the V-cycle multigrid scheme and is pictorially illustrated
in Figure 1. The V-cycle scheme has a favorable scaling
with respect to the grid size, since the number of cycles
required in order to converge to a specified residual norm
is independent on the dimensions of the finest grid.

The multigrid has been implements in the code using
trilinear averaging (known as full-weighting) of the 27
neighboring nodes for the ����������� operator and
trilinear interpolation as the ������������
 operator. The
smoothing operator is the  ����!������ algorithm.

Other cycling schemes are possible and were
implemented in the code, like the Full Multigrid
algorithm[1], but the V cycle allow a simple acceleration
mechanism: when using the potential map computed at
the previous space charge evaluation the number of

iterations required to converge to the specified norm can
be reduced by 30%.

All the multigrid internal routines and data structures
are stored in a Fortran 90 Module with PRIVATE
attributes and a few PUBLIC interfaces.
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The space charge solver has been tested both with the
results from the direct point to point routine (which can be
used with a limited resolution due to the scaling of
execution time with the square of the particles number)
and with analytical tests. In Figure 2 we show the case of
the radial field of a uniformly charged sphere, with a
comparison between the analytical solution and the
numerical solution of the multigrid routine, interpolated
on the position of 10,000 test random positions in the 3D
space, in and around the sphere.
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Figure 1: A pictorial representation of the multigrid V-
cycling scheme. The S denotes the smoothing operator, R
and P denote the restriction and prolongation operators,
respectively.
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Figure 2: Radial field from a uniformly charged sphere
(solid line) and field from the multigrid solver
interpolated on the position of 10,000 test positions. The
grid extends from -0.5 to 0.5 in x, y, z, the sphere radius is
0.1 and 33x33x33 grid points have been used.



Obviously, the numerical solution cannot represent the
discontinuous derivative of the exact solution near the
sphere edge, due to the charge smoothing on the grid, but
is otherwise in excellent agreement with the analytical
solution and does not exhibit a directional dependence.

The CPU scaling of the space charge algorithm can be
seen from Figure 3, where the time needed for the space
charge evaluation (including the charge assignment and
the field interpolation) is plotted both with respect to the
number of grid points and to the number of particles.
Above 100,000 particle most of the execution time is
spent in the charge assignment/field interpolation steps,
and the space charge step timing is weakly dependent on
the finest grid size.

A further improvement for the treatment of the open
boundary conditions that allows to increase the mesh
resolutions at the beam core by using semi-analytical
boundary conditions is currently under test[5].
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The code has been used to validate the linac design for the
superconducting linac of the TRASCO Project[6].
Simulations with up to 100,000 particles have been used
for beam dynamics calculations of a 25 mA proton beam
in the 100-1600 MeV superconducting accelerator. The
linac is split in three sections with five cell elliptical
cavities designed for a synchronous β of 0.5, 0.65 and
0.85, grouped in cryostats of 2,3 and 4 structures each.

The matched Twiss beam parameters and the
quadrupole and cavity matching parameters between the
sections have been determined with adiabatic smooth
matching routines that we have implemented in the linear
optics code TRACE-3D[7].

Figure 4 shows the rms beam envelopes along the
750 m of the linac beamline The two section transitions
can be clearly identified at approximately 100 and 250 m.

Figure 5 shows the horizontal beam size fractions along
the linac, normalized by the rms horizontal beam size (in
order to get rid of the envelope oscillations in the doublet
channel). The curves in the figure refer to the horizontal
position containing 90%, 99%, 99.9% and 100% of the
beam radius (divided by the horizontal rms beam size).
No distribution mismatch can be seen for the whole beam
in the first linac section (up to 96 m), where the beam size
fractions stay constant, whereas a mismatch in the tails of
the distribution is introduced in the transition from the
first to the second section. This mismatch is clearly seen
by the onset of betatron oscillation from the 99% of the
beam and above. The noisy pattern in the 100% curve is
due to a poor statistics of the few particles in the outer tail
(0.1% of the beam, i.e. only 100 simulation particles).

The simulation used 100,000 particles distributed
uniformly in the 6D phase space.

Similar plots can be shown for the other beam profiles
(the vertical and the longitudinal), with a distribution
mismatch arising from the section transitions.
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Figure 3: CPU time per space charge step ad a function of
the number of grid points (on the finest grid) and of the
number of particles. Times were measured on a 300 MHz
Pentium II 2-processor NT Workstation.
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Figure 4: The three rms beam envelopes in the TRASCO
linac, matching conditions were determined from
TRACE3-D.

Figure 5: Different horizontal beam ratio profiles along
the linac, corresponding to the position containing 90%,
99%, 99.9% and 100% of the beam, divided by the rms
value.



Figure 6 shows the beam emittances along the linac.
The figure shows the rms (bottom lines), 90%
(intermediate) and 100% (upper lines) beam emittances.
No appreciable rms emittance growth can be seen from
the plot (when shown in an expanded scale, the rms
emittance growth over the whole linac length is limited to
well below 10%). An increase of the total emittance at the
first transition between the sections can be seen from the
plot. This emittance growth at the distribution tails is
associated with the distribution mismatch induced by the
section transitions.

In Figure 7 the phase space plots at the end of the
linac are shown, for the corresponding matched case
shown in Figures 3 to 6. Evidences of the beam tails
formation in both the longitudinal and transverse planes
can be seen from the phase space plots. However, no clear
sign of beam filamentation or onset of resonances can be
seen from the figure.

Note that the characteristic “rectangular” phase space
distribution, corresponding to a moderately tune
depressed ( 6.0≈ν ) beam, can be seen from Figure 7.

In Figure 8 the same phase space plots at the linac
output, as in Figure 7, are shown, for a case where the
beam is mismatched in both the horizontal and
longitudinal phase spaces. The mismatch factor for this
case is 30% (both in the longitudinal and transverse
planes). Here, the onset of beam filamentation due to the
mismatch can be clearly seen, especially in the
longitudinal phase space plane. In this case the rms
longitudinal emittance is only 7% higher than the matched
case, but the evidence of a strong presence of particles in
the beam tails indicates a substantial increase of the total
beam emittance.

Simulations with smaller values of the mismatch
factors have been performed in order to assess the
induced emittance growth. Mismatch factors lower than

10% result in a negligible increase of the rms emittance
and a 20% increase of the total (100%) emittances[8].
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A dedicated tool for the simulation of high current beam
dynamics in a superconducting linac has been developed
in the framework of the TRASCO Project for a high
power linac for nuclear waste transmutation. The code is
being used to assist the validation of the linac design and
to verify the stringent requirements on beam losses that
could cause the linac activation.

A 3D space charge evaluation routine based on an
iterative multigrid scheme has been developed and
thoroughly tested. The space charge solver efficiency is
enough to allow simulations up to 1,000,000 macro
particles on a desktop workstation. A future improvement
of the code will use parallel processing directives in order
to decrease the time consuming space charge evaluation
procedures (i.e. the charge smoothing/field interpolation).

The reference design layout for the TRASCO linac
has been verified with simulations. No particle losses
(with a resolution of 1 to 100,000) have been found, and
the emittance growth is limited if the beam mismatch can
be controlled to 10%.

For further information on the code and its
distribution, please contact the Author[9].
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Figure 6: Beam emittances along the linac. Bottom lines
are the rms emittances, lines at the middle are the 90%
emittances, upper lines are the 100% beam emittances.
The longitudinal emittance (to be read on the right axis) is
the dashed line, the continuous lines are the horizontal
and vertical emittances.



Figure 7: Phase space plots at the linac end (1.7 GeV after 750 m of linac). Upper left: horizontal plane, Upper right:
vertical plane, Bottom left: longitudinal plane, Bottom right: transverse distribution. Units are m and rad for the
transverse planes and deg MeV for the longitudinal. Reference case for the “adiabatically matched” beam. The ellipses
shown in the phase space plots represent the rms emittance and 4 times the rms value.

Figure 8: Same case for Figure 7 at the linac output, but for an initially mismatched beam (with a longitudinal and
transverse mismatch factor of 30%).


